ARIMAX Modeling of Hive Weight Dynamics Using Meteorological Factors During Robinia pseudoacacia Blooming
Abstract
1. Introduction
2. Materials and Methods
2.1. Hive Weight Data
2.2. Meteorological Data
2.3. Time Series Prediction Methods
3. Results
3.1. Variation of the Hive Weight
3.2. Relationship with the Meteorological Variables
3.3. Time Series Model Selection
4. Discussion
Limitations of Hive Weight Forecasting
- The unrepresented biological and environmental factors causing large fluctuations in foraging, as well as the nonlinear relationship between temperature and hive weight. Additional parameters, such as colony health, developmental stage, nectar-producing vegetation yield, and beekeeper knowledge, may significantly influence outcomes, but these are difficult to measure.
- The distance of the meteorological station, such as radiation, cloud cover, and precipitation measurements, may not fully represent conditions near the hives. While radiation played a minor role compared to temperature in comparisons, previous research highlights its significant influence on honey bee behavior.
- More complex data-cleaning methods risk filtering out genuine variations inherent to general honey bee behavior.
- The low-cost hive scales used may lack sufficient accuracy (dkg- or g-level precision) for such studies, though they are widely adopted in the beekeeping community.
- Hive weight reflects not only nectar collection but also colony reproduction, water, propolis, pollen, and wax production, making it difficult to isolate nectar yield. These minor anomalies cannot be filtered with time series methods and require beekeeper observations to account for.
- The worker bees could also change their colonies during nectar flow, called ‘drifting’, if the hives are near each other and some hives are easier to approach. However, this behavior depends on various factors like the hive color, painted shapes on the hive, environmental factors, and the orientation or arrangement of the hives [73,74,75].
- Weight sensors can be affected by outdoor temperature fluctuations [17] or the humidity could affect the weight of the wood hives.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Czekońska, K.; Łopuch, S.; Miścicki, S.; Bańkowski, J.; Szabla, K. Monitoring of Hive Weight Changes in Various Landscapes. Apidologie 2023, 54, 30. [Google Scholar] [CrossRef]
- Krell, R. Value-Added Products from Beekeeping. In FAO Agricultural Services Bulletin, 1st ed.; FAO: Rome, Italy, 1996. [Google Scholar]
- Kebede, I.A.; Gebremeskel, H.F.; Ahmed, A.D.; Dule, G. Bee Products and Their Processing: A Review. Pharm. Pharmacol. Int. J. 2024, 12, 5–12. [Google Scholar] [CrossRef]
- European Commission Honey. Available online: https://agriculture.ec.europa.eu/farming/animal-products/honey_en (accessed on 25 February 2025).
- De la Rúa, P.; Jaffé, R.; Dall’Olio, R.; Muñoz, I.; Serrano, J. Biodiversity, Conservation and Current Threats to European Honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef]
- OMME. National Program of Beekeeping 2021–2022; Országos Magyar Méhészeti Egyesület (OMME): Budapest, Hungary, 2022; Volume 50, ISSN 2062-9915. [Google Scholar]
- Feketéné, F.A.; Szűcs, I.; Vida, V. A hazai méhészeti ágazat helyzetének elemzése (termelés, kereskedelem). Hung. J. Nutr. Mark. 2021, 8, 21–34. [Google Scholar] [CrossRef]
- Meikle, W.G.; Rector, B.G.; Mercadier, G.; Holst, N. Within-Day Variation in Continuous Hive Weight Data as a Measure of Honey Bee Colony Activity. Apidologie 2008, 39, 694–707. [Google Scholar] [CrossRef]
- Hambleton, J.I. The Effect of Weather Upon the Change in Weight of a Colony of Bees During the Honey Flow; U.S. Department of Agriculture: Washington, DC, USA, 1925.
