Improving Urban Air Quality: Evaluation of Electric Vehicles and Nature-Based Solutions as Source and Sink Abatement Strategies for Ozone Pollution in Toronto, ON, Canada
Abstract
1. Introduction
- To understand the potential impact of widespread EV deployment as a source approach for ozone pollution, the COVID-19 pandemic disruption to human activity (including the emission of primary pollutants and impacted production of secondary pollutants) is used as a proxy for EV deployment using surface based ozone monitoring and the ozone weekend effect (OWE) [20].
- To understand the potential of nature-based solutions as a sink approach for ozone pollution, the remediative effect of nature-based solutions (NbS) on tropospheric ozone precursors, specifically nitrogen dioxide (NO2) is explored using remote sensing.
1.1. Theoretical Background
1.2. Bibliometric Analysis
1.3. COVID-19 Lockdowns as a Proxy for EV Deployment
1.4. Ozone Chemistry—Ozone Weekend Effect
1.5. Research Questions
- As a proxy for EV deployment, how did the COVID-19 restrictions imposed by the provincial government impact the magnitude of primary pollutants, NO and nitrogen dioxide (NO2), compared to the levels detected in the previous 10 years?
- Using the well-documented ozone weekend effect, how was the secondary pollutant O3 impacted during the COVID-19 pandemic as a proxy for the potential impact of the widespread use of electric vehicles on Toronto’s air quality resulting from changes in NO and NO2, also in comparison to the previous 10 years? How does EV deployment in similar urban settings reflect these similarities?
- Are the remediation effects of NbS on ozone precursor concentrations (specifically NO2) visible by satellite imagery and quantifiable by comparing to surface-based observations?
2. Data and Methods
2.1. Data
2.2. Method
2.2.1. Climatology
2.2.2. Data Ranking
2.2.3. Remote Sensing of a Precursor Pollutant (Nitrogen Dioxide)
3. Results
3.1. Comparing October to December 2020 to the 2010–2019 Climatology
- NO and NO2 for 2020 are both reduced from climatology for both time periods for both weekend and weekdays and at both TE and TW. NO and NO2 are higher on WDs than on WEs, as expected from traffic patterns [20]. NO reduces on average by 61% on WD and 52% on WE. NO2 reduces on average by 39% on WD and 32% on WE, and 37% combining WE and WD.
- For NO and NO2, TW exceeds TE for both time periods and climatology for both WD and WE, reflective of local traffic patterns [20]. For NO and NO2, the reduction at TE is 20% larger than TW for WE and 13 to 14% for WD.
- For NO and NO2, the second period (O–D) exceeds the first period (A–J) at both TW and TE and for WEs and WDs.
- For O3, WE exceeds WD for both TW and TE for both time periods, as expected for the ozone weekend effect (OWE).
- For O3, A–J exceeds O–D for both TW and TE and WE and WD as a result of greater photochemistry from the greater insolation during the A–J period.
- For 2020, A–J, WE, and O3 change only marginally for both TE and TW.
- For 2020, O–D, WE, and O3 increase for both TE and TW by 9% on average, the most significant difference between the two time periods.
- For 2020, A–J and O–D, WD, and O3 increase for both TE and TW by 15% on average.
3.2. Ranking
3.3. Remote Sensing of a Precursor Pollutant (Nitrogen Dioxide)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lippmann, M. Health Effects of Ozone: A Critical Review. JAPCA 1989, 39, 672–695. [Google Scholar] [CrossRef]
- Follinsbee, L.J. Human Health Effects of Air Pollution. Environ. Health Perspect. 1992, 100, 45–56. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Pope, C.A., III; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-term ozone exposure and mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Health Impacts of Air Pollution in Canada: Estimates of Premature Deaths and Nonfatal Outcomes—2021 Report; Health Canada: Ottawa, ON, Canada, 2021; ISBN 978-0-660-37331-7. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/2021-health-effects-indoor-air-pollution.html (accessed on 20 January 2022).
- World Health Organization (WHO). Air Quality Guidelines: Global Update. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 1 March 2025).
