A Study on the Improvement Pathways of Carbon Emission Efficiency in China from a Configurational Perspective Based on the Dynamic Qualitative Comparative Analysis
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Main Methods
3.1.1. Refined Three-Stage Data Envelopment Analysis (DEA) Model
3.1.2. Dynamic Qualitative Comparative Analysis
3.2. Variable Selection
3.2.1. Outcome Variable
3.2.2. Conditional Variables
3.3. Data Sources and Calibration
4. Results
4.1. Necessary Condition Analysis
4.2. Condition Configuration Sufficiency Analysis
4.2.1. Pooled Results
4.2.2. Between Results
4.2.3. Within Results
4.3. Robustness Tests
4.4. Driving Effect Analysis on CEE
5. Discussion
5.1. Results and Analysis
5.2. Policy Implications
5.3. Limitations and Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H.; Adams, R.M.; Amasino, R.M.; Anders, E.; Anderson, D.J.; Anderson, W.W.; Anselin, L.E.; Arroyo, M.K.; Asfaw, B.; Ayala, F.J.; et al. Climate change and the integrity of science. Science 2010, 328, 689–690. [Google Scholar] [CrossRef]
- Cui, L.; Li, R.; Song, M.; Zhu, L. Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments? Energy Econ. 2019, 83, 61–73. [Google Scholar] [CrossRef]
- Xiao, Y.P.; Ma, D.L.; Zhang, F.T.; Zhao, N.; Wang, L.; Guo, Z.M.; Zhang, J.W.; An, B.T.; Xiao, Y.D. Spatiotemporal Differentiation of Carbon Emission Efficiency and Influencing Factors: From the Perspective of 136 Countries. Sci. Total Environ. 2023, 879, 163032. [Google Scholar] [CrossRef]
- Du, Y.Z.; Jia, L.D. Grouped Perspective and Qualitative Comparative Analysis (QCA): A New Path in Management Research. Manag. World 2017, 6, 155–167. [Google Scholar]
- Furnari, S.; Crilly, D.; Misangyi, V.F.; Greckhamer, T.; Fiss, P.C.; Aguilera, R.V. Capturing causal complexity: Heuristics for configurational theorizing. Acad. Manag. Rev. 2021, 46, 778–799. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, L.C.; Liao, H.; Wei, Y.M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Bagchi, P.; Sahu, S.K.; Kumar, A.; Tan, K.H. Analysis of carbon productivity for firms in the manufacturing sector of India. Technol. Forecast. Soc. Chang. 2022, 178, 121606. [Google Scholar] [CrossRef]
- Modise, R.K.; Mpofu, K.; Adenuga, O.T. Energy and carbon emission efficiency prediction: Applications in future transport manufacturing. Energies 2021, 14, 8466. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, J.X.; Huang, S.J. CO2 emissions performance and reduction potential in China’s manufacturing industry: A multi-hierarchy meta-frontier approach. J. Clean. Prod. 2020, 255, 120226. [Google Scholar] [CrossRef]
- Song, M.L.; Zheng, H.Y.; Shen, Z.Y. Whether the carbon emissions trading system improves energy efficiency–Empirical testing based on China’s provincial panel data. Energy 2023, 275, 127465. [Google Scholar] [CrossRef]
- Fan, M.T.; Li, M.X.; Liu, J.H.; Shao, S. Is high natural resource dependence doomed to low carbon emission efficiency? Evidence from 283 cities in China. Energy Econ. 2022, 115, 106328. [Google Scholar] [CrossRef]
- Ye, Y.L.; Zhang, Q.Z. Artificial Intelligence, Externalities of Industrial Agglomeration and Carbon Emission Efficiency in the Yangtze River Economic Belt. J. Nantong Univ. Soc. Sci. Ed. 2024, 40, 55–65+159. [Google Scholar]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Wu, R.X.; Tan, Z.Z.; Lin, B.Q. Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China’s iron and steel industry. Energy 2023, 277, 127743. [Google Scholar] [CrossRef]
- Wang, S.J.; Zeng, J.Y.; Liu, X.P. Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach. Renew. Sustain. Energy Rev. 2019, 103, 140–150. [Google Scholar] [CrossRef]
