Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region
Abstract
1. Introduction
1.1. Magnetosphere–Ionosphere (M-I) Conjugate SAPS Phenomenon
1.2. M-I Conjugate Harang Phenomenon
1.3. Features Associated with the M-I Conjugate Harang and SAPS Phenomena
1.4. SAPS Effects Impacting the Coupled I-T System
1.5. Previous Studies on Intense SAPS Flows in the Harang Region’s Vicinity
1.6. Motivations of This Study
2. Materials and Methods
3. Results
3.1. Topside-Ionosphere Amplified Westward SAPS: Selection Criteria for Specification
3.2. Topside-Ionosphere Amplified Westward SAPS: Observed by DMSP F15 in the 0–1 MLT Sector over the Southern Hemisphere
3.3. Topside-Ionosphere Amplified Westward SAPS: Underlying Interplanetary, Geophysical, and Auroral Conditions
3.4. Topside-Ionosphere Amplified Westward SAPS: Plasma Environment
3.5. Topside-Ionosphere Amplified Westward SAPS: Association with SAR Arc
3.6. Inner-Magnetosphere SAPS E Field and the Harang Region’s Earthward Edge
3.7. Inner-Magnetosphere Outward SAPS E Field Developed on a Short Timescale
3.8. Inner-Magnetosphere Hot Zone
3.9. SAMI3 Simulations Generated for the THEMIS-Observed Harang Events Mapped Down to the Topside Ionosphere
4. Discussion
5. Summary of New Results
- (a)
- The amplified near-midnight westward SAPS flows at the Harang region’s equatorward edge (in 10 events) and the associated SAR arc (in 1 event).
- (b)
- The convergence of the large-scale inner-magnetosphere E fields (in three events).
- (c)
- The inner-magnetosphere hot zone (in three events).
- (d)
- The AKR waves (in three events).
- The conjugate topside ionosphere (at 840 km altitude) of the three inner-magnetosphere Harang events observed by THEMIS.
- Two topside-ionosphere SAPS events observed by DMSP F15.
- (e)
- The demonstrated ability of SAMI3 to reproduce the Harang region’s equatorward edge with an intense westward E × B drift in the SAPS channel, located within the deep Ne trough, where Te became locally elevated.
6. Conclusions
- (1)
- Because of the strong inner-magnetospheric outward SAPS E field’s development in the inner-magnetosphere Harang region’s earthward edge.
- (2)
- As a result of the combined effects of the following aspects:
- The convection E field’s propagation to subauroral latitudes, resulting in the equatorward and dawnward expansion of the dusk convection cell near the Harang region.
- Positive feedback mechanisms in the deep plasma-density trough (i.e., coinciding RIT-MIT) where Te became elevated.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKR | auroral kilometric radiation |
AMPERE | Active Magnetosphere and Planetary Electrodynamics Response Experiment |
ASI | All Sky Imager |
BBF | bursty bulk flow |
CCMC | Community-Coordinated Modeling Centre |
CEJ | counter electrojet |
DMSP | Defense Meteorological Satellite Program |
EC | convection electric field |
EDRs | Environmental Data Records |
E field | electric field |
EFI | electric field instrument |
EEJ | eastward electrojet |
EIC | Electrostatic Ion Cyclotron |
EMIC | Electromagnetic Ion Cyclotron |
ESA | Electrostatic Analyzer |
ESAPS | SAPS electric field |
FACs | field-aligned currents |
FBK | filter bank |
GLAT | geographic latitude |
GLON | geographic longitude |
GMOM | ground-calculated moments |
GOES | Geostationary Operational Environmental Satellites |
HD | Harang Discontinuity |
HF | high-frequency |
H-M | Heppner–Maynard |
IDM | Ion Drift Meter |
I-P | ionosphere–plasmasphere |
I-T | ionosphere–thermosphere |
L | L shell |
MHD | magnetohydrodynamic |
M-I | magnetosphere–ionosphere |
MIT | main ionospheric trough |
MLAT | magnetic latitude |
MLT | magnetic local time |
MOM | onboard moments |
MPF | mesoscale plasma flow |
MS | magnetosonic |
NRL | Naval Research Laboratory |
Pi | ion pressure |
PP | plasmapause |
RCM | Rice Convection Model |
RIT | ring-current-related ionospheric trough |
RPA | Retarding Potential Analyzer |
R1 | Region 1 |
R2 | Region 2 |
SAEF | subauroral electric field |
