Monitoring of Air Pollution from the Iron and Steel Industry: A Global Bibliometric Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Geographical Distribution of Studies
3.2. Research Topics Analysis
Country | Year | Region; Enterprise | Analyzed Substances | Features of the Study | References |
---|---|---|---|---|---|
China | 2018 | Entire country | VOCs | Analysis of emissions and standards of steel industry. | [21] |
Typical iron ore sintering plant | PCDD/Fs | Generation mechanism of PCDD/Fs and the new developments and technologies of PCDD/Fs emission reduction. | [80] | ||
2019 | Laiwu city | PAHs | Distribution pattern, emission characteristics of 16 PAHs in download ash and dust. | [22] | |
2020 | Yangtze River Delta | VOCs | Assessment of emissions (2018–2019), the ozone formation potential, and secondary organic aerosol formation of VOCs. Analysis of the influence of VOCs emissions on regional ozone and particulate pollution using the sensitivity analysis approach. | [78] | |
Anshan city | PAHs | Evaluation of the occurrence and variation in concentrations, sources and cancer risk of PM2.5-bound PAHs using source-oriented positive matrix factorization model and PAH diagnostic ratios. | [83] | ||
2021 | Laiwu city | PAHs | Assessment of 16 PAHs content in dust and human health risks using the toxic equivalency value (TEQBaP) and incremental lifetime cancer risk (ILCR) estimation. | [23] | |
8 iron and steel smelters | PCDD/Fs | PCDD/Fs concentrations and distributions, emission factors and amounts. | [81] | ||
2022 | North China | VOCs | Emission characteristics of 102 VOC species from various sources (sintering, pelletizing, steel smelting, a coke oven, and others) in 2018. | [79] | |
2023 | Beijing–Tianjin–Hebei | VOCs | Analysis of VOCs sources and VOCs contribution to ozone formation in combination with ozone formation potential. | [19] | |
Turkey | 2018 | Dilovasi region | PAHs, PCBs | Study of possible sources and carcinogenic health risks using the positive matrix factorization and USEPA approach. | [43] |
Australia, Canada, European Union | 2019 | 30 countries | dioxins | The trend in dioxin emissions during 1990–2017 from various industrial sources using the national inventory databases. | [55] |
Russia | 2022 | Perm | Phenol | Specific hapten sensitization in children living under excessive aerogenic exposure to phenol. | [84] |
Nigeria | 2024 | Scrap iron recycling plant | PCBs | The concentration, indoor-outdoor and seasonal change, sources, and health effects of PCBs in particulate-bound dust. | [82] |
3.3. Citation Analysis
3.4. Analysis of Source Contribution to Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef]
- Shahriyari, H.A.; Nikmanesh, Y.; Jalali, S.; Tahery, N.; Zhiani Fard, A.; Hatamzadeh, N.; Zarea, K.; Cheraghi, M.; Mohammadi, M.J. Air pollution and human health risks: Mechanisms and clinical manifestations of cardiovascular and respiratory diseases. Toxin Rev. 2022, 41, 606–617. [Google Scholar] [CrossRef]
- Ofremu, G.O.; Raimi, B.Y.; Yusuf, S.O.; Dziwornu, B.A.; Nnabuife, S.G.; Eze, A.M.; Nnajiofor, C.A. Exploring the relationship between climate change, air pollutants and human health: Impacts, adaptation, and mitigation strategies. Green Energy Resour. 2025, 3, 100074. [Google Scholar] [CrossRef]
- Sivarethinamohan, R.; Sujatha, S.; Priya, S.; Gafoor, A.; Rahman, Z. Impact of air pollution in health and socio-economic aspects: Review on future approach. Mater. Today Proc. 2021, 37, 2725–2729. [Google Scholar] [CrossRef]
- Mohammed, S.E.; Badamasi, H.; Unimke, A.A.; Durumin Iya, N.I.; Olubunmi, A.D.; Okoro, C.; Okezie, O.; Olaleye, A.A. An Overview of Recent Analytical Techniques for Air Quality Monitoring and Assessment. Curr. Anal. Chem. 2025, 21, 191. [Google Scholar] [CrossRef]
- Shahid, S.; Brown, D.J.; Wright, P.; Khasawneh, A.M.; Taylor, B.; Kaiwartya, O. Innovations in Air Quality Monitoring: Sensors, IoT and Future Research. Sensors 2025, 25, 2070. [Google Scholar] [CrossRef]
- Glushakova, O.V.; Chernikova, O.P. Influence of ferrous metallurgy enterprises on atmospheric air quality as an environmental component of sustainable development of territories. Report 1. Steel Transl. 2021, 51, 249–256. [Google Scholar] [CrossRef]
- Yang, J.; Tian, H.; Fu, Z.; Bai, X.; Wang, K.; Liu, W.; Lu, Y.; Zhou, Y.; Zhao, H.; Cui, J.; et al. Historical inventories and future scenarios of multiple hazardous air pollutants (HAPs) emissions from the iron and steel production industry in China. Sci. Total Environ. 2025, 958, 178051. [Google Scholar] [CrossRef]
- Ho, D.M.; Nguyen, T.Q.; Bui, H.M. Modelling Air Pollution from Steel Plants and Determining the Safety Distance for the Surrounding Area in Phu My Town, Ba Ria-Vung Tau Province, Vietnam. Pol. J. Environ. Stud. 2025, 34, 695–703. [Google Scholar] [CrossRef]
- Orelkina, D.I.; Petelin, A.L.; Polulyakh, L.A. Analysis of the spatial distribution of secondary gas emissions in the outer influence zone of steel industry. Izv. Ferr. Metall. 2015, 58, 793–797. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; You, Q.; Wang, Z.; Shan, W.; Bo, X.; Zhu, R. Improving the Air Quality Management: The Air Pollutant and Carbon Emission and Air Quality Model for Air Pollutant and Carbon Emission Reduction in the Iron and Steel Industries of Tangshan, Hebei Province, China. Atmosphere 2023, 14, 1747. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, F.; Li, J. An Integrated Analysis on the Synergistic Reduction of Carbon and Pollution Emissions from China’s Iron and Steel Industry. Engineering 2024, 40, 111–121. [Google Scholar] [CrossRef]