- You, J.M.; Zhang, W. How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China’s industries. Energy 2022, 247, 123386. [Google Scholar] [CrossRef]
- Wang, K.Y.; Wu, M.; Sun, Y.P.; Shi, X.P.; Sun, A.; Zhang, P. Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.Z.; Dong, X.C.; Dong, K.Y.; Jiang, H.D. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. Energy Econ. 2022, 105, 105704. [Google Scholar] [CrossRef]
- Li, R.R.; Li, L.J.; Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Li, G.X.; Guo, S.C. Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy 2020, 196, 117117. [Google Scholar] [CrossRef]
- Jiang, S.L.; Lu, C.B. The Externalities and Heterogeneity of Environmental Regulations on Carbon Emission Efficiency: Analysis Based on the Agglomeration Synergy of Production Service Industries. East China Econ. Manag. 2022, 36, 56–69. [Google Scholar]
- Dong, F.; Li, Y.F.; Gao, Y.J.; Zhu, J.; Qin, C.; Zhang, X.Y. Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resour. Conserv. Recycl. 2022, 177, 106002. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Zhang, L.; Dang, J. Provincial carbon emissions efficiency and its influencing factors in China. Sustainability 2019, 11, 2355. [Google Scholar] [CrossRef]
- Chen, W.; Hong, J.L.; Li, Z.L.; Wang, Y.P.; Zhang, T.Z.; Geng, Y. 2011–2020 Temporal and Spatial Evolution and Influencing Factors of Carbon Emission Efficiency in Chinas Soybean Production. China Popul. Resour. Environ. 2024, 34, 70–80. [Google Scholar]
- Chai, J.; Tian, L.Y.; Jia, R.N. New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China’s quasi-natural experiment. Energy Policy 2023, 173, 113389. [Google Scholar] [CrossRef]
- Zhang, W.B.; Song, J.B. Regional Differences in Synergistic Efficiency of Chinas Low-carbon Economy and Its Influencing Factors. Econ. Geogr. 2024, 44, 22–32+54. [Google Scholar]
- Yan, H.F.; Niu, L.L.; Xiao, J. Study on Regional Carbon Emission Reduction Pathways under the TOE Framework. Manag. Sci. J. 2023, 36, 35–48. [Google Scholar]
- Zhang, Y.; Liu, C.; Wang, T.; Zhang, X. Do all roads lead to Rome? Conditions and configurations of digital economy on carbon emission efficiency. J. Environ. Manag. 2024, 371, 123154. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Meng, K.; Wei, B. Reflection on the “Time Blind Spot” of QCA Method: To Recover “Time” for Public Administration Research. Chin. Adm. Manag. 2023, 1, 96–104. [Google Scholar]
- Garcia-Castro, R.; Ariño, M.A. A general approach to panel data set-theoretic research. J. Adv. Manag. Sci. Inf. Syst. 2016, 2, 63–76. [Google Scholar] [CrossRef]
- Morita, H.; Avkiran, N.K. Selecting Inputs and Outputs in Data Envelopment Analysis by Designing Statistical Experiment. J. Oper. Res. Soc. Jpn. 2009, 52, 163–173. [Google Scholar] [CrossRef]
- Zheng, R.J.; Cheng, Y. Research on the Impact of Innovation Factor Aggregation in the Yellow River Basin on Carbon Emission Efficiency. Geogr. Res. 2024, 43, 577–595. [Google Scholar]
- Zhao, P.J.; Zeng, L.G.; Li, P.L.; Lu, H.Y.; Hu, H.Y.; Li, C.M.; Zheng, M.Y.; Li, H.T.; Yu, Z.; Yuan, D.D.; et al. China’s Transportation Sector Carbon Dioxide Emissions Efficiency and Its Influencing Factors Based on the EBM DEA Model with Undesirable Outputs and Spatial Durbin Model. Energy 2022, 238, 121934. [Google Scholar] [CrossRef]
- Tornatizky, L.G.; Fleischer, M. The processes of technological innovation. J. Technol. Transf. 1991, 1, 45–46. [Google Scholar] [CrossRef]
- Jia, G.L. The Third Industrial Revolution and Industrial Intelligence. China Soc. Sci. 2016, 6, 87–106+206. [Google Scholar]
