Study on Spatiotemporal Characteristics, Health Risk, and Potential Source Regions of Atmospheric PM2.5 and O3 in Xiangyang City, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources
2.3. Methodologies
2.3.1. Aggregate Risk Index (ARI)
2.3.2. Moran’s Index
2.3.3. Potential Source Contribution Function (PSCF)
2.3.4. Concentration-Weighted Trajectory (CWT)
3. Results and Analysis
3.1. Temporal Variation of PM2.5 and O3
3.1.1. Annual Variation of PM2.5 and O3
3.1.2. Seasonal Variation of PM2.5 and O3
3.1.3. Monthly Variation of PM2.5 and O3
3.1.4. Daily Variation of PM2.5 and O3
3.2. Spatial Aggregation Characteristics of PM2.5 and O3
3.3. Variation of ARI
3.3.1. Variation of ARI in Xiangyang
3.3.2. The Spatial Aggregation of ARI in Closely Adjacent Regions of Xiangyang
3.4. Analysis of the Backward Trajectory Clustering of PM2.5 and O3
3.5. Analysis of Potential Source Regions for PM2.5 and O3
3.6. Weighted Trajectories of PM2.5 and O3
4. Discussion
4.1. Limitations and Prospects
4.2. Results Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motesaddi, S.; Hashempour, Y.; Nowrouz, P. Characterizing of air pollution in Tehran: Comparison of two air quality indices. Civ. Eng. J. 2017, 3, 749–758. [Google Scholar] [CrossRef]
- Chen, B.H.; Kan, H.D.; Chen, R.J.; Jiang, S.H.; Hong, C.J. Air pollution and health studies in China-policy implications. J. Air Waste Manag. Assoc. 2011, 61, 1292–1299. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- Tian, Y.H.; Liu, H.; Liang, T.L.; Xiang, X.; Li, M.; Juan, J.; Song, J.; Cao, Y.Y.; Wang, X.W.; Chen, L.B.; et al. Ambient air pollution and daily hospital admissions: A nationwide study in 218 Chinese cities. Environ. Pollut. 2018, 242, 1042–1049. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Cui, L.J.; Zhou, X.D.; Zhang, M.; Xu, Y.H.; Wu, Y. Assessment of the Economic Loss of Health Damages Caused by Air Pollutants in Typical Chinese Cities from 2016 to 2023. Earth Environ. 2025, 53, 377–390. [Google Scholar] [CrossRef]
- Gualtieri, M.; Mantecca, P.; Cetta, F.; Camatini, M. Organic compounds in tire particle induce reactive oxygen species and heatshock proteins in the human alveolar cell line A549. Environ. Int. 2008, 34, 437–442. [Google Scholar] [CrossRef]
- Zhai, W.H.; Huang, Z.G.; Feng, C.; Li, B.; Li, T.S. Atmospheric Fine Particulate Pollutants Concentrations of PM2.5 and its Effects on Inflammatory Factors in Pulmonary Epithelial Cells. Prog. Mod. Biomed. 2015, 15, 1028–1031. [Google Scholar]
- Zhou, G.; Liu, Z.X.; Shao, W.Q.; Sun, B.; Li, L.; Liu, J.G.; Li, G.; Lv, X.Q. Study on the Effects of Dust Particle Size and Respiratory Intensity on the Pattern of Respiratory Particle Deposition in Humans. Indoor Air 2024, 1, 5025616. [Google Scholar] [CrossRef]
- Peng, H.T.; Tang, A.; Cheng, Y.K.; Zhang, Y.L.; Guo, L.D.; Zhang, X.; Li, J.C. Study of dust deposition pattern in the respiratory tract of dust particles less than 10 μm in size. Powder Technol. 2024, 444, 120033. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Sicard, P.; Lesne, O.; Alexandre, N.; Mangin, A.; Collomp, R. Air quality trends and potential health effects-Development of an aggregate risk index. Atmos. Environ. 2011, 45, 1145–1153. [Google Scholar] [CrossRef]
- Liu, X.Y.; Pan, X.L.; Li, J.; Chen, X.; Liu, H.; Tian, Y.; Zhang, Y.T.; Lei, S.D.; Yao, W.J.; Liao, Q.; et al. Cross-boundary transport and source apportionment for PM2.5 in a typical industrial city in the Hebei Province, China: A modeling study. J. Environ. Sci. 2022, 115, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Wei, W.; Cheng, S.Y.; Lv, Z.; Wang, C.D.; Niu, Y. Composition analysis and formation pathway comparison of PM1 between two pollution episodes during February 2017 in Beijing, China. Atmos. Environ. 2020, 223, 117–223. [Google Scholar] [CrossRef]
- Song, X.W.; Hao, Y.P.; Zhu, X.D.; Wang, J.W.; Xue, P.; Liu, W.T. Variations in ozone pollution and their meteorological influences and transmission sources in Linfen City of China. China Environ. Sci. 2022, 42, 3626–3634. [Google Scholar]
- Qi, J.H.; Li, M.Z.; Gao, D.M.; Zhen, Y.; Zhang, D.H. Impact of dust events on the concentration, property and distribution of atmospheric bioaerosols. Adv. Earth Sci. 2018, 33, 568–577. [Google Scholar]