- Zaman, A.; Dorin, A. A Framework for Better Sensor-Based Beehive Health Monitoring. Comput. Electron. Agric. 2023, 210, 107906. [Google Scholar] [CrossRef]
- Zacepins, A.; Ozols, N.; Kviesis, A.; Gailis, J.; Komasilovs, V.; Komasilova, O.; Zagorska, V. Evaluation of the Honey Bee Colonies Weight Gain during the Intensive Foraging Period. Agron. Res. 2022, 20, 457–468. [Google Scholar] [CrossRef]
- Meikle, W.G.; Weiss, M.; Stilwell, A.R. Monitoring Colony Phenology Using Within-Day Variability in Continuous Weight and Temperature of Honey Bee Hives. Apidologie 2016, 47, 1–14. [Google Scholar] [CrossRef]
- Meikle, W.G.; Holst, N.; Colin, T.; Weiss, M.; Carroll, M.J.; McFrederick, Q.S.; Barron, A.B. Using Within-Day Hive Weight Changes to Measure Environmental Effects on Honey Bee Colonies. PLoS ONE 2018, 13, e0197589. [Google Scholar] [CrossRef]
- Atanasov, A.Z.; Hristakov, I.S.; Koszel, M.; Przywara, A. Monitoring Agrometeorological Factors and Weight of the Bee Hive During Black Locust (Robinia pseudoacacia) Flowering. In Proceedings of the Farm Machinery and Processes Management in Sustainable Agriculture; Pascuzzi, S., Santoro, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 239–251. [Google Scholar]
- Stalidzans, E.; Zacepins, A.; Kviesis, A.; Brusbardis, V.; Meitalovs, J.; Paura, L.; Bulipopa, N.; Liepniece, M. Dynamics of Weight Change and Temperature of Apis mellifera (Hymenoptera: Apidae) Colonies in a Wintering Building With Controlled Temperature. J. Econ. Entomol. 2017, 110, 13–23. [Google Scholar] [CrossRef]
- Meikle, W.G.; Holst, N. Application of Continuous Monitoring of Honeybee Colonies. Apidologie 2015, 46, 10–22. [Google Scholar] [CrossRef]
- Marchal, P.; Buatois, A.; Kraus, S.; Klein, S.; Gomez-Moracho, T.; Lihoreau, M. Automated Monitoring of Bee Behaviour Using Connected Hives: Towards a Computational Apidology. Apidologie 2020, 51, 356–368. [Google Scholar] [CrossRef]
- Vincze, C.; Leelőssy, Á.; Zajácz, E.; Mészáros, R. A Review of Short-Term Weather Impacts on Honey Production. Int. J. Biometeorol. 2025, 69, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Gounari, S.; Proutsos, N.; Goras, G. How Does Weather Impact on Beehive Productivity in a Mediterranean Island? Ital. J. Agrometeorol. 2022, 1, 65–81. [Google Scholar] [CrossRef]
- Péntek-Zakar, E.; Oleksa, A.; Borowik, T.; Kusza, S. Population Structure of Honey Bees in the Carpathian Basin (Hungary) Confirms Introgression from Surrounding Subspecies. Ecol. Evol. 2015, 5, 5456–5467. [Google Scholar] [CrossRef]
- Arias-Calluari, K.; Colin, T.; Latty, T.; Myerscough, M.; Altmann, E.G. Modelling Daily Weight Variation in Honey Bee Hives. PLoS Comput. Biol. 2023, 19, e1010880. [Google Scholar] [CrossRef]
- Lecocq, A.; Kryger, P.; Vejsnæs, F.; Jensen, A.B. Weight Watching and the Effect of Landscape on Honeybee Colony Productivity: Investigating the Value of Colony Weight Monitoring for the Beekeeping Industry. PLoS ONE 2015, 10, e0132473. [Google Scholar] [CrossRef]