- Badea, D.O.; Trifu, A.; Darabont, D.C. A comparative study on the effectiveness of pollutants control measures adopted in the steel industry to reduce workplace and environmental exposure: A case study. Sci. Rep. 2024, 14, 9916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, H.; Chen, Y.; Meng, J.; Li, J.; He, J.; Guo, P.; Dai, R.; Zhang, Y.; Xu, R.; et al. Iron and steel industry emissions: A global analysis of trends and drivers. Environ. Sci. Technol. 2023, 57, 16477–16488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cheng, S.; Tong, Y.; Li, G.; Yue, T. An Approach to CO2 Emission Reduction in the Iron and Steel Industry: Research Status and Development Trends of Integrated Absorption-Mineralization Technologies. Sustainability 2025, 17, 702. [Google Scholar] [CrossRef]
- Lei, T.; Wang, D.; Yu, X.; Ma, S.; Zhao, W.; Cui, C.; Meng, J.; Tao, S.; Guan, D. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 2023, 622, 514–520. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Shao, Q.; Wei, Y. Factor decomposition and decoupling analysis of air pollutant emissions in China’s iron and steel industry. Environ. Sci. Pollut. Res. 2020, 27, 15267–15277. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Li, W.; Wang, Y. Physical and chemical characterization of fugitive particulate matter emissions of the iron and steel industry. Atmos. Pollut. Res. 2022, 13, 101272. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, R.; Bo, X.; Dan, M.; Shu, M. Volatile organic compounds constituents of a typical integrated iron and steel plant and influence on O3 pollution. Int. J. Environ. Sci. Technol. 2023, 20, 3323–3334. [Google Scholar] [CrossRef]
- Ren, H.; Dong, W.; Zhang, Q.; Cheng, J. Identification of priority pollutants at an integrated iron and steel facility based on environmental and health impacts in the Yangtze River Delta region, China. Ecotoxicol. Environ. Saf. 2023, 264, 115464. [Google Scholar] [CrossRef]
- Wang, H.F.; Qin, S.; Jiang, X. Research development of VOCs emission reduction during iron ore sintering in steel industry. Iron Steel 2018, 53, 1–7. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Ding, C.; Liu, G.; Zhang, G. Distribution Pattern, Emission Characteristics and Environmental Impact of Polycyclic Aromatic Hydrocarbons (PAHs) in Download Ash and Dust from Iron and Steel Enterprise. Molecules 2019, 24, 3646. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Ding, C.; Chen, C.; Zhu, L.; Zhang, G.; Sun, Y. Environment impact and probabilistic health risks of PAHs in dusts surrounding an iron and steel enterprise. Sci. Rep. 2021, 11, 6749. [Google Scholar] [CrossRef] [PubMed]
- Kirkok, S.K.; Kibet, J.K.; Kinyanjui, T.K.; Okanga, F.I. A review of persistent organic pollutants: Dioxins, furans, and their associated nitrogenated analogues. SN Appl. Sci. 2020, 2, 1729. [Google Scholar] [CrossRef]
- Mathew, N.; Somanathan, A.; Tirpude, A.; Pillai, A.M.; Mondal, P.; Arfin, T. Dioxins and their impact: A review of toxicity, persistence, and novel remediation strategies. Anal. Methods 2025, 17, 1698–1748. [Google Scholar] [CrossRef]
- Buekens, A.; Stieglitz, L.; Hell, K.; Huang, H.; Segers, P. Dioxins from thermal and metallurgical processes: Recent studies for the iron and steel industry. Chemosphere 2001, 42, 729–735. [Google Scholar] [CrossRef]
- Łechtańska, P.; Wielgosiński, G.; Grochowalski, A.; Holtzer, M.; Ćwiąkalski, W. Dioxin emission from some metallurgical processes. Int. J. Environ. Pollut. 2017, 61, 261–277. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, X.; Wang, X.; He, H. Technical development and prospect for collaborative reduction of pollution and carbon emissions from iron and steel industry in China. Engineering 2023, 31, 37–49. [Google Scholar] [CrossRef]
- Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef]
- Konno, K.; Pullin, A.S. Assessing the risk of bias in choice of search sources for environmental meta-analyses. Res. Synth. Methods 2020, 11, 698–713. [Google Scholar] [CrossRef]
- Gusenbauer, M. The age of abundant scholarly information and its synthesis–A time when ‘just google it’ is no longer enough. Res. Synth. Methods 2021, 12, 684–691. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. Methodsx 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Okolie, C.C.; Danso-Abbeam, G.; Groupson-Paul, O.; Ogundeji, A.A. Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis. Land 2023, 12, 50. [Google Scholar] [CrossRef]
- Ivanova, N.; Zolotova, E. Vegetation Dynamics Studies Based on Ellenberg and Landolt Indicator Values: A Review. Land 2024, 13, 1643. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. A new methodology for constructing a publication-level classification system of science. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2378–2392. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 2013, 86, 471. [Google Scholar] [CrossRef]
- GeoCharts Quick Start. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 4 August 2025).