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and climate related ecosystem services provided by street trees in urban environments. Environ. Health 2016, 15, S36. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Pleijel, H.; Malley, C.S.; Sinha, B.; Cooper, O.R.; Schultz, M.G.; Neufeld, H.S.; Simpson, D.; Sharps, K.; Feng, Z.; et al. Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elem. Sci. Anthr. 2018, 6, 47. [Google Scholar] [CrossRef]
- US EPA. Ground-Level Ozone Basics. United States Environmental Protection Agency. 2022. Available online: https://www.epa.gov/ground-level-ozone-pollution (accessed on 1 March 2025).
- Schnell, J.L.; Naik, V.; Horowitz, L.; Paulot, F.; Ginoux, P. Air quality impacts from the electrification of light-duty passenger vehicles in the United States. Atmos. Environ. 2019, 208, 95–102. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Y.; Zhang, Y.; Wang, Y. The role of electric vehicles in addressing the ozone–NOx–VOC chemistry in China. Atmos. Chem. Phys. 2021, 21, 3167–3177. [Google Scholar]
- Anderson, V.; Gough, W.A. Form, Function, and Nomenclature: Deconstructing Green Infrastructure and its Role in a Changing Climate. In Climate Change and Extreme Events; Fares, A., Ed.; Elsevier: Maryland Heights, MO, USA, 2021; ISBN U1104201903351. [Google Scholar]
- Anderson, V.; Gough, W.A. A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land 2022, 11, 1072. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Evaluating the potential of green infrastructure to address the impacts of climate change in Ontario through the reduction of ozone, nitrogen dioxide, and carbon dioxide concentrations. City Environ. Interact. 2020, 6, 100043. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Woo, S.-H.; Jang, H.; Lee, S.-B.; Lee, S. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis. Sci. Total Environ. 2022, 842, 156961. [Google Scholar] [CrossRef] [PubMed]
- Songkitti, W.; Sa-ard-iam, S.; Plengsa-Ard, C.; Wirojaskunchai, E. Effects of payloads on non-exhaust PM emissions from a hybrid vehicle during a braking sequence. Aerosol Air Qual. Res. 2022, 22, 220150. [Google Scholar] [CrossRef]
- Mehlig, D.; Staffell, I.; Stettler, M.; Apsimon, H. Accelerating electric vehicle uptake favours greenhouse gas over air pollutant emissions. Transp. Res. Part D 2023, 124, 103954. [Google Scholar] [CrossRef]
- Li, J.; Ge, Y.; Wang, X.; Zhang, M.; Yang, Z.; Zhong, C.; Sun, J.; Wang, Y. Non-exhaust gas and particle emissions of light-duty vehicles—Quantification under driving conditions in a sealed cabin. Atmos. Environ. 2024, 319, 120308. [Google Scholar] [CrossRef]
- Gough, W.A.; Anderson, V. Changing air quality and the ozone weekend effect during the COVID-19 pandemic in Toronto, Ontario, Canada. Climate 2022, 10, 41. [Google Scholar] [CrossRef]
- Li, H.; Zeng, L.; Wu, Y.; Yang, W. Vehicle electrification: Reducing NOx and ozone across the continental United States. Environ. Sci. Technol. Lett. 2016, 3, 281–285. [Google Scholar]
- Shen, W.; Han, W.; Cao, D.; Zhu, W.; Du, K. The potential environmental benefits of electric vehicles in China. J. Clean. Prod. 2020, 255, 120283. [Google Scholar]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Krecl, P.; Targino, A.C.; Oukawa, G.Y.; Cassino Junior, R.P. Drop in urban air pollution from COVID-19 pandemic: Policy implications for the megacity of São Paulo. Environ. Pollut. 2020, 265, 114883. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Nature-based cooling potential: A multi-type green infrastructure evaluation in Toronto, Ontario, Canada. Int. J. Biometeorol. 2021, 66, 397–410. [Google Scholar] [CrossRef]
