Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Research Data
2.3. Research Method
2.3.1. Spatial Autocorrelation Analysis
2.3.2. Geographical Detector
3. Results and Discussion
3.1. Temporal Variation Characteristics of PM2.5
3.2. Spatial Variation Characteristics of PM2.5
3.3. Multi-Dimensional Detection of PM2.5 Influencing Factors
3.3.1. Detection of PM2.5 Impact Factors
3.3.2. Interactive Detection of PM2.5
4. Conclusions and Prospects
4.1. Conclusions
4.2. Policy Recommendations
- (1)
- Strengthen the control of industrial emissions. Especially in intensive industrial areas (such as cities like Nanyang, Luohe, and Shangqiu in Henan Province), industrial emission standards should be raised further and pollutant emissions from highly polluting industries should be strictly restricted.
- (2)
- Strengthen vegetation restoration and ecological protection. In industrial cities and areas with serious pollution, urban green spaces and vegetation cover should be increased to improve the natural purification capacity of the environment. At the same time, efforts should be made to strengthen the protection of natural ecosystems, such as forests and wetlands, and give full play to their important role in purifying the air.
- (3)
- Improve the regional collaborative governance mechanism. Establish a regional air quality monitoring data-sharing platform to share monitoring data in real time, and improve the scientific and timeliness of regional collaborative governance. Promote cross-regional environmental governance projects, such as jointly launching air pollution prevention and control actions to jointly address regional air pollution issues.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, J.; Oh, H.R.; Park, D.S.R.; Kim, J.Y.; Chang, D.Y.; Park, C.R.; Sou, H.D.; Jeong, S. The role of urban forests in mitigation of particulate air pollution: Evidence from ground observations in South Korea. Urban Clim. 2025, 59, 102264. [Google Scholar] [CrossRef]
- Oh, S.H.; Choe, S.; Song, M.; Yu, G.H.; Schauer, J.J.; Shin, S.A.; Bae, M.S. Effects of long-range transport on carboxylic acids, chlorinated VOCs, and oxidative potential in air pollution events. Environ. Pollut. 2024, 347, 123666. [Google Scholar] [CrossRef] [PubMed]
- Clayton, C.; Marsh, D.; Turnock, S.; Graham, A.; Pringle, K.; Reddington, C. The co-benefits of a low-carbon future for PM2.5 and o3 air pollution in Europe. Atmos. Chem. Phys. 2024, 24, 10717–10740. [Google Scholar] [CrossRef]
- Yang, X.; Bai, G.; Shen, Z.; Huang, S.; Wang, D.; Xu, H. Yearly variations of water-soluble ions over Xi’an, China: Insight into the importance contribution of nitrate to PM2.5. Atmos. Pollut. Res. 2024, 15, 102296. [Google Scholar] [CrossRef]
- Shao, Z.; Zheng, X.; Zhao, J. Evaluating the health impact of air pollution control strategies and synergies among PM2.5 and O3 pollution in Beijing-Tianjin-Hebei region, China. Environ. Res. 2025, 274, 121348. [Google Scholar] [CrossRef] [PubMed]
- Alang, A.K.; Aggarwal, S.G.; Johri, P.; Hegde, P. Characterization, sources, and formation processes of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 aerosols in new delhi. Atmos. Environ. 2024, 336, 120759. [Google Scholar] [CrossRef]
- Ma, Q.; Yuan, R.; Wang, S.; Sun, Y.; Zhang, Q.; Yuan, X. Indigenized characterization factors for health damage due to ambient PM2.5 in life cycle impact assessment in China. Environ. Sci. Technol. 2024, 58, 17320–17333. [Google Scholar] [CrossRef] [PubMed]
- Kiely, L.; Neyestani, S.E.; Binte-Shahid, S.; York, R.A.; Porter, W.C.; Barsanti, K.C. California case study of wildfires and prescribed burns: PM2.5 emissions, concentrations, and implications for human health. Environ. Sci. Technol. 2024, 58, 5210–5219. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Ahmadianfar, I.; Goliatt, L.; Kazmi, S.; Yassin, M.A.; Oudah, A.Y. PM2.5 concentration forecasting: Development of integrated multivariate variational mode decomposition with kernel ridge regression and weighted mean of vectors optimization. Atmos. Pollut. Res. 2024, 15, 102125. [Google Scholar] [CrossRef]