SAPS | subauroral polarization streams |
SAPS-WS | SAPS–wave structures |
SAR arc | stable auroral red arc |
SCW | substorm current wedge |
SCW2L | substorm current wedge 2-loop |
SLP | Spherical Langmuir Probe |
SSIES | Special Sensor for Ion and Electron Scintillation |
SSUSI | Special Sensor Ultraviolet Spectrographic Imager |
SuperDARN | Super Dual Auroral Radar Network |
Te | electron temperature |
THEMIS | Time History of Events and Macroscale Interactions during Substorms |
Ti | ion temperature |
TIEGCM | Thermospheric Ionosphere Electrodynamics General Circulation Model |
Ve | electron drift |
VHOR | cross-track horizontal drift velocity |
VVER | cross-track vertical drift velocity |
WEJ | westward electrojet |
WTS | westward-traveling surge |
References
- Foster, J.; Burke, W. A new categorization for sub-auroral electric fields. Eos Trans. Am. Geophys. Union 2002, 83, 393–394. [Google Scholar] [CrossRef]
- He, F.; Zhang, X.; Wang, W.; Wan, W. Different evolution patterns of subauroral polarization streams (SAPS) during intense storms and quiet time substorms. Geophys. Res. Lett. 2017, 44, 10796–10804. [Google Scholar] [CrossRef]
- Aa, E.; Erickson, P.J.; Zhang, S.-R.; Zou, S.; Coster, A.J.; Goncharenko, L.P.; Foster, J.C. A statistical study of the subauroral polarization stream over North American sector using the Millstone Hill incoherent scatter radar 1979–2019 measurements. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028584. [Google Scholar] [CrossRef]
- Foster, J.C.; Vo, H.B. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. 2002, 107, SIA 16-1–SIA 16-10. [Google Scholar] [CrossRef]
- Erickson, P.J.; Beroz, F.; Miskin, M.Z. Statistical characterization of the American sector subauroral polarization stream using incoherent scatter radar. J. Geophys. Res. 2011, 116, A00J21. [Google Scholar] [CrossRef]
- Kunduri, B.S.R.; Baker, J.B.H.; Ruohoniemi, J.M.; Thomas, E.G.; Shepherd, S.G.; Sterne, K.T. Statistical characterization of the large-scale structure of the subauroral polarization stream. J. Geophys. Res. Space Phys. 2017, 122, 6035–6048. [Google Scholar] [CrossRef]
- Mishin, E.V. SAPS onset timing during substorms and the westward traveling surge. Geophys. Res. Lett. 2016, 43, 6687–6693. [Google Scholar] [CrossRef]
- Mishin, E.; Nishimura, Y.; Foster, J. SAPS/SAID revisited: A causal relation to the substorm current wedge. J. Geophys. Res. Space Phys. 2017, 122, 8516–8535. [Google Scholar] [CrossRef]
- Pradipta, R.; Mishin, E.; Groves, K.M. Storm-time subauroral ionospheric plasma density irregularities and the substorm current wedge. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031465. [Google Scholar] [CrossRef]
- Southwood, D.; Wolf, R. An assessment of the role of precipitation in magnetospheric convection. J. Geophys. Res. 1978, 83, 5227–5232. [Google Scholar] [CrossRef]
- Anderson, P.C.; Hanson, W.B.; Heelis, R.A.; Craven, J.D.; Baker, D.N.; Frank, L.A. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res. 1993, 98, 6069–6078. [Google Scholar] [CrossRef]
- Sergeev, V.A.; Nikolaev, A.V.; Tsyganenko, N.A.; Angelopoulos, V.; Runov, A.V.; Singer, H.J.; Yang, J. Testing a two-loop pattern of the substorm current wedge (SCW2L). J. Geophys. Res. 2014, 119, 947–963. [Google Scholar] [CrossRef]
- Mishin, E.; Sotnikov, V. The turbulent plasmasphere boundary layer and the outer radiation belt boundary. Plasma Phys. Control. Fusion 2017, 59, 124003. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Baumjohann, W.; Kennel, C.F.; Coroniti, F.V.; Kivelson, M.G.; Pellat, R.; Walker, R.J.; Lühr, H.; Paschmann, G. Bursty Bulk Flows in the Inner Central Plasma Sheet. J. Geophys. Res. 1992, 97, 4027–4039. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Kennel, C.F.; Coroniti, F.V.; Pellat, R.; Kivelson, M.G.; Walker, R.J.; Russell, C.T.; Baumjohann, W.; Feldman, W.C.; Gosling, J.T. Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 1994, 99, 21257–21280. [Google Scholar] [CrossRef]