- Stefanov, S. React: Up & Running: Building Web Applications, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2016; 222p. [Google Scholar]
- Yu, J.; Xu, R.; Zhang, J.; Zheng, A. A review on reduction technology of air pollutant in current China’s iron and steel industry. J. Clean. Prod. 2023, 414, 137659. [Google Scholar] [CrossRef]
- Jabłońska, M.; Janeczek, J. Identification of industrial point sources of airborne dust particles in an urban environment by a combined mineralogical and meteorological analyses: A case study from the Upper Silesian conurbation, Poland. Atmos. Pollut. Res. 2019, 10, 980–988. [Google Scholar] [CrossRef]
- Respondek, Z.; Isinkaralar, O.; Świsłowski, P.; Isinkaralar, K.; Rajfur, M. Biomonitoring with the Use of the Herbal Plant Taraxacum officinale as a Source of Information on Environmental Contamination. Plants 2024, 13, 1805. [Google Scholar] [CrossRef]
- Cetin, B.; Yurdakul, S.; Gungormus, E.; Ozturk, F.; Sofuoglu, S.C. Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Sci. Total Environ. 2018, 633, 30–41. [Google Scholar] [CrossRef]
- Isinkaralar, O.; Świsłowski, P.; Isinkaralar, K.; Rajfur, M. Moss as a passive biomonitoring tool for the atmospheric deposition and spatial distribution pattern of toxic metals in an industrial city. Environ. Monit. Assess. 2024, 196, 513. [Google Scholar] [CrossRef]
- Nieto, P.J.G.; Lasheras, F.S.; García-Gonzalo, E.; Juez, F.J.d.C. Estimation of PM 10 concentration from air quality data in the vicinity of a major steelworks site in the metropolitan area of Avilés (Northern Spain) using machine learning techniques. Stoch. Environ. Res. Risk Assess. 2018, 32, 3287–3298. [Google Scholar] [CrossRef]
- Setiawati, I.; Ermawati, R.; Kang, K.; Chang, I.; Hong, K.; Ervina, E.; Ariani, A.; Fauzi, I.; Syah, I.L.; Sefriana, F.; et al. preliminary result of air quality identification and analysis of PM10 and PM2.5 in steel industrial area, Cilegon, Banten. J. Ris. Teknol. Pencegah. Pencemaran Ind. 2019, 10, 22–28. [Google Scholar] [CrossRef]
- Marcias, G.; Fostinelli, J.; Catalani, S.; Uras, M.; Sanna, A.M.; Avataneo, G.; De Palma, G.; Fabbri, D.; Paganelli, M.; Lecca, L.I.; et al. Composition of Metallic Elements and Size Distribution of Fine and Ultrafine Particles in a Steelmaking Factory. Int. J. Environ. Res. Public Health 2018, 15, 1192. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.M.; Kim, M.J.; Kim, J.Y.; Seo, Y.K.; Baek, S.O. Characterization and health impact assessment of hazardous air pollutants in residential areas near a large iron-steel industrial complex in Korea. Atmos. Pollut. Res. 2020, 11, 1754–1766. [Google Scholar] [CrossRef]
- Pavlíková, I.; Motyka, O.; Plášek, V.; Bitta, J. Monitoring of Heavy Metals and Nitrogen Concentrations in Mosses in the Vicinity of an Integrated Iron and Steel Plant: Case Study in Czechia. Appl. Sci. 2021, 11, 8262. [Google Scholar] [CrossRef]
- Mutuku, J.K.; Lee, Y.Y.; Huang, B.W.; Chen, W.H.; Hou, W.C. Assessment of the emission factors for potentially toxic elements from coal-fired boilers and sintering furnaces in a steel production plant. Sci. Total Environ. 2021, 792, 148329. [Google Scholar] [CrossRef]
- Fry, K.L.; Gillings, M.M.; Isley, C.F.; Gunkel-Grillon, P.; Taylor, M.P. Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. Environ. Pollut. 2021, 288, 117593. [Google Scholar] [CrossRef]
- Mehrjo, F.; Baghkhanipour, M.; Alam, A. Investigating the environmental status of air pollution in Iran’s ferroalloy industries (IFI). Sustain. Earth Trends 2022, 2, 18–19. [Google Scholar] [CrossRef]
- Baranwal, P.; Agrawal, S. A pollution assessment of grossly polluting industries in India. Int. J. Environ. Waste Manag. 2022, 30, 30–54. [Google Scholar] [CrossRef]
- Kane, S.S.; Bekteshi, L.; Allajbeu, S.; Lazo, P. Moss biomonitoring of air quality linked with trace metals pollution around a metallurgical complex in Elbasan, Albania. Air Qual. Atmos. Health 2024, 17, 2045–2055. [Google Scholar] [CrossRef]
- Salian, K.; Strezov, V.; Evans, T.J.; Taylor, M.; Nelson, P.F. Application of national pollutant inventories for monitoring trends on dioxin emissions from stationary industrial sources in Australia, Canada and European Union. PLoS ONE 2019, 14, e0224328. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, O.V.; Chernikova, O.P. Influence of ferrous metallurgy enterprises on atmospheric air quality as an ecological component of territories sustainable development. Report 2. Izv. Ferr. Metall. 2021, 64, 561–571. (In Russian) [Google Scholar] [CrossRef]
- Bo, X.; Jia, M.; Xue, X.; Tang, L.; Mi, Z.; Wang, S.; Cui, W.; Chang, X.; Ruan, J.; Dong, G.; et al. Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nat. Sustain. 2021, 4, 811–820. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Yi, H.; Tang, X.; Li, Z.; Yu, Q.; Zhao, S.; Gao, F.; Zhou, Y.; Wang, Y. Air pollutant emission and reduction potentials from the sintering process of the iron and steel industry in China in 2017. Environ. Pollut. 2022, 307, 119512. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, Y.; Lv, J.; Wu, J. Assessment of multi-air emissions: Case of particulate matter (dust), SO2, NOx and CO2 from iron and steel industry of China. J. Clean. Prod. 2019, 232, 350–358. [Google Scholar] [CrossRef]