- Wang, C.; Qin, X.; Zhang, Y.; Tao, W.; Zhang, S.; Yang, J. Machine learning integrated PMF model reveals influencing factors of ozone pollution in a coal chemical industry city at the Jiangsu-Shandong-Henan-Anhui boundary. Atmos. Environ. 2025, 342, 120916. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Lei, Y.; Ning, M. The Status and Problems of Air Pollution of the Border Area of Jiangsu, Anhui, Shandong and Henan. Environ. Prot. 2020, 48, 45–48. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, Z.; Cai, J. Source analysis of PM2.5 in typical months in the border area of Jiangsu, Anhui, Shandong and Henan based on model simulation. Acta Sci. Circumstantiae 2023, 43, 365–375. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, Z.; Zheng, Z.; Dai, Q.; Zhao, C.; Huang, W. Study of the PM2.5 Concentration Variation and Its Influencing Factors in the Beijing-Tianjin-Hebei Urban Agglomeration Using Geo-Detector. Res. Environ. Sci. 2023, 36, 649–659. [Google Scholar] [CrossRef]
- Zhou, M.; Kuang, Y.; Yun, G. Analysis of Driving Factors of Atmospheric PM2.5 Concentration in Guangzhou City Based on Geo-Detector. Res. Environ. Sci. 2020, 33, 271–279. [Google Scholar] [CrossRef]
- Li, S.; Gao, J.; Tian, S.; Guan, Y. Spatio-temporal differentiation and influencing factors of PM2.5 of prefecture-level cities in China. Environ. Prot. Sci. 2022, 48, 126–134. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Owoade, K.O.; Hopke, P.K.; Olise, F.S.; Adewole, O.O.; Ogundele, L.T.; Fawole, O.G. Source apportionment analyses for fine (PM2.5) and coarse (PM2.5–10) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. Atmos. Pollut. Res. 2016, 7, 843–857. [Google Scholar] [CrossRef]
- Deshmukh, D.K.; Deb, M.K.; Devsharan, V.; Jayant, N. Seasonal air quality profile of size-segregated aerosols in the ambient air of a central Indian region. Bull. Environ. Contam. Toxicol. 2013, 91, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, Z.; Liu, W. Spatial-temporal Characteristics and Influencing Factors of PM2.5 and Ozone in the Border Area of Jiangsu, Anhui, Shangdong, and Henan from 2017 to 2021. Environ. Sci. 2024, 45, 1950–1962. [Google Scholar]
- Qin, Z.; Zhang, H.; Wang, S. Analysis of photochemical pollution potential characteristics based on PAN observation in the border area of Jiangsu, Anhui, Shandong and Henan. Environ. Chem. 2024, 43, 1599–1607. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Wang, S. Vertical Structure of Ozone and Its Influencing Factors in the Border Area of Jiangsu, Anhui, Shandong and Henan Provinces. Environ. Sci. Res. 2023, 36, 1477–1486. [Google Scholar] [CrossRef]
- Xia, X.; Sun, S. Analysis of Spatio-Temporal Variation Characteristics of Air Pollutants in Zaozhuang China from 2018 to 2022. Atmosphere 2025, 16, 493. [Google Scholar] [CrossRef]
- Xia, X.; Min, J.; Sun, S.; Chen, X. Simultaneous assimilation of Fengyun-4A and Himawari-8 aerosol optical depth retrieval to improve air quality simulations during one storm event over East Asia. Front. Earth Sci. 2023, 11, 1057299. [Google Scholar] [CrossRef]
- Lai, Y.; Zhou, J.; Xu, X. Spatial relationships between population, employment density, and urban metro stations: A case study of Tianjin city, China. J. Urban Plan. Dev. 2024, 150, 05023048. [Google Scholar] [CrossRef]