- Mishin, E.V. The evolving paradigm of the subauroral geospace. Front. Astron. Space Sci. 2023, 10, 1118758. [Google Scholar] [CrossRef]
- Akasofu, S.-I.; Kimball, D.S.; Meng, C.-I. The dynamics of the aurora—II Westward traveling surges. J. Atmos. Terr. Phys. 1965, 27, 173–187. [Google Scholar] [CrossRef]
- Puhl-Quinn, P.A.; Matsui, H.; Mishin, E.; Mouikis, C.; Kistler, L.; Khotyaintsev, Y.; Décréau, P.M.E.; Lucek, E. Cluster and DMSP observations of SAID electric fields. J. Geophys. Res. 2007, 112, A05219. [Google Scholar] [CrossRef]
- Mishin, E.V.; Foster, J.C.; Potekhin, A.P.; Rich, F.J.; Schlegel, K.; Yumoto, K.; Taran, V.I.; Ruohoniemi, J.M.; Friedel, R. Global ULF disturbances during a storm time substorm on 25 September 1998. J. Geophys. Res. Space Phys. 2002, 107, SMP40-1–SMP40-11. [Google Scholar] [CrossRef]
- Mishin, E.; Burke, W.; Viggiano, A. Stormtime subauroral density troughs: Ion-molecule kinetics effects. J. Geophys. Res. 2004, 109, A10301. [Google Scholar] [CrossRef]
- Mishin, E.V.; Burke, W.J. Stormtime coupling of the ring current, plasmasphere, and topside ionosphere: Electromagnetic and plasma disturbances. J. Geophys. Res. 2005, 110, A07209. [Google Scholar] [CrossRef]
- Mcpherron, R.L. Physical processes producing magnetospheric substorms and magnetic storms. Geomagnetism 1991, 4, 593–739. [Google Scholar] [CrossRef]
- Koskinen, H.E.J.; Pulkkinen, T.I. Midnight velocity shear zone and the concept of Harang discontinuity. J. Geophys. Res. 1995, 100, 9539–9547. [Google Scholar] [CrossRef]
- Harang, L. The mean field of disturbance of polar geomagnetic storms. Terr. Magn. Atmos. Electr. 1946, 51, 353–380. [Google Scholar] [CrossRef]
- Heppner, J.P. The Harang discontinuity in auroral belt; Ionospheric currents. Geofys. Publ. 1972, 29, 105–120. [Google Scholar]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Gkioulidou, M.; Wang, C.-P.; Lyons, L.R.; Wolf, R.A. Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations. J. Geophys. Res. 2009, 114, A07204. [Google Scholar] [CrossRef]
- Bezrukikh, V.V.; Gringauz, K.I. The hot zone in the outer plasmasphere of the earth. J. Atmos. Terr. Phys. 1976, 38, 1085–1091. [Google Scholar] [CrossRef]
- Gringauz, K.I.; Bezrukikh, V.V. Asymmetry of the Earth’s plasmasphere in the direction noon-midnight from Prognoz and Prognoz-2 data. J. Atmos. Terr. Phys. 1976, 38, 1071–1076. [Google Scholar] [CrossRef]
- Kurth, W.S.; Baumback, M.M.; Gurnett, D.A. Direction-finding measurements of auroral kilometric radiation. J. Geophys. Res. 1975, 80, 2764–2770. [Google Scholar] [CrossRef]
- Cornwall, J.M.; Coroniti, F.V.; Thorne, R.M. Unified theory of SAR arc formation at the plasmapause. J. Geophys. Res. 1971, 76, 4428–4445. [Google Scholar] [CrossRef]
- Liou, K.; Meng, C.-I.; Lui, A.T.Y.; Newell, P.T.; Anderson, R.R. Auroral kilometric radiation at substorm onset. J. Geophys. Res. 2000, 105, 25325–25331. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, S.; Zhang, S.; Zhou, Q.; Yang, C.; He, Y.; Gao, Z.; Xiao, F. Global occurrences of auroral kilometric radiation related to suprathermal electrons in radiation belts. Geophys. Res. Lett. 2019, 46, 7230–7236. [Google Scholar] [CrossRef]
- Hanasz, J.; de Feraudy, H.; Schreiber, R.; Parks, G.; Brittnacher, M.; Mogilevsky, M.M.; Romantsova, T.V. Wideband bursts of auroral kilometric radiation and their association with UV auroral bulges. J. Geophys. Res. 2001, 106, 3859–3871. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Nicolls, M.J.; Heinselman, C.J.; Mende, S.B. Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. J. Geophys. Res. Space Phys. 2009, 114, A12301. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Wang, C.-P.; Boudouridis, A.; Ruohoniemi, J.M.; Anderson, P.C.; Dyson, P.L.; Devlin, J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. 2009, 114, A01205. [Google Scholar] [CrossRef]
- Karpachev, A.T. Dynamics of main and ring ionospheric troughs at the recovery phase of storms/substorms. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028079. [Google Scholar] [CrossRef]