- Xie, Z.H.; Wu, R.; Wang, S.J. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Li, R.R.; Han, X.Y.; Wang, Q. Do technical differences lead to a widening gap in China’s regional carbon emissions efficiency? Evidence, from a combination of LMDI and PDA approach. Renew. Sustain. Energy Rev. 2023, 182, 113361. [Google Scholar] [CrossRef]
- Javid, M.; Khan, M. Energy efficiency and underlying carbon emission trends. Environ. Sci. Pollut. Res. 2020, 27, 3224–3236. [Google Scholar] [CrossRef]
- Gao, P.F.; Wang, Y.D.; Zou, Y.; Su, X.F.; Che, X.H.; Yang, X.D. Green technology innovation and carbon emissions nexus in China: Does industrial structure upgrading matter? Front. Psychol. 2022, 13, 951172. [Google Scholar] [CrossRef]
- Yang, X.L.; He, L.Y.; Xia, Y.F.; Chen, Y.F. Effect of government subsidies on renewable energy investments: The threshold effect. Energy Policy 2019, 132, 156–166. [Google Scholar] [CrossRef]
- Sheng, P.F.; Li, J.; Zhai, M.X.; Huang, S.J. Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China. Energy 2020, 213, 118747. [Google Scholar] [CrossRef]
- Ding, F.; Zhuang, G.Y.; Liu, D. Environmental Regulation, Industrial Agglomeration and Urban Carbon Emission Intensity: An Empirical Analysis Based on Panel Data of 282 Prefecture-level Cities. J. China Univ. Geosci. Soc. Sci. Ed. 2020, 3, 90–104. [Google Scholar]
- Ou, J.F.; Xu, C.J.; Liu, Y.Q. An Empirical Analysis of the Measurement of High-Quality Economic Development Based on the “Five Major Development Concepts”: 21 Prefecture-level Cities in Guangdong Province. Econ. Geogr. 2020, 40, 77–86. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Camberidge University Press: Camberidge, UK, 2012. [Google Scholar]
- Tan, H.B.; Fan, Z.T.; Du, Y.Z. Technical Management Ability Attention Allocation and Local Government Website Construction: A Configuration Analysis Based on TOE Framework. Manag. World 2019, 35, 81–94. [Google Scholar]
- Navarro, S.; Llinares, C.; Garzon, D. Exploring the relationship between co-creation and satisfaction using QCA. J. Bus. Res. 2016, 69, 1336–1339. [Google Scholar] [CrossRef]
- Hu, H.C.; Zhao, R.T.; Yang, M.; Lin, Q.Y. The Development Path of New Productive Forces in the Evolution of Digital and Real Integration: Analysis Based on Dynamic QCA. Sci. Technol. Prog. Countermeas. 2024, 41, 37–47. [Google Scholar]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Zhang, F. Factors Influencing Local Government Information Disclosure: Dynamic QCA Analysis Based on Provincial Panel Data. Intell. J. 2023, 42, 133–141+207. [Google Scholar]
- Zhang, M.; Du, Y.Z. Application of QCA method in organization and management research: Positioning, strategy and direction. J. Manag. 2019, 16, 1312–1323. [Google Scholar]
- Du, Y.Z.; Sun, N.; Liu, Q.C. Developing and analyzing complex intermediary models: Using mixed methods to promote innovation vitality through business environment, integrating new quality productivity and “employment priority” as examples. Manag. World 2024, 40, 217–237. [Google Scholar]
Primary Indices | Secondary-Class Indices | Third-Class Indices |
---|---|---|
Input | Labor | Employment population |
Capital | Total fixed asset investment | |
Energy | Total electricity consumption | |
Output | Desirable | Gross regional product |
Undesirable | Carbon emission | |
Outcome | Calculated from the refined three-stage DEA model | |
Conditions | Technological progress | Number of patent grants |
Energy efficiency | The inverse of total energy consumption in per capita GDP | |
Industrial structure | The ratio of labor in the tertiary industry to labor in the secondary industry | |
Government support | Fiscal expenditure | |
Economic development | Per capita GDP | |
Environmental regulation | General industrial solid waste comprehensive utilization rate |