- Zhang, Y.T.; Pan, X.L.; Tian, Y.; Liu, H.; Chen, X.S.; Ge, B.Z.; Wang, Z.; Tang, X.; Lei, S.D.; Yao, W.J.; et al. Transport Patterns and Potential Sources of Atmospheric Pollution during the XXIV Olympic Winter Games Period. Adv. Atmos. Sci. 2022, 39, 1608–1622. [Google Scholar] [CrossRef]
- Xue, W.B.; Fu, F.; Wang, J.N.; Tang, G.Q.; Lei, Y.; Yang, J.T.; Wang, Y.S. Numerical study on the characteristics of regional transport of PM2.5 in China. China Environ. Sci. 2014, 34, 1361–1368. [Google Scholar]
- Shao, X.Y.; Wang, X.Q.; Zhong, Y.S.; Wang, R.P. Impacts of Anthropogenic Emission Reduction and Meteorological Conditions on PM2.5 Pollution in Typical Cities of Beijing-Tianjin-Hebei in Winter. Environ. Sci. 2021, 42, 4095–4103. [Google Scholar]
- Feng, T.; Du, H.B.; Lin, Z.G.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef]
- Yi, J.H.; He, C.; Yang, L.; Ye, Z.X.; Tian, Y.; Ke, B.Q.; Mu, H.; Tu, P.Y.; Han, C.R.; Hong, S. Spatial Correlation between Changes in Global Temperature and Major Air Pollutants during the COVID-19 Pandemic. Ecol. Environ. Sci. 2022, 31, 740–749. [Google Scholar]
- Ping, Y.R.; Li, Q.F.; Liu, C.M.; Xiao, J.Y. Spatiotemporal distribution characteristics and potential source analysis of ozone in Shijiazhuang. Environ. Monit. China 2024, 40, 54–65. [Google Scholar]
- Liu, N.; Yu, Y.; He, J.J.; Zhao, S.P. Analysis of air pollutant transport in winter in Lanzhou. Res. Environ. Sci. 2015, 28, 509–516. [Google Scholar]
- Li, Y.J.; An, X.Q.; Fan, G.Z. Transport pathway and potential source region of atmospheric particulates in Beijing. China Environ. Sci. 2019, 39, 915–927. [Google Scholar]
- Hu, W.Y.; Yao, W.J. Emission prediction of major atmosphere pollutants in Xiangyang. J. Wuhan Polytech. Univ. 2020, 39, 53–58. [Google Scholar]
- Ji, F. Study on the Characteristics of Atmospheric PM2.5 Pollution Sources in Xiangyang During the 13th Five-Year Plan Period. J. Green Sci. Technol. 2023, 12, 105–113. [Google Scholar]
- Zhang, Y.; Chen, X.M.; Wu, Y.Y.; Xu, H.H.; Qin, Q.G.; Peng, J.J.; Hu, C.J.; Xia, J.J.; Zhang, S.C. Analysis of Seasonal Characteristics and Potential Sources of Air Pollution in Xiangyang City. Resour. Environ. Yangtze Basin 2023, 32, 1491–1502. [Google Scholar]
- Zhang, Y.C. Analysis of Influencing Factors of Meteorological Conditions on Air Quality: A Case Study of Xiangyang. Sci. Technol. Inf. 2021, 19, 86–88. [Google Scholar]
- Chen, Y.; Xie, S.D. Temporal and spatial visibility trends in the Sichuan Basin, China, 1973 to 2010. Atmos. Res. 2012, 112, 25–34. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, Y.Q.; Zhu, X.F.; Zhu, J.M. National environmental monitoring and local enforcement strategies. Nat Cities 2025, 2, 58–69. [Google Scholar] [CrossRef]
- Wang, X.J.; Guo, K.; Liang, Y.; Zhang, T.B.; Wang, G.X. Spatio-temporal Characteristics of Atmospheric Pollution and Cause Analysis of Haze Events in Sichuan Basin, China. Chin. Geogr. Sci. 2021, 31, 539–557. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.M.; Shou, R.P.; Yang, L.X.; Wang, W.X. Semi-continuous analysis on the water-soluble inorganic ions of PM2.5 in spring in Jinan City. China Environ. Sci. 2010, 30, 18–24. [Google Scholar]
- Cairncross, E.K.; John, J.; Zunckel, M. A novel air pollution index based on the relative risk of daily mortality associated with short term exposure to common air pollutants. Atmos. Environ. 2007, 41, 8442–8454. [Google Scholar] [CrossRef]
- Shojaei Baghini, N.; Falahatkar, S.; Hassanvand, M.S. Time series analysis and spatial distribution map of aggregate risk index due to tropospheric NO2 and O3 based on satellite observation. J. Environ. Manag. 2022, 304, 114202. [Google Scholar] [CrossRef]
- Pyta, H. Classification of air quality based on factors of relative risk of mortality increase. Environ. Prot. Eng. 2008, 34, 111–117. [Google Scholar]
- Shang, Y.; Sun, Z.W.; Cao, J.J.; Wang, X.M.; Zhong, L.J.; Bi, X.H.; Li, H.; Liu, W.X.; Zhu, T.; Huang, W. Systematic review of Chinese studies of short term exposure to air pollution and daily mortality. Environ. Int. 2013, 54, 100–111. [Google Scholar] [CrossRef]
- GB 3095—2012; China National Standards. Ambient Air Quality Standards: GB 3095—2012. China Environmental Science Press: Beijing, China, 2012.