- Davidson, P.; Steininger, M.; Lautenschlager, F.; Kobs, K.; Krause, A.; Hotho, A. Anomaly Detection in Beehives Using Deep Recurrent Autoencoders; SciTePress: Valletta, Malta, 2020; Volume 1, pp. 142–149. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- László, E.; Palcsu, L.; Leelőssy, Á. Estimation of the Solar-Induced Natural Variability of the Tritium Concentration of Precipitation in the Northern and Southern Hemisphere. Atmos. Environ. 2020, 233, 117605. [Google Scholar] [CrossRef]
- Mahmudimanesh, M.; Mirzaee, M.; Dehghan, A.; Bahrampour, A. Forecasts of Cardiac and Respiratory Mortality in Tehran, Iran, Using ARIMAX and CNN-LSTM Models. Environ. Sci. Pollut. Res. 2022, 29, 28469–28479. [Google Scholar] [CrossRef]
- Saranj, A.; Zolfaghari, M. The Electricity Consumption Forecast: Adopting a Hybrid Approach by Deep Learning and ARIMAX-GARCH Models. Energy Rep. 2022, 8, 7657–7679. [Google Scholar] [CrossRef]
- Sheng, F.; Jia, L. Short-Term Load Forecasting Based on SARIMAX-LSTM. In Proceedings of the 2020 5th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 12–14 September 2020; pp. 90–94. [Google Scholar]
- Supriya, A. Study on the Performance of the ARIMAX-ANN Hybrid Forecasting Model over the Other Time Series Forecasting Models ARIMAX and ANN in Forecasting the Rice Yield. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 3421–3428. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, Z.; Meng, Y.; Wang, S.; Li, S.; Niu, R.; Wang, Y.; Guo, Q.; Li, Y. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Int. J. Environ. Res. Public Health 2021, 18, 6174. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, R.; Zhang, H.; He, S. Prediction of Global Omicron Pandemic Using ARIMA, MLR, and Prophet Models. Sci. Rep. 2022, 12, 18138. [Google Scholar] [CrossRef]
- Zhou, Y. Regional Energy Consumption Prediction Based on SARIMAX-LSTM Model. Acad. J. Comput. Inf. Sci. 2021, 4, 41–51. [Google Scholar] [CrossRef]
- Ospina, R.; Gondim, J.A.M.; Leiva, V.; Castro, C. An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil. Mathematics 2023, 11, 3069. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-118-67492-5. [Google Scholar]
- Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; Kuroptev, K.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; et al. Forecast: Forecasting Functions for Time Series and Linear Models. 2024. Available online: https://cran.r-project.org/web/packages/forecast/forecast.pdf (accessed on 25 February 2025).
- Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; Monash University: Melbourne, Australia, 2018. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; Monash University: Melbourne, Australia, 2021. [Google Scholar]
- Pandit, P.; Sagar, A.; Ghose, B.; Dey, P.; Paul, M.; Alqadhi, S.; Mallick, J.; Almohamad, H.; Abdo, H.G. Hybrid Time Series Models with Exogenous Variable for Improved Yield Forecasting of Major Rabi Crops in India. Sci. Rep. 2023, 13, 22240. [Google Scholar] [CrossRef]
- Said, S.E.; Dickey, D.A. Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root? J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Chok, N.S. Pearson’s Versus Spearman’s and Kendall’s Correlation Coefficients for Continuous Data. Master’s Thesis, Winona State University, Winona, MN, USA, 2008. [Google Scholar]