Calibration | Descriptive Statistics | ||||||
---|---|---|---|---|---|---|---|
Full Nonmembership | Crossover | Full Membership | Mean | Std. Dev. | Min | Max | |
CEE | 1.001 | 0.746 | 0.538 | 0.754 | 0.148 | 0.434 | 1.009 |
Technological progress | 307,365.95 | 37,886.50 | 3027.55 | 80,692.35 | 123,449.8 | 502 | 872,209 |
Energy efficiency | 18.253 | 3.871 | 1.706 | 5.931 | 5.341 | 1.297 | 27.594 |
Industrial structure | 4.177 | 1.728 | 1.017 | 1.964 | 0.931 | 0.879 | 6.134 |
Government support | 11,723.235 | 5178.495 | 1478.541 | 5843.86 | 3152.129 | 922.48 | 18,533.08 |
Economic development | 123,758.350 | 55,638 | 31,766.650 | 64,505.61 | 30,924.54 | 22,922 | 190,313 |
Environmental regulation | 0.968 | 0.615 | 0.374 | 0.649 | 0.198 | 0.269 | 1.004 |
Conditional Variables | High CEE | Non-High CEE | ||||||
---|---|---|---|---|---|---|---|---|
POCONS | Pooled Coverage | BECONS Adjusted Distance | WICONS Adjusted Distance | POCONS | Pooled Coverage | BECONS Adjusted Distance | WICONS Adjusted Distance | |
Technological progress | 0.593 | 0.683 | 0.229 | 0.495 | 0.565 | 0.664 | 0.207 | 0.460 |
~ Technological progress | 0.708 | 0.615 | 0.193 | 0.391 | 0.730 | 0.647 | 0.120 | 0.345 |
Energy efficiency | 0.735 | 0.809 | 0.033 | 0.385 | 0.488 | 0.548 | 0.211 | 0.529 |
~ Energy efficiency | 0.589 | 0.530 | 0.040 | 0.472 | 0.829 | 0.761 | 0.084 | 0.247 |
Industrial structure | 0.672 | 0.734 | 0.098 | 0.403 | 0.550 | 0.613 | 0.229 | 0.495 |
~ Industrial structure | 0.646 | 0.585 | 0.098 | 0.385 | 0.762 | 0.703 | 0.124 | 0.322 |
Government support | 0.603 | 0.604 | 0.193 | 0.454 | 0.691 | 0.706 | 0.189 | 0.282 |
~ Government support | 0.706 | 0.692 | 0.211 | 0.420 | 0.612 | 0.611 | 0.211 | 0.408 |
Economic development | 0.693 | 0.734 | 0.251 | 0.391 | 0.533 | 0.576 | 0.294 | 0.495 |
~ Economic development | 0.599 | 0.557 | 0.254 | 0.449 | 0.754 | 0.715 | 0.145 | 0.322 |
Environmental regulation | 0.689 | 0.684 | 0.156 | 0.443 | 0.560 | 0.567 | 0.160 | 0.523 |
~ Environmental regulation | 0.563 | 0.557 | 0.138 | 0.518 | 0.687 | 0.693 | 0.098 | 0.437 |
Case | Causal Combinations | Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |||
1 | Technological progress and high CEE | BECONS | 0.392 | 0.433 | 0.542 | 0.55 | 0.541 | 0.576 | 0.633 | 0.699 | 0.756 | 0.744 |
BECOVS | 0.653 | 0.678 | 0.65 | 0.664 | 0.701 | 0.665 | 0.728 | 0.668 | 0.684 | 0.714 | ||
2 | Technological progress and non-high CEE | BECONS | 0.442 | 0.422 | 0.49 | 0.508 | 0.538 | 0.616 | 0.59 | 0.671 | 0.738 | 0.696 |
BECOVS | 0.792 | 0.775 | 0.753 | 0.737 | 0.705 | 0.697 | 0.631 | 0.632 | 0.569 | 0.542 | ||
3 | Energy efficiency and non-high CEE | BECONS | 0.36 | 0.387 | 0.392 | 0.437 | 0.485 | 0.539 | 0.558 | 0.557 | 0.598 | 0.626 |
BECOVS | 0.503 | 0.532 | 0.547 | 0.564 | 0.558 | 0.571 | 0.562 | 0.57 | 0.538 | 0.527 | ||
4 | Industrial structure and non-high CEE | BECONS | 0.377 | 0.409 | 0.449 | 0.491 | 0.556 | 0.604 | 0.671 | 0.666 | 0.673 | 0.666 |
BECOVS | 0.623 | 0.637 | 0.652 | 0.635 | 0.607 | 0.597 | 0.606 | 0.631 | 0.593 | 0.575 | ||
5 | ~ Government support and high CEE | BECONS | 0.785 | 0.764 | 0.695 | 0.672 | 0.604 | 0.548 | 0.517 | 0.484 | 0.515 | 0.471 |
BECOVS | 0.582 | 0.624 | 0.665 | 0.665 | 0.601 | 0.592 | 0.599 | 0.604 | 0.583 | 0.569 | ||
6 | Economic development and high CEE | BECONS | 0.42 | 0.507 | 0.571 | 0.628 | 0.655 | 0.735 | 0.765 | 0.802 | 0.869 | 0.897 |
BECOVS | 0.719 | 0.73 | 0.725 | 0.744 | 0.754 | 0.762 | 0.747 | 0.721 | 0.724 | 0.719 | ||
7 | Economic development and non-high CEE | BECONS | 0.369 | 0.389 | 0.396 | 0.427 | 0.499 | 0.574 | 0.618 | 0.65 | 0.732 | 0.767 |
