Can a Global Climate Model Reproduce a Tornado Outbreak Atmospheric Pattern? Methodology and a Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Tornado Outbreaks and ERA5 Reanalysis Data
2.2. ERA5 Reanalysis: Pattern Identification and Stationarity Testing
2.3. MPI Global Climate Model
2.3.1. Data Preprocessing and Comparability Testing
2.3.2. Proxy-Based Pattern Detection
3. Results
3.1. ERA5: Stationarity Testing
3.2. Pattern Comparison Between ERA5 and MPI Model
3.2.1. Data Distributions and Autocorrelation
3.2.2. ERA5 Observation-Based vs. ERA5 Proxy-Based Pattern
3.2.3. ERA5 Observation-Based vs. MPI Proxy-Based Pattern
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, H.E. On the relationship of tornado path length and width to intensity. Weather Forecast. 2004, 19, 310–319. [Google Scholar] [CrossRef]
- Ćwik, P.; McPherson, R.A.; Brooks, H.E. What is a tornado outbreak? Perspectives through time. Bull. Am. Meteorol. Soc. 2021, 102, E817–E835. [Google Scholar] [CrossRef]
- NOAA. State of the Climate: Tornadoes, Annual 2011. National Centers for Environmental Information. 2011. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/tornadoes/201113 (accessed on 1 March 2025).
- Knupp, K.R.; Murphy, T.A.; Coleman, T.A.; Wade, R.A.; Mullins, S.A.; Schultz, C.J.; Schultz, E.V.; Carey, L.; Sherrer, A.; McCaul, E.W., Jr.; et al. Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Am. Meteorol. Soc. 2014, 95, 1041–1062. [Google Scholar] [CrossRef]
- Chasteen, M.B.; Koch, S.E. Multiscale aspects of the 26–27 April 2011 tornado outbreak. Part I: Outbreak chronology and environmental evolution. Mon. Weather Rev. 2021, 150, 309–335. [Google Scholar] [CrossRef]
- Trapp, R.J.; Diffenbaugh, N.S.; Brooks, H.E.; Baldwin, M.E.; Robinson, E.D.; Pal, J.S. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA 2007, 104, 19719–19723. [Google Scholar] [CrossRef]
- Trapp, R.J.; Hoogewind, K.A. The realization of extreme tornadic storm events under future anthropogenic climate change. J. Clim. 2016, 29, 5251–5265. [Google Scholar] [CrossRef]
- Tippett, M.K.; Allen, J.T.; Gensini, V.A.; Brooks, H.E. Climate and hazardous convective weather. Curr. Clim. Change Rep. 2015, 1, 60–73. [Google Scholar] [CrossRef]
- Mercer, A.E.; Shafer, C.M.; Doswell, C.A., III; Leslie, L.M.; Richman, M.B. Synoptic composites of tornadic and nontornadic outbreaks. Mon. Weather Rev. 2012, 140, 2590–2608. [Google Scholar] [CrossRef]
- Moore, T.W.; Dixon, R.W. Patterns in 500 hPa geopotential height associated with temporal clusters of tropical cyclone tornadoes. Meteorol. Appl. 2015, 22, 314–322. [Google Scholar] [CrossRef]
- Ćwik, P.; McPherson, R.A.; Richman, M.B.; Mercer, A.E. Climatology of 500-hPa geopotential height anomalies associated with May tornado outbreaks in the United States. Int. J. Climatol. 2022, 43, 893–913. [Google Scholar] [CrossRef]
- Elkhouly, M.; Zick, S.E.; Ferreira, M.A. Long-Term Temporal Trends in Synoptic-Scale Weather Conditions Favoring Significant Tornado Occurrence over the Central United States. PLoS ONE 2023, 18, e0281312. [Google Scholar] [CrossRef]