- Pearson, K. Notes on the History of Correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Wald, A. Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations Is Large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Dissanayake, B.; Hemachandra, O.; Lakshitha, N.; Haputhanthri, D.; Wijayasiri, A. A Comparison of ARIMAX, VAR and LSTM on Multivariate Short-Term Traffic Volume Forecasting. In Proceedings of the Conference of Open Innovations Association, Fruct, Moscow, Russia, 27–29 January 2021; pp. 564–570. [Google Scholar]
- Marzban, C.; Sandgathe, S.; Kalnay, E. MOS, Perfect Prog, and Reanalysis. Mon. Weather. Rev. 2006, 134, 657–663. [Google Scholar] [CrossRef]
- Holst, N.; Meikle, W.G. Breakfast Canyon Discovered in Honeybee Hive Weight Curves. Insects 2018, 9, 176. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Owayss, A.A.; Ibrahim, Y.Y.; Basuny, N.K. A Review of Impacts of Temperature and Relative Humidity on Various Activities of Honey Bees. Insect. Soc. 2017, 64, 455–463. [Google Scholar] [CrossRef]
- Clarke, D.; Robert, D. Predictive Modelling of Honey Bee Foraging Activity Using Local Weather Conditions. Apidologie 2018, 49, 386–396. [Google Scholar] [CrossRef]
- Brini, A.; Giovannini, E.; Smaniotto, E. A Machine Learning Approach to Forecasting Honey Production with Tree-Based Methods. arXiv 2023, arXiv:2304.01215. [Google Scholar]
- Vadas, J. Az Ákácfa Monografiája, Különös Tekintettel Erdőgazdasági Jelentőségére; Országos Erdészeti Egyesület: Budapest, Hungary, 1911. [Google Scholar]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Vítková, M.; Sádlo, J.; Roleček, J.; Petřík, P.; Sitzia, T.; Müllerová, J.; Pyšek, P. Robinia pseudoacacia-Dominated Vegetation Types of Southern Europe: Species Composition, History, Distribution and Management. Sci. Total Environ. 2020, 707, 134857. [Google Scholar] [CrossRef]
- Samsonova, I.; Mannapov, A.; Khisamov, R.; Plakhova, A.; Sattarov, V. Analysis of Honey Productivity of Robinia (Robinia pseudoacacia L.) Plantations in Forest Vegetation Conditions of the Steppe Don Region. IOP Conf. Ser. Earth Environ. Sci. 2020, 574, 012071. [Google Scholar] [CrossRef]
- Mezőné, T.É.O. A Hazai Mézpiac Fogyasztói és Szervezeti Sajátosságainak Marketing Szemléletű Összefüggései. Doktori Értekezés; Szent István Egyetem: Gödöllő, Hungary, 2020. [Google Scholar]
- Kulyukin, V.A.; Coster, D.; Kulyukin, A.V.; Meikle, W.; Weiss, M. Discrete Time Series Forecasting of Hive Weight, In-Hive Temperature, and Hive Entrance Traffic in Non-Invasive Monitoring of Managed Honey Bee Colonies: Part I. Sensors 2024, 24, 6433. [Google Scholar] [CrossRef]
- Robustillo, M.C.; Naranjo, L.; Parra, M.I.; Pérez, C.J. Addressing Multidimensional Highly Correlated Data for Forecasting in Precision Beekeeping. Comput. Electron. Agric. 2024, 226, 109390. [Google Scholar] [CrossRef]