BECOVS | 0.681 | 0.656 | 0.645 | 0.607 | 0.582 | 0.583 | 0.56 | 0.577 | 0.52 | 0.498 | ||
8 | ~Economic development and high CEE | BECONS | 0.813 | 0.761 | 0.721 | 0.669 | 0.637 | 0.598 | 0.549 | 0.53 | 0.424 | 0.373 |
BECOVS | 0.545 | 0.515 | 0.482 | 0.493 | 0.557 | 0.589 | 0.607 | 0.606 | 0.65 | 0.664 | ||
9 | ~ Government support and non-high CEE | BECONS | 0.925 | 0.881 | 0.819 | 0.769 | 0.74 | 0.703 | 0.621 | 0.602 | 0.567 | 0.514 |
BECOVS | 0.636 | 0.613 | 0.611 | 0.634 | 0.728 | 0.774 | 0.776 | 0.761 | 0.753 | 0.765 |
Condition | High CEE | Non-High CEE | |||||||
---|---|---|---|---|---|---|---|---|---|
S1a | S1b | S2 | S3 | N1a | N1b | N2 | N3a | N3b | |
Technological progress | |||||||||
Energy efficiency | |||||||||
Industrial structure | |||||||||
Government support | |||||||||
Economic development | |||||||||
Environmental regulation | |||||||||
Consistency | 0.842 | 0.842 | 0.939 | 0.895 | 0.891 | 0.877 | 0.941 | 0.929 | 0.954 |
PRI | 0.647 | 0.643 | 0.843 | 0.681 | 0.753 | 0.734 | 0.853 | 0.807 | 0.865 |
Coverage | 0.383 | 0.375 | 0.313 | 0.261 | 0.518 | 0.479 | 0.498 | 0.39 | 0.362 |
Unique coverage | 0.021 | 0.018 | 0.092 | 0.029 | 0.022 | 0.037 | 0.037 | 0.004 | 0.002 |
Overall consistency | 0.868 | 0.858 | |||||||
Overall PRI | 0.751 | 0.735 | |||||||
Overall coverage | 0.57 | 0.699 |
Configuration | Configuration Name | Typical Cases |
---|---|---|
S1a | Technology–Organization Dual-Driven | Gansu (2018–2022), Jilin (2013–2022), and Hainan (2014–2019) |
S1b | ||
S2 | Multi-Equilibrium | Beijing (2013–2022) and Shanghai (2014–2022) |
S3 | Environment-Dominated | Fujian(2013–2015) and Tianjin(2013–2015) |
Configuration | Dependent Variable CEE | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
S1a | 0.297 *** (0.096) | |||
S1b | 0.302 *** (0.095) | |||
S2 | 0.663 *** (0.099) | |||
S3 | 0.449 *** (0.140) | |||
Controlled variable | control | control | control | control |
Constant | 0.886 ** (0.368) | 1.044 ** (0.454) | 1.044 *** (0.344) | 1.136 *** (0.364) |
Observed | 300 | 300 | 300 | 300 |
Configuration | Replace the Dependent Variable | Remove Extreme Values | ||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable Carbon Intensity | Dependent Variable CEE | |||||||
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |
S1a | −1.009 ** (0.174) | 0.296 *** (0.097) | ||||||
S1b | −0.977 *** (0.173) | 0.299 *** (0.097) | ||||||
S2 | −1.587 *** (0.177) | 0.672 *** (0.100) | ||||||
S3 | −1.929 *** (0.243) | 0.454 *** (0.146) | ||||||
Controlled variable | control | control | control | control | control | control | control | control |
Observed | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, T.; Zhang, H. A Study on the Improvement Pathways of Carbon Emission Efficiency in China from a Configurational Perspective Based on the Dynamic Qualitative Comparative Analysis. Atmosphere 2025, 16, 944. https://doi.org/10.3390/atmos16080944
Tao T, Zhang H. A Study on the Improvement Pathways of Carbon Emission Efficiency in China from a Configurational Perspective Based on the Dynamic Qualitative Comparative Analysis. Atmosphere. 2025; 16(8):944. https://doi.org/10.3390/atmos16080944
Chicago/Turabian StyleTao, Tingyu, and Hao Zhang. 2025. "A Study on the Improvement Pathways of Carbon Emission Efficiency in China from a Configurational Perspective Based on the Dynamic Qualitative Comparative Analysis" Atmosphere 16, no. 8: 944. https://doi.org/10.3390/atmos16080944
APA StyleTao, T., & Zhang, H. (2025). A Study on the Improvement Pathways of Carbon Emission Efficiency in China from a Configurational Perspective Based on the Dynamic Qualitative Comparative Analysis. Atmosphere, 16(8), 944. https://doi.org/10.3390/atmos16080944