- Zakharova, M.A.; Vodoleev, A.S.; Andreeva, O.S.; Domnin, K.I. Ecomonitoring of sanitary protection zone of metallurgical enterprise: Snow and soil cover. Izv. Ferr. Metall. 2023, 66, 538–543. [Google Scholar] [CrossRef]
- Han, T.; Yao, L.; Liu, L.; Xian, A.; Chen, H.; Dong, W.; Chen, J. Baosteel emission control significantly benefited air quality in Shanghai. J. Environ. Sci. 2018, 71, 127–135. [Google Scholar] [CrossRef]
- Duan, W.J.; Lang, J.L.; Cheng, S.Y.; Jia, J.; Wang, X.Q. Air pollutant emission inventory from iron and steel industry in the Beijing-Tianjin-Hebei region and its impact on PM2.5. Huan Jing Ke Xue = Huanjing Kexue 2018, 39, 1445–1454. [Google Scholar] [CrossRef]
- Gao, C.; Gao, W.; Song, K.; Na, H.; Tian, F.; Zhang, S. Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China: A bottom-up approach. Resour. Conserv. Recycl. 2019, 143, 184–200. [Google Scholar] [CrossRef]
- Wang, X.; Lei, Y.; Yan, L.; Liu, T.; Zhang, Q.; He, K. A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015. Sci. Total Environ. 2019, 676, 18–30. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Wu, Q.; Zhang, Y.; Ouyang, D.; Zheng, H.; Han, L.; Qiu, X.; Wen, Y.; Liu, M.; et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021. Earth Syst. Sci. Data 2023, 15, 2279–2294. [Google Scholar] [CrossRef]
- Wu, W.; Tang, Q.; Xue, W.; Shi, X.; Zhao, D.; Liu, Z.; Liu, X.; Jiang, C.; Yan, G.; Wang, J. Quantifying China’s iron and steel industry’s CO2 emissions and environmental health burdens: A pathway to sustainable transformation. Environ. Sci. Ecotechnology 2024, 20, 100367. [Google Scholar] [CrossRef]
- Fang, H.; Gao, J.; Tong, Y.; Liu, Q.; Cheng, S.; Li, G.; Yue, T. Advances in the sources, chemical behaviour, and whole process distribution of Hg, As, and Pb in the iron and steel smelting industry. J. Hazard. Mater. 2024, 480, 135912. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.; Lu, M.; Huang, Z.; Yuan, Z.; Jia, G.; Xiao, X.; Wu, Y.; Zhang, Z.; Li, C.; Zhong, Z.; et al. Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong province, China. Sci. Total Environ. 2019, 670, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tian, H.; Hao, Y.; Gao, J.; Hao, J.; Wang, Y.; Hua, S.; Wang, K.; Liu, H. A high-resolution emission inventory of anthropogenic trace elements in Beijing-Tianjin-Hebei (BTH) region of China. Atmos. Environ. 2018, 191, 452–462. [Google Scholar] [CrossRef]
- Ezeh, G.C.; Ugwo, J.P.; Adebiyi, F.M.; Abiye, O.E.; Onwudiegwu, C.A.; Obiajunwa, E.I. Proton-induced X-ray emission (PIXE) analysis of trace elements of total atmospheric deposit (TAD) around a smelting industry: Aerial pollution monitor. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 925–940. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Cheng, X. Status, spatial distribution, and health risk assessment of potentially harmful element from road dust in steel industry city, China. Arab. J. Geosci. 2021, 14, 318. [Google Scholar] [CrossRef]
- Zhou, X.; Strezov, V.; Jiang, Y.; Yang, X.; Kan, T.; Evans, T. Contamination identification, source apportionment and health risk assessment of trace elements at different fractions of atmospheric particles at iron and steelmaking areas in China. PLoS ONE 2020, 15, e0230983. [Google Scholar] [CrossRef]
- Ogunlade, B.T.; Adeniran, J.A.; Abdulraheem, K.A.; Odediran, E.T.; Atanda, A.S.; Oyeneye, A.K.; Akapo, R.A.; Yusuf, R.O. Heavy Metals Analysis in the Vicinity of a Northcentral Nigeria Major Scrap-Iron Smelting Plant. Int. J. Environ. Res. 2024, 18, 107. [Google Scholar] [CrossRef]
- Li, J.; Pan, Z.; Jiang, Z.; Liu, S.; Wang, C.; Zhang, Y.; Wang, C.; Chen, L.; Huang, Z.; Pan, J.; et al. Stack releases of radionuclides from an integrated steel plant in China. J. Environ. Radioact. 2018, 195, 97–103. [Google Scholar] [CrossRef]
- Han, D.; Fu, Q.; Gao, S.; Zhang, X.; Feng, J.; Chen, X.; Huang, X.; Liao, H.; Cheng, J.; Wang, W. Investigate the impact of local iron–steel industrial emission on atmospheric mercury concentration in Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2019, 26, 5862–5872. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, Y.; Wang, L.; Lin, C.J.; Jang, C.; Zhou, Q.; Yu, B.; Wang, S.; Xing, J.; Yu, L. Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. Environ. Pollut. 2019, 250, 1032–1043. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; She, X.; Ren, K.; You, X.; Wang, J.; Zuo, H.; Wang, G.; Xue, Q. Substance-flow analysis and emission-reduction strategies for thallium in the steel industry process. Process Saf. Environ. Prot. 2024, 185, 116–126. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, S.; Fu, Q.; Han, D.; Chen, X.; Fu, S.; Huang, X.; Cheng, J. Impact of VOCs emission from iron and steel industry on regional O3 and PM2.5 pollutions. Environ. Sci. Pollut. Res. 2020, 27, 28853–28866. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, X.; Cheng, S.; Wang, K.; Cheng, L.; Zhu, J.; Zheng, H.; Duan, W. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Sci. Total Environ. 2022, 809, 151134. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Chun, T.; Long, H.; Li, J.; Di, Z.; Meng, Q.; Wang, P. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf. Environ. Prot. 2018, 117, 82–91. [Google Scholar] [CrossRef]