- Braga, A.R.; GGomes, D.; Rogers, R.; EHassler, E.; MFreitas, B.; ACazier, J. A Method for Mining Combined Data from In-Hive Sensors, Weather and Apiary Inspections to Forecast the Health Status of Honey Bee Colonies. Comput. Electron. Agric. 2020, 169, 105161. [Google Scholar] [CrossRef]
- Braga, A.R.; Freitas, B.M.; Gomes, D.G.; Bezerra, A.D.M.; Cazier, J.A. Forecasting Sudden Drops of Temperature in Pre-Overwintering Honeybee Colonies. Biosyst. Eng. 2021, 209, 315–321. [Google Scholar] [CrossRef]
- Komasilova, O.; Komasilovs, V.; Kviesis, A.; Zacepins, A. Modeling of the Potential Honey Bee Colony Foraging Activity Based on the Agrometeorological Factors. Balt. J. Mod. Comput. 2021, 9, 280–289. [Google Scholar] [CrossRef]
- Anwar, O.; Keating, A.; Cardell-Oliver, R.; Datta, A.; Putrino, G. WE-Bee: Weight Estimator for Beehives Using Deep Learning. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022. [Google Scholar]
- Anwar, O.; Keating, A.; Cardell-Oliver, R.; Datta, A.; Putrino, G. Design and Development of Low-Power, Long-Range Data Acquisition System for Beehives—BeeDAS. Comput. Electron. Agric. 2022, 201, 107281. [Google Scholar] [CrossRef]
- Robustillo, M.C.; Pérez, C.J.; Parra, M.I. Predicting Internal Conditions of Beehives Using Precision Beekeeping. Biosyst. Eng. 2022, 221, 19–29. [Google Scholar] [CrossRef]
- Anwar, O.; Keating, A.; Cardell-Oliver, R.; Datta, A.; Putrino, G. Apis-Prime: A Deep Learning Model to Optimize Beehive Monitoring System for the Task of Daily Weight Estimation. Appl. Soft Comput. 2023, 144, 110546. [Google Scholar] [CrossRef]
- Rigakis, I.; Potamitis, I.; Tatlas, N.-A.; Psirofonia, G.; Tzagaraki, E.; Alissandrakis, E. A Low-Cost, Low-Power, Multisensory Device and Multivariable Time Series Prediction for Beehive Health Monitoring. Sensors 2023, 23, 1407. [Google Scholar] [CrossRef]
- Degenfellner, J.; Templ, M. Modeling Bee Hive Dynamics: Assessing Colony Health Using Hive Weight and Environmental Parameters. Comput. Electron. Agric. 2024, 218, 108742. [Google Scholar] [CrossRef]
- Davidson, P.; Steininger, M.; Lautenschlager, F.; Krause, A.; Hotho, A. Anomaly Detection in Beehives: An Algorithm Comparison. In Sensor Networks: 9th International Conference, SENSORNETS 2020, Valletta, Malta, 28–29 February 2020, and 10th International Conference, SENSORNETS 2021, Virtual Event, 9–10 February 2021, Revised Selected Papers; Ahrens, A., Prasad, R.V., Benavente-Peces, C., Ansari, N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–20. [Google Scholar]
- Free, J.B. The Drifting of Honey-Bees. J. Agric. Sci. 1958, 51, 294–306. [Google Scholar] [CrossRef]
- Pfeiffer, K.J.; Crailsheim, K. Drifting of Honeybees. Insectes Sociaux 1998, 45, 151–167. [Google Scholar] [CrossRef]
- Šekulja, D.; Pechhacker, H.; Licek, E. Drifting Behavior of Honey Bees (Apis mellifera carnica Pollmann, 1879) in the Epidemiology of American Foulbrood. Zb. Veleučilišta Rijeci 2014, 2, 345–358. [Google Scholar]
Years | Mean Temperature | Precipitation |
---|---|---|
1991–2020 | 10.8 °C | 139 mm |
2021 | −1.9 °C | 93% |
2022 | −0.5 °C | 71% |
2023 | −0.2 °C | 116% |
2024 | +2.3 °C | 93% |