- Song, X.P.; Richards, D.R.; Tan, P.Y. Does urban greening reduce anthropogenic carbon dioxide? Landsc. Urban Plan. 2020, 203, 103907. [Google Scholar]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; p. xiii. 97p, ISBN 978-2-8317-1812-5. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renauda, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Y.; Zhang, S.; Choma, E.F. Health benefits of vehicle electrification through air pollution in Shanghai, China. Sci. Total Environ. 2024, 914, 16985. [Google Scholar] [CrossRef]
- Anderson, V.; Zgela, M.; Gough, W.A. Building urban resilience with nature-based solutions: A multi-scale case study of the atmospheric cleansing potential of green infrastructure in Southern Ontario, Canada. Sustainability 2023, 15, 14146. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Zhou, S.; Wei, W. A study on the ozone weekend effect and its causes in Shanghai. Environ. Sci. Pollut. Res. 2022, 29, 31821–31834. [Google Scholar]
- He, H.; Hambeck, L.; Hosley, K.M.; Canty, T.P.; Salawich, R.J.; Dickerson, R.R. High ozone concentration on hot days: The role of electric power demand and NOx emissions. Geophys. Res. Letts. 2013, 40, 5291–5294. [Google Scholar] [CrossRef]
- Burnett, R.T.; Brook, J.R.; Yung, W.T.; Dales, R.E.; Krewski, D. Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environ. Res. 1997, 72, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Huryn, S.M.; Gough, W.A. Impact of urbanization on the ozone weekday/weekend effect in Southern Ontario, Canada. Urban Clim. 2014, 8, 11–20. [Google Scholar] [CrossRef]
- Murphy, J.G.; Day, D.A.; Cleary, P.A.; Wooldridge, P.J.; Millet, D.B.; Goldstein, A.H.; Cohen, R.C. The weekend effect within and downwind of Sacramento: Part 1. Observations of ozone, nitrogen oxides and VOC reactivity. Atmos. Chem. Phys. Discuss. 2006, 6, 11427–11464. [Google Scholar] [CrossRef]
- Murphy, J.G.; Day, D.A.; Cleary, P.A.; Wooldridge, P.J.; Millet, D.B.; Goldstein, A.H.; Cohen, R.C. The weekend effect within and downwind of Sacramento: Part 2. Observational evidence for chemical and dynamical contributions. Atmos. Chem. Phys. Discuss. 2006, 6, 11971–12019. [Google Scholar]
- Geddes, J.A.; Murphy, J.G.; Wang, D.K. Long term changes in nitrogen oxides and volatile organic compounds in Toronto and the challenges facing local ozone control. Atmos. Environ. 2009, 43, 3407–3415. [Google Scholar] [CrossRef]
- Beekmann, M.; Vautard, R. A modelling study of photochemical regimes over Europe: Robustness and variability. Atmos. Chem. Phys. 2010, 10, 10067–10084. [Google Scholar] [CrossRef]
- Pusede, S.E.; Cohen, R.C. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995-present. Atmos. Chem. Phys. 2012, 12, 8323–8339. [Google Scholar] [CrossRef]
- Karl, T.; Graus, M.; Striednig, M.; Lamprecht, C.; Hammerle, A.; Wohlfahrt, G.; Held, A.; von der Heyden, L.; Deventer, M.J.; Krismer, A.; et al. Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe. Sci. Rep. 2017, 7, 2536. [Google Scholar] [CrossRef]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminiene, V.; Proietti, C.; Coulibaly, F.; DeMarco, A. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Graedel, T.E.; Kleiner, B.; Warmer, J.L. Sunday and workday variations in the photochemical air pollution in New Jersey and New York. Science 1974, 186, 1037–1038. [Google Scholar] [CrossRef]