- Tippett, M.K.; Malloy, K.; Lee, S.H. Modulation of US tornado activity by year-round North American weather regimes. Mon. Weather Rev. 2024, 152, 2189–2202. [Google Scholar] [CrossRef]
- Jiang, Q.; Dawson, D.T., II; Li, F.; Chavas, D.R. Classifying synoptic patterns driving tornadic storms and associated spatial trends in the United States. NPJ Clim. Atmos. Sci. 2025, 8, 7. [Google Scholar] [CrossRef]
- Thompson, R.L.; Edwards, R.; Hart, J.A.; Elmore, K.L.; Markowski, P. Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Weather Forecast. 2003, 18, 1243–1261. [Google Scholar] [CrossRef]
- Brooks, H.E.; Doswell, C.A., III; Kay, M.P. Climatological estimates of local daily tornado probability for the United States. Weather Forecast. 2003, 18, 626–640. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Davies-Jones, R. A review of supercell and tornado dynamics. Atmos. Res. 2015, 158, 274–291. [Google Scholar] [CrossRef]
- Coffer, B.E.; Taszarek, M.; Parker, M.D. Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Weather Forecast. 2020, 35, 2621–2638. [Google Scholar] [CrossRef]
- Davenport, C.E. Environmental evolution of long-lived supercell thunderstorms in the Great Plains. Weather Forecast. 2021, 36, 2187–2209. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Scherer, M.; Trapp, R.J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA 2013, 110, 16361–16366. [Google Scholar] [CrossRef]
- Gensini, V.A.; Mote, T.L.; Brooks, H.E. Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteorol. Climatol. 2014, 53, 742–751. [Google Scholar] [CrossRef]
- Trapp, R.J.; Halvorson, B.A.; Diffenbaugh, N.S. Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. J. Geophys. Res. Atmos. 2007, 112, D20109. [Google Scholar] [CrossRef]
- Trapp, R.J.; Diffenbaugh, N.S.; Gluhovsky, A. Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett. 2009, 36, L01703. [Google Scholar] [CrossRef]
- Robinson, E.D.; Trapp, R.J.; Baldwin, M.E. The geospatial and temporal distributions of severe thunderstorms from high-resolution dynamical downscaling. J. Appl. Meteorol. Climatol. 2013, 52, 2147–2161. [Google Scholar] [CrossRef]
- Seeley, J.T.; Romps, D.M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 2015, 28, 2443–2458. [Google Scholar] [CrossRef]
- Gensini, V.A.; Brooks, H.E. Spatial trends in United States tornado frequency. NPJ Clim. Atmos. Sci. 2018, 1, 38. [Google Scholar] [CrossRef]
- Gopalakrishnan, D.; Cuervo-Lopez, C.; Allen, J.T.; Trapp, R.J.; Robinson, E. A Comprehensive Evaluation of Biases in Convective Storm Parameters in CMIP6 Models over North America. J. Clim. 2025, 38, 947–971. [Google Scholar] [CrossRef]
- Ćwik, P.; Furtado, J.C.; McPherson, R.A.; Taszarek, M. Major May Tornado Outbreaks in the United States: Novel Multiscale Atmospheric Patterns Identified Using Maximum Covariance Analysis. Atmos. Res. 2024, 315, 107872. [Google Scholar] [CrossRef]
- Brooks, H.E. Severe Thunderstorms and Climate Change. Atmos. Res. 2013, 123, 129–138. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Púčik, T.; Hoogewind, K.A.; Brooks, H.E. Severe Convective Storms across Europe and the United States. Part II: ERA5 Environments Associated with Lightning, Large Hail, Severe Wind, and Tornadoes. J. Clim. 2020, 33, 10263–10286. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Chavas, D.R.; Li, F. Biases in CMIP6 Historical US Severe Convective Storm Environments Driven by Biases in Mean-State Near-Surface Moist Static Energy. Geophys. Res. Lett. 2022, 49, e2022GL098527. [Google Scholar] [CrossRef]