Hive | MAE | MAPE | RMSE | R | β (tx) | p-Value (tx) |
---|---|---|---|---|---|---|
Hive 1 | 0.143 | 85.535 | 0.190 | 0.758 | 0.375 ± 0.056 | <0.001 *** |
Hive 2 | 0.107 | 76.507 | 0.137 | 0.814 | 0.489 ± 0.051 | <0.001 *** |
Hive 3 | 0.116 | 154.486 | 0.156 | 0.665 | 0.532 ± 0.054 | <0.001 *** |
Hive 4 | 0.139 | 97.005 | 0.191 | 0.739 | 0.529 ± 0.044 | <0.001 *** |
Hive 5 | 0.106 | 112.746 | 0.143 | 0.771 | 0.461 ± 0.057 | <0.001 *** |
Hive 6 | 0.116 | 114.961 | 0.150 | 0.776 | 0.403 ± 0.058 | <0.001 *** |
Hive 7 | 0.170 | 101.227 | 0.231 | 0.634 | 0.389 ± 0.054 | <0.001 *** |
Hive 8 | 0.137 | 110.178 | 0.187 | 0.736 | 0.617 ± 0.042 | <0.001 *** |
Hive 9 | 0.143 | 68.606 | 0.196 | 0.841 | 0.552 ± 0.046 | <0.001 *** |
Hive 10 | 0.094 | 85.445 | 0.135 | 0.704 | 0.452 ± 0.053 | <0.001 *** |
Hive 11 | 0.114 | 95.407 | 0.154 | 0.703 | 0.355 ± 0.055 | <0.001 *** |
Hive 12 | 0.187 | 84.347 | 0.272 | 0.794 | 0.498 ± 0.048 | <0.001 *** |
Hive 13 | 0.126 | 65.890 | 0.164 | 0.856 | 0.506 ± 0.048 | <0.001 *** |
Hive 14 | 0.141 | 114.216 | 0.183 | 0.695 | 0.466 ± 0.046 | <0.001 *** |
Hive 15 | 0.165 | 113.949 | 0.223 | 0.607 | 0.47 ± 0.056 | <0.001 *** |
Hive 16 | 0.128 | 72.655 | 0.175 | 0.803 | 0.641 ± 0.048 | <0.001 *** |
Hive 17 | 0.116 | 114.646 | 0.170 | 0.673 | 0.414 ± 0.054 | <0.001 *** |
Hive 18 | 0.133 | 128.972 | 0.182 | 0.674 | 0.555 ± 0.043 | <0.001 *** |
Hive 19 | 0.136 | 129.392 | 0.187 | 0.717 | 0.455 ± 0.054 | <0.001 *** |
Hive 20 | 0.150 | 95.291 | 0.194 | 0.748 | 0.584 ± 0.051 | <0.001 *** |
Hive 21 | 0.151 | 79.786 | 0.199 | 0.806 | 0.319 ± 0.06 | <0.001 *** |
Hive 22 | 0.098 | 98.660 | 0.144 | 0.640 | 0.502 ± 0.052 | <0.001 *** |
Hive 23 | 0.117 | 68.756 | 0.170 | 0.867 | 0.563 ± 0.041 | <0.001 *** |
Hive 24 | 0.140 | 89.826 | 0.197 | 0.794 | 0.639 ± 0.042 | <0.001 *** |
AVG ∑ | 0.132 | 98.270 | 0.180 | 0.742 | 0.49 ± 0.051 | <0.001 *** |
Hive | MAE | MAPE | RMSE | R | β (tx) | p-Value (tx) |
---|---|---|---|---|---|---|
Hive 1 | 0.151 | 103.772 | 0.184 | 0.785 | 0.313 ± 0.102 | <0.001 *** |
Hive 2 | 0.088 | 73.848 | 0.120 | 0.845 | 0.396 ± 0.094 | <0.001 *** |
Hive 3 | 0.096 | 120.463 | 0.138 | 0.622 | 0.256 ± 0.108 | 0.001 ** |
Hive 4 | 0.134 | 87.032 | 0.178 | 0.807 | 0.469 ± 0.092 | <0.001 *** |
Hive 5 | 0.109 | 109.405 | 0.143 | 0.752 | 0.412 ± 0.11 | <0.001 *** |
Hive 6 | 0.108 | 88.411 | 0.149 | 0.825 | 0.31 ± 0.096 | <0.001 *** |
Hive 7 | 0.174 | 101.680 | 0.231 | 0.571 | 0.268 ± 0.096 | 0.001 ** |
Hive 8 | 0.130 | 87.882 | 0.177 | 0.747 | 0.42 ± 0.098 | <0.001 *** |
Hive 9 | 0.141 | 67.092 | 0.180 | 0.761 | 0.375 ± 0.087 | <0.001 *** |
Hive 10 | 0.091 | 75.834 | 0.122 | 0.785 | 0.319 ± 0.103 | <0.001 *** |
Hive 11 | 0.107 | 93.080 | 0.149 | 0.688 | 0.287 ± 0.094 | 0.001 ** |
Hive 12 | 0.182 | 83.616 | 0.249 | 0.789 | 0.35 ± 0.095 | <0.001 *** |
Hive 13 | 0.124 | 74.870 | 0.161 | 0.840 | 0.446 ± 0.095 | <0.001 *** |
Hive 14 | 0.125 | 100.121 | 0.168 | 0.759 | 0.442 ± 0.097 | <0.001 *** |
Hive 15 | 0.148 | 110.284 | 0.204 | 0.648 | 0.343 ± 0.103 | <0.001 *** |
Hive 16 | 0.125 | 74.180 | 0.159 | 0.778 | 0.405 ± 0.084 | <0.001 *** |