- Lebron, F. A comparison of weekend weekday ozone and hydrocarbon concentrations in the Baltimore Washington Metropolitan Area. Atmos. Environ. 1975, 9, 861–863. [Google Scholar] [CrossRef]
- Elkus, B.; Wilson, K.R. Photochemical air pollution: Weekend–weekday differences. Atmos. Environ. 1977, 11, 509–515. [Google Scholar] [CrossRef]
- Karl, T.R. Day of the week variations of photochemical pollutants in the St. Louis area. Atmos. Environ. 1978, 12, 1657–1667. [Google Scholar] [CrossRef]
- Beaney, G.; Gough, W.A. The influence of tropospheric ozone on the air temperature of the city of Toronto, Ontario, Canada. Atmos. Environ. 2002, 36, 2319–2325. [Google Scholar] [CrossRef]
- Sadanaga, Y.; Shibata, S.; Hamana, M.; Takenaka, N.; Bandow, H. Weekday/weekend differences of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos. Environ. 2008, 42, 4708–4723. [Google Scholar] [CrossRef]
- Pudasainee, D.; Sapkota, B.; Bhatnagar, A.; Kim, S.H.; Seo, Y.C. Influence of weekdays, weekends, and bandhas on surface ozone in Kathmandu valley. Atmos. Res. 2010, 95, 150–156. [Google Scholar] [CrossRef]
- Pires, M. Ozone weekend effect analysis in three European urban areas. CLEAN-Soil Air Water 2012, 40, 790–797. [Google Scholar] [CrossRef]
- Castell-Balaguer, N.; Téllez, L.; Mantilla, E. Daily, seasonal and monthly variations in ozone levels recorded at the Turia river basin in Valencia (Eastern Spain). Environ. Sci. Pollut. Res. 2012, 19, 3461–3480. [Google Scholar] [CrossRef] [PubMed]
- Im, U.; Incecik, S.; Guler, M.; Tek, A.; Topcu, S.; Unal, Y.S.; Yenigun, O.; Kindap, T.; Odman, M.T.; Tayanç, M. Analysis of surface ozone and nitrogen oxides at urban, semi-rural and rural sites in Istanbul, Turkey. Sci. Total Environ. 2013, 443, 920–931. [Google Scholar] [CrossRef]
- Wolf, G.T.; Kalhbaum, D.F.; Heuss, J.M. The vanishing ozone weekday/weekend effect. J. Air Waste Manag. Assoc. 2013, 63, 292–299. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, Y.T.; Chen, T.; Zhang, D.W.; Sun, F.; Sun, R.W.; Dong, X.; Sun, N.D.; Pan, L.B. Temporal and spatial distribution characteristics of ozone in Beijing. Huan Jing Ke Xue 2014, 35, 4446–4453. [Google Scholar] [PubMed]
- Szep, R.; Matyas, L.; Keresztes, R.; Ghimpusan, M. Tropospheric ozone concentrations-seasonal and daily analysis and its association with NO and NO2 as a function of NOx in Ciuc depression—Romania. Rev. Chim. 2016, 67, 205–213. [Google Scholar]
- Yao, X.; Lau, N.T.; Chan, C.K.; Fang, M. The use of tunnel concentration profile data to determine the ratio of NO2/NOx directly emitted from vehicles. Atmos. Chem. Phys. Discuss. 2005, 5, 12723–12740. [Google Scholar]
- Adams, M.D. Air pollution in Ontario, Canada during the COVID-19 state of emergency. Sci. Total Environ. 2020, 742, 140516. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmos. Res. 2021, 264, 105823. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Grange, S.K.; Lee, J.D.; Drysdale, W.S.; Lewis, A.C.; Hueglin, C.; Emmenegger, L.; Carslaw, D.C. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmos. Chem. Phys. 2021, 21, 4169–4185. [Google Scholar] [CrossRef]
- Keller, C.A.; Evans, M.J.; Knowland, K.E.; Hasenkopf, C.A.; Modekurty, S.; Lucchesi, R.A.; Oda, T.; Franca, B.B.; Mandarino, F.C.; Díaz Suarez, M.V.; et al. Global impact of COVID-19 restrictions on the atmospheric concentrations of nitrogen dioxide and ozone. Atmos. Chem. Phys. 2021, 21, 3555–3592. [Google Scholar] [CrossRef]
- Lovri, M.; Pavlovi, K.; Vukovi, M.; Grange, S.K.; Haberl, M.; Kern, R. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environ. Pollut. 2021, 274, 115900. [Google Scholar] [CrossRef]