- Zhan, M.; Ma, Y.; Chen, T.; Lin, X.; Zhang, S.; Xu, S.; Li, X.; Yan, J. PCDD/Fs characteristics in flue gas and surrounding environment of iron and steel smelting industry. Environ. Sci. Pollut. Res. 2021, 28, 14092–14104. [Google Scholar] [CrossRef] [PubMed]
- Adeniran, J.A.; Ogunlade, B.T.; Abdulraheem, K.A.; Odediran, E.T.; Atanda, A.S.; Oyeneye, A.K.; Yusuf, R.O. Concentration and sources of persistent organic pollutants within the vicinity of a scrap-iron smelting plant: Seasonal pattern and health risk assessment. J. Environ. Sci. Health Part C 2024, 42, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ji, Y.; Zhao, J.; Lin, Y.; Lin, Z. Source apportionment and toxicity assessment of PM2. 5-bound PAHs in a typical iron-steel industry city in northeast China by PMF-ILCR. Sci. Total Environ. 2020, 713, 136428. [Google Scholar] [CrossRef]
- Dolgikh, O.V.; Dianova, D.G. Peculiarities detected in formation of specific hapten sensitization to phenol in children. Health Risk Anal. 2022, 1, 123–129. [Google Scholar] [CrossRef]
- Matthew, O.J.; Igbayo, A.N.; Olise, F.S.; Owoade, K.O.; Abiye, O.E.; Ayoola, M.A.; Hopke, P.K. Simulation of Point Source Pollutant Dispersion Pattern: An Investigation of Effects of Prevailing Local Weather Conditions. Earth Syst. Environ. 2019, 3, 215–230. [Google Scholar] [CrossRef]
- Omokungbe, O.R.; Olufemi, A.P.; Toyeje, A.B.; Abiodun, P.O. Investigating the evolution of gaseous air pollutants with prevailing meteorology across selected sites within a pollution hotspot in Ile-Ife, Southwestern Nigeria. Discov. Environ. 2023, 1, 5. [Google Scholar] [CrossRef]
- Mele, M.; Magazzino, C. A machine learning analysis of the relationship among iron and steel industries, air pollution, and economic growth in China. J. Clean. Prod. 2020, 277, 123293. [Google Scholar] [CrossRef]
- Zhu, X.; Li, H.; Chen, J.; Jiang, F. Pollution control efficiency of China’s iron and steel industry: Evidence from different manufacturing processes. J. Clean. Prod. 2019, 240, 118184. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Zhang, W.; Xu, J. Energy and resource conservation and air pollution abatement in China’s iron and steel industry. Resour. Conserv. Recycl. 2019, 147, 67–84. [Google Scholar] [CrossRef]
- Tang, L.; Xue, X.; Jia, M.; Jing, H.; Wang, T.; Zhen, R.; Huang, M.; Tian, J.; Guo, J.; Li, L.; et al. Iron and steel industry emissions and contribution to the air quality in China. Atmos. Environ. 2020, 237, 117668. [Google Scholar] [CrossRef]
- Liu, D.; Wang, P.; Sun, Y.; Zhang, H.; Xu, S. Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios. Renew. Sustain. Energy Rev. 2024, 191, 114140. [Google Scholar] [CrossRef]
- Yang, H.; Tao, W.; Liu, Y.; Qiu, M.; Liu, J.; Jiang, K.; Yi, K.; Xiao, Y.; Tao, S. The contribution of the Beijing, Tianjin and Hebei region’s iron and steel industry to local air pollution in winter. Environ. Pollut. 2019, 245, 1095–1106. [Google Scholar] [CrossRef]
- Wen, W.; Deng, Z.; Ma, X.; Xing, Y.; Pan, C.; Liu, Y.; Zhang, H.; Tharaka, W.A.N.D.; Hua, T.; Shen, L. Analysis of the synergistic benefits of typical technologies for pollution reduction and carbon reduction in the iron and steel industry in the Beijing–Tianjin–Hebei region. Sci. Rep. 2024, 14, 12413. [Google Scholar] [CrossRef]
- Jia, J.; Cheng, S.; Yao, S.; Xu, T.; Zhang, T.; Ma, Y.; Wang, H.; Duan, W. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry. Atmos. Environ. 2018, 182, 115–127. [Google Scholar] [CrossRef]
- Chang, Y.; Huang, K.; Xie, M.; Deng, C.; Zou, Z.; Liu, S.; Zhang, Y. First long-term and near real-time measurement of trace elements in China’s urban atmosphere: Temporal variability, source apportionment and precipitation effect. Atmos. Chem. Phys. 2018, 18, 11793–11812. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Kan, T.; Strezov, V.; Nelson, P.; Evans, T.; Jiang, Y. Characterization of size resolved atmospheric particles in the vicinity of iron and steelmaking industries in China. Sci. Total Environ. 2019, 694, 133534. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.; Li, T.; He, M.; Cheng, X.; Su, T.; Ni, S.; Zhang, C. Contamination, morphological status and sources of atmospheric dust in different land-using areas of a steel-industry city, China. Atmos. Pollut. Res. 2020, 11, 283–289. [Google Scholar] [CrossRef]