Hive 17 | 0.110 | 92.188 | 0.160 | 0.683 | 0.333 ± 0.116 | 0.001 ** |
Hive 18 | 0.143 | 117.288 | 0.178 | 0.637 | 0.383 ± 0.088 | <0.001 *** |
Hive 19 | 0.129 | 121.841 | 0.171 | 0.759 | 0.336 ± 0.127 | <0.001 *** |
Hive 20 | 0.140 | 90.871 | 0.184 | 0.751 | 0.37 ± 0.096 | <0.001 *** |
Hive 21 | 0.146 | 85.319 | 0.186 | 0.805 | 0.313 ± 0.105 | <0.001 *** |
Hive 22 | 0.095 | 98.686 | 0.137 | 0.645 | 0.41 ± 0.107 | <0.001 *** |
Hive 23 | 0.123 | 88.032 | 0.164 | 0.808 | 0.366 ± 0.11 | <0.001 *** |
Hive 24 | 0.142 | 80.002 | 0.201 | 0.737 | 0.42 ± 0.097 | <0.001 *** |
AVG ∑ | 0.127 | 92.742 | 0.170 | 0.743 | 0.364 ± 0.1 | <0.001 *** |
References | Key Findings | Models * | In-Hive Variables ** | Environmental Variables | Frequency and Period | Location |
---|---|---|---|---|---|---|
Braga et al. (2020) [63] | Warning system to predict the health status of honey bees using ML models. | kNN, RF, and NN | Hive weight, Temperature | Temperature, Dew point, Wind direction, Wind speed, Precipitation, Radiation/Sunshine duration | 15 min (2016–2018) | USA |
Davidson et al. (2020) [25] | Deep learning autoencoder detected swarms and anomalies similarly to rule-based methods. | LSTM (Deep Recurrent Autoencoders) | Hive weight, Temperature, Relative humidity, CO2 | Temperature, Air pressure, Particulate matter, Relative humidity, Precipitation, Wind speed | 1 min (2016–2019) | Jelgava, Latvia |
Braga et al. (2021) [64] | Temperature-based alert system. Predicting the internal temperature drops during overwintering. | LSTM | Hive weight, Temperature, Relative humidity, Sound | Temperature | 2 h (September–November 2017) | England, UK |
Komasilova et al. (2021) [65] | Evaluated a predicting model forecasting the hive weight. | Rule-based | Hive weight | Temperature, Humidity, Precipitation, Wind | (April–August, 2015–2020) | Latvia |
Anwar et al. (2022) [66] | WE-Bee, a hybrid model for soft sensing and time series forecasting to estimate the daily weight variations. | LSTM | Hive weight, Temperature, Relative humidity, Atmospheric pressure, CO2, Acoustics, Vibrations, Number of frames | Temperature, Relative humidity, Precipitation, Wind speed | 10 min, 30 min (1200 days) | Australia |
Anwar et al. (2022) [67] | Estimation of the daily changes in hive weight. (BeeDAS system). Hive scale development. | RT | Hive weight, Temperature, Atmospheric pressure, Relative humidity, Vibrations, Sound, CO2 | Temperature, Relative humidity, Precipitation, Wind speed | 10 min (2021) | Australia |
Robustillo et al. (2022) [68] | TvVAR model provided the best predictions to early warning system of internal hive conditions with feasible computational cost. | VAR, DLM, GAM | Hive weight, Temperature, Relative humidity | Temperature, Relative humidity, Precipitation, Wind speed, Atmospheric pressure, Particulate matter, Radiation/Sunshine duration | (2019–2022) | Germany |
Anwar et al. (2023) [69] | Apis-Prime, a hybrid DL model, accurately estimated daily hive weight variations. | Deep learning model | Hive weight, Temperature, Relative humidity, Atmospheric Pressure, CO2, Acoustics, Vibrations, Number of frames | Temperature, Relative humidity, Precipitation, Wind speed | 30 min (2170 days) | Australia |