- Luo, J.; Qin, G.; Cheng, J. Ozone pollution mitigation in Guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19. Environ. Pollut. 2020, 272, 115927. [Google Scholar]
- Miyazaki, K.; Bowman, K.; Sekiya, T.; Jiang, Z.; Chen, X.; Eskes, H.; Ru, M.; Zhang, Y.; Shindell, D. Air quality response in China linked to the 2019 novel Coronavirus (COVID-19) lockdown. Geophys. Res. Lett. 2020, 47, e2020GL089252. [Google Scholar] [CrossRef]
- Ordonez, C.; Garrido-Perez, J.M.; García-Herrera, R. Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Sci. Total Environ. 2020, 747, 141322. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Mo, Z.; Yuan, B.; Huang, S.; Huangfu, Y.; Wang, Z.; Li, X.; Yang, S.; Wang, W.; Zhao, Y.; et al. An observation approach in evaluation of ozone production to precursor changes during the COVID-19 lockdown. Atmos. Environ. 2021, 262, 118618. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Siciliano, B.; Dantas, G.; Cleyton, M.; Arbilla, G. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef]
- Soni, M.; Ojha, N.; Girach, I. Impact of COVID-19 lockdown on surface ozone build-up at an urban site in western India based on photochemical box modelling. Curr. Sci. 2021, 120, 376–381. [Google Scholar] [CrossRef]
- Trebrewal, K.; Venkataraman, C. COVID-19 lockdown closures of emissions sources in India: Lessons for air quality and climate policy. J. Environ. Manag. 2022, 302, 114079. [Google Scholar] [CrossRef] [PubMed]
WE | TE | TW | ||||||
C A–J | A–J | C O–D | O–D | C A–J | A–J | C O–D | O–D | |
NO | 2.4 | 0.7 (71) | 5.6 | 1.7 (70) | 3.2 | 1.5 (53) | 7.0 | 3.4 (51) |
NO2 | 14.1 | 5.5 (61) | 12.5 | 8.3 (34) | 11.5 | 7.4 (36) | 14.0 | 10.3 (26) |
O3 | 31.8 | 31.7 | 18.6 | 21.8 (17) | 30.0 | 30.5 (2) | 17.1 | 19.9 (16) |
WD | TE | TW | ||||||
C A–J | A–J | C O–D | O–D | C A–J | A–J | C O–D | O–D | |
NO | 3.8 | 1.4 (63) | 9.2 | 4.1 (55) | 7.6 | 4.1 (46) | 15.9 | 8.9 (44) |
NO2 | 15.0 | 7.3 (51) | 15.5 | 11.7 (25) | 16.4 | 11.3 (31) | 19.2 | 15.5 (19) |
O3 | 29.8 | 33.0 (10) | 16.1 | 18.9 (17) | 25.9 | 29.7 (15) | 13.2 | 15.6 (18) |
WD | TE | TW |
---|---|---|
NO | 11 (11) | 11 (11) |
NO2 | 11 (11) | 11 (11) |
O3 | 2 (1) | 2 (1) |
WE | TE | TW |
---|---|---|
NO | 11 (11) | 11 (11) |
NO2 | 11 (11) | 11 (11) |
O3 | 1 (6) | 1 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gough, W.A.; Anderson, V.; Zgela, M. Improving Urban Air Quality: Evaluation of Electric Vehicles and Nature-Based Solutions as Source and Sink Abatement Strategies for Ozone Pollution in Toronto, ON, Canada. Atmosphere 2025, 16, 991. https://doi.org/10.3390/atmos16080991
Gough WA, Anderson V, Zgela M. Improving Urban Air Quality: Evaluation of Electric Vehicles and Nature-Based Solutions as Source and Sink Abatement Strategies for Ozone Pollution in Toronto, ON, Canada. Atmosphere. 2025; 16(8):991. https://doi.org/10.3390/atmos16080991
Chicago/Turabian StyleGough, William A., Vidya Anderson, and Matej Zgela. 2025. "Improving Urban Air Quality: Evaluation of Electric Vehicles and Nature-Based Solutions as Source and Sink Abatement Strategies for Ozone Pollution in Toronto, ON, Canada" Atmosphere 16, no. 8: 991. https://doi.org/10.3390/atmos16080991
APA StyleGough, W. A., Anderson, V., & Zgela, M. (2025). Improving Urban Air Quality: Evaluation of Electric Vehicles and Nature-Based Solutions as Source and Sink Abatement Strategies for Ozone Pollution in Toronto, ON, Canada. Atmosphere, 16(8), 991. https://doi.org/10.3390/atmos16080991