- Qi, K.; Zhang, H.; Zhou, Y.; Liu, Y.F.; Li, Q.X. Metaphor representation of resource nodes in cyberspace based on local Moran index and PageRank algorithm. J. Geo-Inf. Sci. 2024, 26, 1283–1295. [Google Scholar]
- Han, L.J.; Zhou, W.Q.; Li, W.F.; Qian, Y.G. Urbanization strategy and environmental changes: An insight with relationship between population change and fine particulate pollution. Sci. Total Environ. 2018, 642, 789–799. [Google Scholar] [CrossRef]
- Zhu, S.H.; Zhou, M.; Qiao, L.P.; Li, L.; Lou, S.R.; Yan, R.S.; Wang, H.L.; Tao, S.K.; Chen, C.H. Impact of the air mass trajectories on PM2.5 concentrations and distribution in the Yangtze River Delta in December 2015. Acta Sci. Circumstantiae 2016, 36, 4285–4294. [Google Scholar]
- Wang, H.L.; Miao, Q.; Shen, L.J.; Yang, Q.; Wu, Y.Z.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. Environ. Pollut. 2020, 271, 284–298. [Google Scholar] [CrossRef]
- Feng, X.Y.; Zhang, Y. Temporal and spatial distribution characteristics of air pollutant concentrations in Sichuan and Chongqing area. China Sci. 2018, 13, 8. [Google Scholar]
- Wang, S.G.; Feng, X.Y.; Zeng, X.Q.; Ma, Y.X.; Shang, K.Z. A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos. Environ. 2009, 43, 2823–2828. [Google Scholar] [CrossRef]
- Yan, X.Y.; Gou, X.H.; Yang, J.; Zhao, W.; Xu, Q.; Liu, Y.L. The Variety of Ozone and its Relationship with Meteorological Conditions in Typical Cities in China. Plateau Meteorol. 2020, 39, 416–430. [Google Scholar]
- Zhang, Y.; Shuai, C.Y.; Bian, J.; Chen, X.; Wu, Y.; Shen, L.Y. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Zang, Z.L.; Bao, J.; Zhao, J.Y.; Zhang, M. Recent progresses of studies on influence of ENSO on the East Asian summer monsoon and China summer rainfall. J. PLA Univ. Sci. Technol. (Nat. Sci. Ed.) 2005, 4, 394–398. [Google Scholar]
- Zhou, X.Y.; Liu, F.; Wang, B.; Xing, C.; Wang, H. Different responses of East Asian summer rainfall to El Niño decays. Clim Dyn. 2019, 53, 1497–1515. [Google Scholar] [CrossRef]
- Zhang, R.C.; Tian, J.H.; Chen, C.H.; Li, Z.F.; Fu, W.J.; Zhou, H.L.; Chen, H.X.; Wang, K.H. Causes Analysis of the 20 July, 2021 Extreme Rainstorm in Zhengzhou. Meteorol. Environ. Sci. 2022, 45, 52–64. [Google Scholar]
- Cai, B. Interdecadal Variations of Autumn Cold Surge Paths over North China and Its Possible Mechanism. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2019. [Google Scholar]
- Li, X.; Wang, Y.G. Atmospheric circulation characteristics of northern hemisphere in winter of 2022/2023 and its impact on weather and climate of China. Meteorol. Mon. 2023, 49, 881–891. [Google Scholar]
- Peng, J.B.; Sun, S.Q.; Chen, B.M. Maintenance and Development of Ural Blocking High and its Relationship with Severe Cold Wave Activities in 2020/2021 Winter. Chin. J. Atmos. Sci. 2023, 47, 1421–1433. [Google Scholar]
- Wang, Y.W.; Wang, Y.; Zhang, Z.K.; Zhang, L.X.; Shan, M. Analysis of Potential Source Regions and Transport Pathways of PM2.5 and O3 in Tianjin by Season. Res. Environ. Sci. 2022, 35, 673–682. [Google Scholar]
- Hao, Y.P.; Song, X.W.; Zhu, X.D.; Wang, J.W.; Cheng, P.; Kong, Y. Spatiotemporal Distribution and Potential Source Regions of PM2.5 Pollution in Xianyang City, Guanzhong Basin. Environ. Sci. 2025, 46, 579–590. [Google Scholar]