Brini et al. (2023) [55] | Developed a machine learning-based forecasting model to predict honey production. The model integrates beehive-specific data with meteorological data to capture the influence of environmental variables on honey yield. | RF, Xboost, LR | Hive weight | Temperature, Relative humidity, Precipitation, Dewpoint, Wind speed, Radiation/Sunshine duration, Surface pressure | 1-day (2019–2022) | Italy |
Rigakis et al. (2023) [70] | Predicting the internal humidity inside the hive. Hive scale, multisensory device development. | Xgboost, Additive Regression model | Hive weight, Temperature, Relative humidity, Bee traffic, TVOC **, Vibration | – | 5 min (2022) | Greece |
Degenfellner and Templ (2024) [71] | Used robust MM-Regression and PCA for improved hive weight modeling and early anomaly detection. | STM with RM | Hive weight | Temperature, Relative humidity, Cloud cover, Precipitation, Air pressure, Visibility, Dew point, Wind speed, Wind direction | 1 min (over 1 year) | Switzerland |
Kulyukin et al. (2024) [61] | ARIMA performed similarly to ML models in predicting hive weight and traffic over 12, 24, and 48 h. | ANN, CNN, LSTM, ARIMA | Hive weight, Temperature, Bee traffic | – | 5 min (June–October 2022) | Tucson, Arizona, USA |
Robustillo et al. (2024) [62] | Predicting internal humidity, temperatures, and hive weight. VAR and VEC outperformed the linear models. | DFA (MARSS), MARSG, VAR, VEC, CMTS | Hive weight, Temperature, Relative humidity | Temperature, Relative humidity, Precipitation, Air pressure, Wind speed, Particulate matter, Radiation/Sunshine duration | five times a day (2019–2022) | Germany |
This paper | Forecasted hourly hive weight variation by applying linear time-series models to data collected from active apiaries during intensive foraging period of R. pseudoacacia blooming. | ARIMA | Hive weight | Temperatures, Relative humidity, Precipitation, Radiation, Wind speed, Wind gust | 1 h (2021–2024) | Hungary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyés-Vincze, C.; Leelőssy, Á.; Mészáros, R. ARIMAX Modeling of Hive Weight Dynamics Using Meteorological Factors During Robinia pseudoacacia Blooming. Atmosphere 2025, 16, 918. https://doi.org/10.3390/atmos16080918
Ilyés-Vincze C, Leelőssy Á, Mészáros R. ARIMAX Modeling of Hive Weight Dynamics Using Meteorological Factors During Robinia pseudoacacia Blooming. Atmosphere. 2025; 16(8):918. https://doi.org/10.3390/atmos16080918
Chicago/Turabian StyleIlyés-Vincze, Csilla, Ádám Leelőssy, and Róbert Mészáros. 2025. "ARIMAX Modeling of Hive Weight Dynamics Using Meteorological Factors During Robinia pseudoacacia Blooming" Atmosphere 16, no. 8: 918. https://doi.org/10.3390/atmos16080918
APA StyleIlyés-Vincze, C., Leelőssy, Á., & Mészáros, R. (2025). ARIMAX Modeling of Hive Weight Dynamics Using Meteorological Factors During Robinia pseudoacacia Blooming. Atmosphere, 16(8), 918. https://doi.org/10.3390/atmos16080918