- Wenyu, Z.; Xue, H.; Dawei, Q.Z. Analysis of spatial spillover effects and influencing factors of transportation carbon emission efficiency from a provincial perspective in China. Environ. Sci. Pollut. Res. 2024, 31, 12174–12193. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Guo, Z.; Liu, C.; Shi, X. Analysis of the spatio-temporal evolutionary characteristics of myopia among students aged 7–18 years in China: Based on panel data analysis. Sci. Rep. 2024, 14, 29343. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Shamuxi, A.; Han, B.; Jin, X.; Wusimanjiang, P.; Abudukerimu, A.; Chen, Q. Spatial pattern and driving mechanisms of dryland landscape ecological risk: Insights from an integrated geographic detector and machine learning model. Ecol. Indic. 2025, 172, 113305. [Google Scholar] [CrossRef]
- Qin, H.; Schaefer, D.; Shen, T.; Wang, J.; Liu, Z.; Chen, H. Drought driving factors as revealed by geographic detector model and random forest in Yunnan, China. Forests 2025, 16, 505. [Google Scholar] [CrossRef]
- Shikhovtsev, M.Y.; Molozhnikova, Y.V.; Obolkin, V.A.; Potemkin, V.L.; Lutskin, E.S.; Khodzher, T.V. Features of temporal variability of the concentrations of gaseous trace pollutants in the air of the urban and rural areas in the Southern Baikal Region (East Siberia, Russia). Appl. Sci. 2024, 14, 8327. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, Y.; Ma, Y.; Tan, Y.; Ren, X.; Peng, K.; Yang, S.; Lin, Z.; Zhou, X.; Ren, Y.; et al. Deviations of Boundary Layer Height and Meteorological Parameters Between Ground-Based Remote Sensing and ERA5 over the Complex Terrain of the Mongolian Plateau. Remote Sens. 2025, 17, 393. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, H.; Xu, Y.; Jiang, Y. Evaluation of ecological environmental quality and analysis in linhai city based on gee and remote sensing ecological index. Environ. Sci. Technol. 2024, 47, 10036504. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Zheng, B.; Ma, X.; Zhu, L. A regional-scale distribution changes and influencing factors of glacial lakes in xizang autonomous region. Earth Sci. Inform. 2025, 18, 103. [Google Scholar] [CrossRef]
- Xia, X.; Sun, S. Analysis of Air Pollution Characteristies During Heating Period in Zaozhuang City from 2018 to 2023. J. Zaozhuang Univ. 2025, 42, 62–69. [Google Scholar]
- Xia, X.; Sun, S. Correlation analysis of AOD from Himawari-8 and air pollutants under the influence of meteorological factors in Zaozhuang City. Environ. Dev. 2025, 37, 71–76+99. [Google Scholar] [CrossRef]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Moran’s I | 0.79 | 0.65 | 0.37 | 0.41 | 0.46 | 0.38 | 0.34 | 0.57 | 0.62 | 0.83 | 0.69 | 0.45 |
Z (I) | 3.20 | 2.70 | 1.66 | 1.82 | 1.98 | 1.66 | 1.51 | 2.37 | 2.63 | 3.39 | 2.85 | 1.92 |
Factor | DEM | Slope | Aspect | Temperature | Precipitation | Vegetation Index | GDP | Population Density |
---|---|---|---|---|---|---|---|---|
q | 0.18 | 0.17 | 0.40 | 0.78 | 0.45 | 0.40 | 0.43 | 0.12 |
Factor | DEM | Slope | Aspect | Temperature | Precipitation | Vegetation Index | GDP | Population Density |
---|---|---|---|---|---|---|---|---|
DEM | 0.18 | |||||||
Slope | 0.68 | 0.17 | ||||||
Aspect | 0.86 | 0.69 | 0.40 | |||||
Temperature | 0.95 | 0.94 | 0.92 | 0.78 | ||||
Precipitation | 0.78 | 0.63 | 0.97 | 0.95 | 0.45 | |||
Vegetation index | 0.77 | 0.66 | 0.62 | 0.83 | 0.67 | 0.40 | ||
GDP | 0.75 | 0.73 | 0.85 | 0.86 | 0.71 | 0.67 | 0.43 | |
Population density | 0.96 | 0.86 | 0.86 | 0.92 | 0.67 | 0.61 | 0.65 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Sun, S.; Wang, X.; Shen, F. Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024. Atmosphere 2025, 16, 895. https://doi.org/10.3390/atmos16080895
Xia X, Sun S, Wang X, Shen F. Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024. Atmosphere. 2025; 16(8):895. https://doi.org/10.3390/atmos16080895
Chicago/Turabian StyleXia, Xiaoli, Shangpeng Sun, Xinru Wang, and Feifei Shen. 2025. "Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024" Atmosphere 16, no. 8: 895. https://doi.org/10.3390/atmos16080895
APA StyleXia, X., Sun, S., Wang, X., & Shen, F. (2025). Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024. Atmosphere, 16(8), 895. https://doi.org/10.3390/atmos16080895