- Davis, I.; Li, F.; Chavas, D.R. Future Changes in the Vertical Structure of Severe Convective Storm Environments over the US Central Great Plains. J. Clim. 2024, 37, 5561–5578. [Google Scholar] [CrossRef]
- Emanuel, K. On the physics of high CAPE. J. Atmos. Sci. 2023, 80, 2669–2682. [Google Scholar] [CrossRef]
- Tuckman, P.; Agard, V.; Emanuel, K. Evolution of convective energy and inhibition before instances of large CAPE. Mon. Weather Rev. 2023, 151, 321–338. [Google Scholar] [CrossRef]
- Li, F.; Chavas, D.R. Midlatitude Continental CAPE Is Predictable from Large-Scale Environmental Parameters. Geophys. Res. Lett. 2021, 48, e2020GL091799. [Google Scholar] [CrossRef]
- Doswell III, C.A.; Edwards, R.; Thompson, R.L.; Hart, J.A.; Crosbie, K. A Simple and Flexible Method for Ranking Severe Weather Events. Weather Forecast. 2006, 21, 939–951. [Google Scholar] [CrossRef]
- Edwards, R.; Brooks, H.E.; Cohn, H. Changes in Tornado Climatology Accompanying the Enhanced Fujita Scale. J. Appl. Meteorol. Climatol. 2021, 60, 1465–1482. [Google Scholar] [CrossRef]
- Coleman, T.A.; Thompson, R.L.; Forbes, G.S. A comprehensive analysis of the spatial and seasonal shifts in tornado activity in the United States. J. Appl. Meteorol. Climatol. 2024, 63, 717–730. [Google Scholar] [CrossRef]
- Nouri, N.; Devineni, N.; Were, V.; Khanbilvardi, R. Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices. Sci. Rep. 2021, 11, 1741. [Google Scholar] [CrossRef]
- Shafer, C.M.; Doswell, C.A., III. Using Kernel Density Estimation to Identify, Rank, and Classify Severe Weather Outbreak Events. Unpublished Manuscript. 2011. Available online: https://www.researchgate.net/publication/271196631 (accessed on 18 June 2025).
- Anderson-Frey, A.K.; Richardson, Y.P.; Dean, A.R.; Thompson, R.L.; Smith, B. Investigation of Near-Storm Environments for Tornado Events and Warnings. Weather Forecast. 2016, 31, 1771–1790. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Li, F.; Chavas, D.R.; Reed, K.A.; Dawson, D.T., II. Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation. J. Clim. 2020, 33, 8339–8365. [Google Scholar] [CrossRef]
- Taszarek, M.; Pilguj, N.; Allen, J.T.; Gensini, V.A.; Brooks, H.E.; Szuster, P. Comparison of convective parameters derived from ERA5 and MERRA-2 with rawinsonde data over Europe and North America. J. Clim. 2021, 34, 211–3237. [Google Scholar] [CrossRef]
- Taszarek, M.; Czernecki, B.; Szuster, P. ThundeR—A rawinsonde package for processing convective parameters and visualizing atmospheric profiles. In Proceedings of the 11th European Conference on Severe Storms, Bucharest, Romania, 8–12 May 2023. [Google Scholar] [CrossRef]
- Czernecki, B.; Taszarek, M.; Szuster, P. ThundeR: Computation and Visualization of Atmospheric Convective Parameters. 2023. Available online: https://bczernecki.github.io/thundeR/ (accessed on 18 June 2025).