- Shi, H.; Cheng, X.; Wang, J.; Li, Z.; Huang, Y. Characteristics and Source Analysis of PM1 in a Typical Steel-Industry City, Southwest China. Atmosphere 2022, 13, 1304. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Jiang, K.; Meng, J.; Guan, D.; Xu, Y.; Tao, S. Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China’s iron and steel industry. J. Clean. Prod. 2018, 185, 331–341. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, L.; Zheng, Y.; Zhu, T.; Ye, M. Influence of pollutants’ control facilities on PM2.5 profiles emitted from an iron and steel plant. Environ. Technol. 2020, 41, 521–528. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Wu, D.; Li, Z.; Chu, S.Q.; Ding, X.; Tang, X.; Chen, J.; Li, Q. Magnetic particles unintentionally emitted from anthropogenic sources: Iron and steel plants. Environ. Sci. Technol. Lett. 2021, 8, 295–300. [Google Scholar] [CrossRef]
- Olise, F.S.; Ogundele, L.T.; Olajire, M.A.; Oloyede, F.A.; Fawole, O.G.; Ezeh, G.C. Biomonitoring of environmental pollution in the vicinity of iron and steel smelters in southwestern Nigeria using transplanted lichens and mosses. Environ. Monit. Assess. 2019, 191, 691. [Google Scholar] [CrossRef]
- Olise, F.S.; Ogundele, L.T.; Olajire, M.A.; Owoade, O.K. Seasonal Variation, Pollution Indices and Trajectory Modeling of Bio-monitored Airborne Particulate Around Two Smelting Factories in Osun State, Nigeria. Aerosol Sci. Eng. 2020, 4, 260–270. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Zhao, L.; Cai, J. Material metabolism and environmental emissions of BF-BOF and EAF steel production routes. Miner. Process. Extr. Metall. Rev. 2018, 39, 50–58. [Google Scholar] [CrossRef]
- Butorina, I.V.; Butorina, M.V. Modern methods for purification of emissions from ferrous metallurgy enterprises. Chernye Met. 2021, 2021, 76–82. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, X.; Yu, Y.; Li, C.; Yao, Q.; Li, Y. Multi-process and multi-pollutant control technology for ultra-low emissions in the iron and steel industry. J. Environ. Sci. 2023, 123, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kumari, M.; Kumar, R.; Iqbal, K.; Thakur, I.S. Persistent organic pollutants in the environment: Risk assessment, hazards, and mitigation strategies. Bioresour. Technol. Rep. 2022, 19, 101143. [Google Scholar] [CrossRef]
- Ruan, T.; Li, P.; Wang, H.; Li, T.; Jiang, G. Identification and prioritization of environmental organic pollutants: From an analytical and toxicological perspective. Chem. Rev. 2023, 123, 10584–10640. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Sensors for indoor air quality monitoring and assessment through Internet of Things: A systematic review. Environ. Monit. Assess. 2021, 193, 66. [Google Scholar] [CrossRef]
- Asha, P.; Natrayan, L.B.T.J.R.R.G.S.; Geetha, B.T.; Beulah, J.R.; Sumathy, R.; Varalakshmi, G.; Neelakandan, S. IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environ. Res. 2022, 205, 112574. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; Wang, J.; She, X.; Wang, G.; Zuo, H.; Xue, Q. Current status of the technology for utilizing difficult-to-treat dust and sludge produced from the steel industry. J. Clean. Prod. 2022, 367, 132909. [Google Scholar] [CrossRef]
- Karmakar, D.; Deb, K.; Padhy, P.K. Ecophysiological responses of tree species due to air pollution for biomonitoring of environmental health in urban area. Urban Clim. 2021, 35, 100741. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Dutta, R.; Das, P. Greenery planning for urban air pollution control based on biomonitoring potential: Explicit emphasis on foliar accumulation of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). J. Environ. Manag. 2024, 355, 120524. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Kumar, A.; Sharma, K.; Kumari, A. Assessing phytomonitoring potential employing air pollution tolerance index and oxidative stress markers for selective flora in metrocity-Lucknow, India. J. Atmos. Chem. 2025, 82, 2. [Google Scholar] [CrossRef]
- Sen, A.; Khan, I.; Kundu, D.; Das, K.; Datta, J.K. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species. Environ. Monit. Assess. 2017, 189, 262. [Google Scholar] [CrossRef] [PubMed]
- Guarino, F.; Improta, G.; Triassi, M.; Castiglione, S.; Cicatelli, A. Air quality biomonitoring through Olea europaea L.: The study case of “Land of pyres”. Chemosphere 2021, 282, 131052. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.E.; Cecchetti, G. Biological monitoring: Lichens as bioindicators of air pollution assessment—A review. Environ. Pollut. 2001, 114, 471–492. [Google Scholar] [CrossRef]
- Soares, D.M.; Procópio, D.P.; Zamuner, C.K.; Nóbrega, B.B.; Bettim, M.R.; de Rezende, G.; Lopes, P.M.; Pereira, A.B.D.; Bechara, E.J.H.; Oliveira, A.G.; et al. Fungal bioassays for environmental monitoring. Front. Bioeng. Biotechnol. 2022, 10, 954579. [Google Scholar] [CrossRef]