- Wang, Z.N.; Zhang, M.M.; Bian, S.P.; Yao, C.C.; Zhao, L.; Sun, T.B.; Cai, J.; Qiao, S.N. Characteristics and Sources Analysis of PM2.5 in Xiangyang in Autumn and Winter. Environ. Monit. China 2023, 39, 165–175. [Google Scholar]
Dataset | Publishing Agency | Publishing Website | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|
Concentration of PM2.5 and O3 in Xiangyang and Nanyang City | China National Environmental Monitoring Centre | https://air.cnemc.cn:18007/ | 1 h | - - |
Concentration of PM2.5 and O3 in other adjacent cities and counties | Department of Ecology and Environment of Hubei Province, China | https://sthjt.hubei.gov.cn/ | 1 h | - - |
Meteorological historical time series data | National Center for Environmental Prediction in the United States | ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/ | 6 h | 1° × 1° |
Pollutants | Season | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|
PM2.5 | Spring | 47.00 | 45.00 | 45.33 | 42.33 | 41.00 |
Summer | 28.33 | 24.67 | 26.00 | 24.33 | 23.33 | |
Autumn | 49.33 | 54.33 | 47.13 | 50.00 | 39.67 | |
Winter | 116.67 | 85.00 | 78.67 | 84.00 | 84.67 | |
O3 | Spring | 137.00 | 148.33 | 119.67 | 148.33 | 151.00 |
Summer | 180.67 | 147.67 | 157.67 | 170.33 | 169.33 | |
Autumn | 148.00 | 131.00 | 131.33 | 153.67 | 133.67 | |
Winter | 80.00 | 82.67 | 82.00 | 93.33 | 97.00 |
Indicator | 2019 | 2020–2022 | 2023 | 2019–2023 | |
---|---|---|---|---|---|
PM2.5 | Moran’s Index | 0.415 | 0.338 | 0.351 | 0.350 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | |
O3 | Moran’s Index | 0.316 | 0.319 | 0.465 | 0.363 |
p-value | 0.001 | 0.001 | 0.000 | 0.000 |
Season | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|
PSIPM2.5 | Spring | 1.032 | 0.860 | 0.888 | 0.630 | 0.516 |
Summer | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Autumn | 1.232 | 1.662 | 1.043 | 1.290 | 0.402 | |
Winter | 7.024 | 4.300 | 3.756 | 4.214 | 4.272 | |
PSIO3 | Spring | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Summer | 1.054 | 0.000 | 0.000 | 0.527 | 0.476 | |
Autumn | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Winter | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
ARI | Spring | 1.032 | 0.860 | 0.888 | 0.630 | 0.516 |
Summer | 1.054 | 0.000 | 0.000 | 0.527 | 0.476 | |
Autumn | 1.232 | 1.662 | 1.043 | 1.290 | 0.402 | |
Winter | 7.024 | 4.300 | 3.756 | 4.214 | 4.272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Chen, X. Study on Spatiotemporal Characteristics, Health Risk, and Potential Source Regions of Atmospheric PM2.5 and O3 in Xiangyang City, China. Atmosphere 2025, 16, 1026. https://doi.org/10.3390/atmos16091026
Zhou C, Chen X. Study on Spatiotemporal Characteristics, Health Risk, and Potential Source Regions of Atmospheric PM2.5 and O3 in Xiangyang City, China. Atmosphere. 2025; 16(9):1026. https://doi.org/10.3390/atmos16091026
Chicago/Turabian StyleZhou, Chang, and Xiuduan Chen. 2025. "Study on Spatiotemporal Characteristics, Health Risk, and Potential Source Regions of Atmospheric PM2.5 and O3 in Xiangyang City, China" Atmosphere 16, no. 9: 1026. https://doi.org/10.3390/atmos16091026
APA StyleZhou, C., & Chen, X. (2025). Study on Spatiotemporal Characteristics, Health Risk, and Potential Source Regions of Atmospheric PM2.5 and O3 in Xiangyang City, China. Atmosphere, 16(9), 1026. https://doi.org/10.3390/atmos16091026