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Agee, E.; Larson, J.; Childs, S.; Marmo, A. Spatial Redistribution of U.S. Tornado Activity between 1954 and 2013. J. Appl. Meteorol. Climatol. 2016, 55, 1681–1697. [Google Scholar] [CrossRef]
- Tippett, M.K.; Lepore, C.; Cohen, J.E. More Tornadoes in the Most Extreme US Tornado Outbreaks. Science 2016, 354, 1419–1423. [Google Scholar] [CrossRef]
- Anderson-Frey, A.K.; Brooks, H.E. Compared to What? Establishing Environmental Baselines for Tornado Warning Skill. Bull. Am. Meteorol. Soc. 2021, 102, E738–E747. [Google Scholar] [CrossRef]
- Malloy, K.; Tippett, M.K. A Stochastic Statistical Model for US Outbreak-Level Tornado Occurrence Based on the Large-Scale Environment. Mon. Weather Rev. 2024, 152, 1141–1161. [Google Scholar] [CrossRef]
- Strader, S.M.; Gensini, V.A.; Ashley, W.S.; Wagner, A.N. Changes in Tornado Risk and Societal Vulnerability Leading to Greater Tornado Impact Potential. NPJ Nat. Hazards 2024, 1, 20. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. Complete ERA5 from 1940: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate [Dataset]. Copernic. Clim. Change Serv. (C3S) Data Store (CDS) 2017, 10, 10. [Google Scholar] [CrossRef]
WMAXSHEAR Anomalies | ||||
KS | p-value | nRMSE | Spatial Corr | |
MCA1 | 0.076 | 0.002 | 0.201 | 0.309 |
MCA2 | 0.060 | 0.026 | 0.176 | 0.479 |
MCA3 | 0.035 | 0.449 | 0.146 | 0.415 |
500-hPa Geopotential Height Anomalies | ||||
KS | p-value | nRMSE | Spatial Corr | |
MCA1 | 0.124 | 2.46 × 10−8 | 0.255 | 0.547 |
MCA2 | 0.098 | 1.97 × 10−5 | 0.224 | 0.430 |
MCA3 | 0.176 | 1.86 × 10−16 | 0.231 | 0.608 |
Number of Tornado Reports per Outbreak | Total Number of Tornadoes | |||||
---|---|---|---|---|---|---|
Group | Mean | Median | EF2 | EF3 | EF4 | EF5 |
MCA1 | 13.6 | 13.5 | 83 | 33 | 14 | 6 |
MCA2 | 10.9 | 10.0 | 74 | 24 | 9 | 2 |
MCA3 | 9.9 | 9.0 | 70 | 22 | 6 | 1 |
WMAXSHEAR Anomalies (m2s−2) | 500-hPa Geopotential Height Anomalies (m) | |||
---|---|---|---|---|
Metric | Observation-Based | Proxy-Based | Observation-Based | Proxy-Based |
max value | 496.8 | 661.4 | 16.3 | 12 |
min value | −206.3 | −219.2 | −65.6 | −66.8 |
mean | 62.8 | 48.3 | −13.7 | −14.7 |
median | 16.5 | 8.4 | −7 | −7.1 |
WMAXSHEAR Anomalies (m2s−2) | 500-hPa Geopotential Height Anomalies (m) | |||
---|---|---|---|---|
Metric | ERA5 | MPI Proxy-Based | ERA5 | MPI Proxy-Based |
max value | 503.9 | 526.1 | 17.3 | 43.2 |
min value | −226.1 | −225.6 | −64.1 | −55.1 |
mean | 63.5 | 69.5 | −12.8 | −79 |
median | 21.0 | 9.7 | −6.3 | −8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćwik, P.; McPherson, R.A.; Li, F.; Furtado, J.C. Can a Global Climate Model Reproduce a Tornado Outbreak Atmospheric Pattern? Methodology and a Case Study. Atmosphere 2025, 16, 923. https://doi.org/10.3390/atmos16080923
Ćwik P, McPherson RA, Li F, Furtado JC. Can a Global Climate Model Reproduce a Tornado Outbreak Atmospheric Pattern? Methodology and a Case Study. Atmosphere. 2025; 16(8):923. https://doi.org/10.3390/atmos16080923
Chicago/Turabian StyleĆwik, Paulina, Renee A. McPherson, Funing Li, and Jason C. Furtado. 2025. "Can a Global Climate Model Reproduce a Tornado Outbreak Atmospheric Pattern? Methodology and a Case Study" Atmosphere 16, no. 8: 923. https://doi.org/10.3390/atmos16080923
APA StyleĆwik, P., McPherson, R. A., Li, F., & Furtado, J. C. (2025). Can a Global Climate Model Reproduce a Tornado Outbreak Atmospheric Pattern? Methodology and a Case Study. Atmosphere, 16(8), 923. https://doi.org/10.3390/atmos16080923