- Warnasuriya, S.D.; Udayanga, D.; Manamgoda, D.S.; Biles, C. Fungi as environmental bioindicators. Sci. Total Environ. 2023, 892, 164583. [Google Scholar] [CrossRef]
- Mandal, R.; Kaur, S.; Gupta, V.K.; Joshi, A. Heavy metals controlling cardiovascular diseases risk factors in myocardial infarction patients in critically environmentally heavy metal-polluted steel industrial town Mandi-Gobindgarh (India). Environ. Geochem. Health 2022, 44, 3215–3238. [Google Scholar] [CrossRef]
- Salih, Z.; Aziz, F. Heavy metal accumulation in dust and workers’ scalp hair as a bioindicator for air pollution from a steel factory. Pol. J. Environ. Stud. 2020, 29, 1805. [Google Scholar] [CrossRef]
- Wang, X.; Jin, P.; Zhou, Q.; Liu, S.; Wang, F.; Xi, S. Metal Biomonitoring and Comparative Assessment in Urine of Workers in Lead-Zinc and Steel-Iron Mining and Smelting. Biol. Trace Elem. Res. 2019, 189, 1–9. [Google Scholar] [CrossRef]
Country | Year | Region; Enterprise | Analyzed Substances | Features of the Study | References |
---|---|---|---|---|---|
China | 2018 | Baoshan District, Shanghai; Baosteel | PM10, PM2.5, SO2, NO2, CO | Daily emissions measurements from 2010 to 2016. | [61] |
Beijing–Tianjin–Hebei region | SO2, NOx, TSP, PM10, PM2.5, CO, VOC | Temporal and spatial resolution emission inventory (2015) based on the bottom-up method. Modeling the impact of the iron and steel industry on the regional PM2.5 concentration using a two-layer nested meteorology-air quality coupling model system (WRF-CMAx) with Particulate Source Apportionment Technology (PSAT). | [62] | ||
2019 | Entire country | SO2, NOx, PM, PM2.5, PM10 and PCDD/Fs | Temporal and spatial resolution emission inventory (2015) based on the bottom-up method. Simulation model of SO2 and PM emissions considering adjusted production capacity and layout of steel industry. | [63] | |
Entire country; ~4900 enterprise | SO2, NOx, PM2.5, PM10 and Total suspended particulate (TSP) | Unit-based and source-based emission inventory (2010–2015). | [64] | ||
Northeast of China | PM, SO2, NOx, CO2 | Assessment of the environmental impacts of the main production processes of a steel plant based on a Total Environmental Impact Assessment (TEIS). | [22] | ||
2020 | Entire country | PM, SO2, NOx | Assessment of the impact of various factors on emissions using the logarithmic mean Divisia index (LMDI) method. | [17] | |
2021 | Entire country | PM, SO2, NOx | Hourly, facility-level emissions estimates using Continuous Emission Monitoring System (CEMS) database. | [57] | |
2022 | Entire country | PM, SO2, NOx | Assessment of emissions from the sintering process of iron and steel smelters in 2017 based on the CEMS database. Evaluation the future reduction potentials. | [58] | |
2023 | Entire country | SO2, PM2.5, NOx, VOC, CO2 | Emission inventory of pollutants from 2005 to 2021 based on a unified emission-source framework. | [65] | |
Entire country | All pollutants | Review of reduction technology of air pollutants. | [40] | ||
2024 | Entire country | SO2, PM2.5, NOx, CO2 | Integrated emission inventory (2020) from 811 iron and steel enterprises and five key manufacturing processes. | [66] | |
Russia | 2021 | Entire country | SO2, NOx, CO2, CO, PM, HF, NH3, PAHs, phenol, VOC | The air quality as an environmental component of sustainable territorial development. | [7,56] |
2023 | JSC “EVRAZ United West Siberian Metallurgical Combine” | Snow: pH, dust, Cl−, SO42− | Monitoring the condition of snow cover in the zone of industrial emissions. | [60] | |
Iran | 2022 | Lorestan province; ferroalloy industries | PM2.5, PM10, dust, CO, CO2, NOx, SOx | Studying the environmental status of air pollution by examining air pollutant control equipment. | [52] |
India | 2022 | Entire country | PM, SO2, NOx | Assessment of pollution potentials and their reduction from 17 grossly polluting industries. | [53] |
Country | Year | Region; Enterprise | Analyzed Substances | Features of the Study | References |
---|---|---|---|---|---|
China | 2018 | Beijing–Tianjin–Hebei region | Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, Zn | An inventory of emissions (1980–2012) using inter-annual dynamic emission factors, determined with S-shaped curves. | [69] |
Jiangxi Province | radionuclides | Normalized stack emissions factors. | [74] | ||
2019 | Guangdong Province | Hg, As, Pb, Cd, Cr | An emission inventory (2014) using a bottom-up approach. | [68] | |
Yangtze River Delta | Hg | Concentrations of hourly gaseous elemental mercury and particle-bound mercury (2016–2017). The contribution of the metallurgical industry to the total variation of mercury concentration based on the positive matrix factorization receptor model, potential source contribution function, and concentration-weighted trajectory models. | [75] | ||
Central Pearl River Delta region | Hg | Modeling of the Hg concentration and deposition using Hg version of California Puff Dispersion Modeling (CALPUFF-Hg) system with added Hg environmental processes. | [76] | ||
2020 | Kunming, Wuhan, Nanjing, and Ningbo | As, Cr(VI), Cd, Mn, and others, Pb isotopic compositions | Analysis of multiple trace elements and their bioavailability in different fractions of particulate matter. Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid were used. | [72] | |
2021 | Southwest China, Panzhihua | Cr, Ni, Cu, Cd and Pb | Study of heavy metal concentration in road dust using spatial distribution maps of elements and the index of geoaccumulation. | [71] | |
2023 | Yangtze River Delta region | 10 trace metals, 64 VOC | Investigation (2020–2022) of the composition characteristics, estimate the secondary transformation potential, and assess the ecological risk and human health risks. | [20] | |
2024 | Not specified | Hg, As, Pb | Sources, chemical transformations, and whole process distribution of elements during the process of iron and steel production. | [67] | |
Entire country | Tl | Mechanisms of the physical phase evolution, migration pathways, and emission characteristics of Tl. | [77] | ||
Nigeria | 2018 | Ile-Ife | 23 elements: Fe, Zn, Pb, Mn and other | Analysis of total atmospheric deposit around a smelting plant within one year. | [70] |
2024 | North-central region | Fe, As, Cd, Zn, Cu, Mn, Pb, Cr, Co, Ni | Pollution levels, sources, and health risks of elements in indoor and outdoor areas surrounding a major scrap-iron recycling plant. The Positive Matrix Factorization model and different pollution indices. | [73] | |
Republic of Korea | 2020 | Pohang | 130 air pollutants: heavy metals, VOCs, PAHs, carbonyls, phthalates | Occurrence and spatial-temporal distribution of pollutants. The identification of the most important pollutants based on health risk assessment. | [48] |
France | 2021 | Nouméa, New Caledonia, Doniambo smelter | As, Cr, Cu, Fe, Mn, Ni, Pb, S, V, Zn, Pb isotopic compositions | Determination of sources of emissions and modeling the subsequent health risk (Hazard Index). | [51] |
Taiwan | 2021 | Steel production plant, area not specified | Pb, Cd, Hg, As, Cr | Assessment of the emission factor, the weight of potentially toxic elements per unit energy, or weight of sinter produced for coal-fired boilers and sintering furnaces. | [50] |
Authors | Year | Research Topic | Journal | Crossref Citations | References |
---|---|---|---|---|---|
Chang, Y., Huang, K., Xie, M., Deng, C., Zou, Z., Liu, S., Zhang, Y. | 2018 | Trace elements in China’s urban atmosphere: temporal variability, source apportionment, and the effect of precipitation. | Atmospheric Chemistry and Physics | 122 | [95] |
Sun, W., Zhou, Y., Lv, J., Wu, J. | 2019 | Assessment of multi-air emissions. | Journal of Cleaner Production | 93 | [22] |
Bo, X., Jia, M., Xue, X., et al. | 2021 | Standards on Chinese ironmaking and steelmaking emissions. | Nature Sustainability | 88 | [57] |
Wang, X., Lei, Y., Yan, L., Liu, T., Zhang, Q., He, K. | 2019 | A unit-based emission inventory of SO2, NOx, and PM for the Chinese iron and steel industry from 2010 to 2015. | Science of the total environment | 82 | [64] |
Li, S., Wang, S., Wu, Q., Zhang, Y., Ouyang, D., Zheng, H., et al. | 2023 | Emission trends of air pollutants and CO2 in China from 2005 to 2021. | Earth System Science Data | 82 | [65] |
Tang, L., Xue, X., Jia, M., Jing, H., Wang, T., Zhen, R., et al. | 2020 | Iron and steel industry emissions and contribution to the air quality in China | Atmospheric environment | 80 | [90] |
Yu, J., Xu, R., Zhang, J., Zheng, A. | 2023 | Reduction technology of air pollutants. | Journal of Cleaner Production | 72 | [40] |
Source | Documents | Citations | Total Link Strength * |
---|---|---|---|
Science of the Total Environment | 7 | 381 | 4 |
Journal of Cleaner Production | 5 | 419 | 2 |
Atmospheric Pollution Research | 4 | 119 | 4 |
Environmental Pollution | 4 | 122 | 3 |
Environmental Science and Pollution Research | 4 | 76 | 1 |
Atmospheric Environment | 3 | 202 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotova, E.; Ivanova, N.; Ayan, S. Monitoring of Air Pollution from the Iron and Steel Industry: A Global Bibliometric Review. Atmosphere 2025, 16, 992. https://doi.org/10.3390/atmos16080992
Zolotova E, Ivanova N, Ayan S. Monitoring of Air Pollution from the Iron and Steel Industry: A Global Bibliometric Review. Atmosphere. 2025; 16(8):992. https://doi.org/10.3390/atmos16080992
Chicago/Turabian StyleZolotova, Ekaterina, Natalya Ivanova, and Sezgin Ayan. 2025. "Monitoring of Air Pollution from the Iron and Steel Industry: A Global Bibliometric Review" Atmosphere 16, no. 8: 992. https://doi.org/10.3390/atmos16080992
APA StyleZolotova, E., Ivanova, N., & Ayan, S. (2025). Monitoring of Air Pollution from the Iron and Steel Industry: A Global Bibliometric Review. Atmosphere, 16(8), 992. https://doi.org/10.3390/atmos16080992