- Barbier, D. L’arc auroral stable. Ann. Geophys. 1960, 16, 544–549. [Google Scholar]
- Titheridge, J.E. Plasmapause effects in the top side ionosphere. J. Geophys. Res. 1976, 81, 3227–3233. [Google Scholar] [CrossRef]
- Deminov, M.G.; Karpachev, A.T.; Annakuliev, S.K.; Afonin, V.V.; Smilauer, Y. Dynamics of the ionization troughs in the night-time subauroral F-region during geomagnetic storms. Adv. Space Res. 1996, 17, 141–145. [Google Scholar] [CrossRef]
- Karpachev, A.T.; Deminov, M.G.; Afonin, V.V. Model of the mid-latitude ionospheric trough on the base of Cosmos-900 and Intercosmos-19 satellites data. Adv. Space Res. 1996, 18, 221–230. [Google Scholar] [CrossRef]
- Moffett, R.J.; Quegan, S. The mid-latitude trough in electron concentration of the ionospheric F layer: A review of observations and modeling. J. Atmos. Terr. Phys. 1983, 45, 315–343. [Google Scholar] [CrossRef]
- Muldrew, D.B. F layer ionization troughs deduced from Alouette data. J. Geophys. Res. 1965, 70, 2635–2650. [Google Scholar] [CrossRef]
- Karpachev, A.T. Statistical analysis of ring ionospheric trough characteristics. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029613. [Google Scholar] [CrossRef]
- Foster, J.C.; Buonsanto, M.J.; Mendillo, M.; Nottingham, D.; Rich, F.J.; Denig, W. Coordinated stable auroral red arc observations: Relationship to plasma convection. J. Geophys. Res. 1994, 99, 11429–11439. [Google Scholar] [CrossRef]
- Ievenko, I.B.; Stepanov, A.E.; Alexeyev, V.N.; Smirnov, V.F. Dynamics of the convection in the inner magnetosphere by observations of the diffuse aurora, SAR arc and ionospheric drift. Adv. Space Res. 2005, 43, 1130–1134. [Google Scholar] [CrossRef]
- Baumgardner, J.; Wroten, J.; Semeter, J.; Kozyra, J.; Buonsanto, M.; Erickson, P.; Mendillo, M. A very bright SAR arc: Implications for extreme magnetosphere-ionosphere coupling. Ann. Geophys. 2007, 25, 2593–2608. [Google Scholar] [CrossRef]
- Khalipov, V.L.; Stepanov, A.E.; Ievenko, I.B.; Kotova, G.A.; Panchenko, V.A. Formation of red arc in the polarization jet band. J. Atmos. Sol.-Terr. Phys. 2018, 179, 494–503. [Google Scholar] [CrossRef]
- Anderson, P.C.; Heelis, R.A.; Hanson, W.B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. 1991, 96, 5785–5792. [Google Scholar] [CrossRef]
- Wang, H.; Ridley, A.J.; Lühr, H.; Liemohn, M.W.; Ma, S.Y. Statistical study of the subauroral polarization stream: Its dependence on the cross–polar cap potential and subauroral conductance. J. Geophys. Res. 2008, 113, A12311. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Häusler, K.; Ritter, P. Effect of subauroral polarization streams on the thermosphere: A statistical study. J. Geophys. Res. 2011, 116, A03312. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Ritter, P.; Kervalishvili, G. Temporal and spatial effects of subauroral polarization streams on the thermospheric dynamics. J. Geophys. Res. 2012, 117, A11307. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.; Zheng, Z.; Ridley, A.J. The effect of subauroral polarization streams on the mid-latitude thermospheric disturbance neutral winds: A universal time effect. Ann. Geophys. 2018, 36, 509–525. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H. Seasonal variation of the ion upflow in the topside ionosphere during SAPS (Subauroral Polarization Stream) periods. Ann. Geophys. 2013, 31, 1521–1534. [Google Scholar] [CrossRef]
- Wang, W.; Talaat, E.R.; Burns, A.G.; Emery, B.; Hsieh, S.; Lei, J.; Xu, J. Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. J. Geophys. Res. 2012, 117, A07301. [Google Scholar] [CrossRef]
- Zhang, K.D.; Wang, H.; Wang, W.B.; Liu, J.; Zhang, S.; Sheng, C. Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect. Earth Planet. Phys. 2021, 5, 52–62. [Google Scholar] [CrossRef]
- Ebihara, Y.; Tanaka, T.; Kikuchi, T. Counter equatorial electrojet and overshielding after substorm onset: Global MHD simulation study. J. Geophys. Res. Space Phys. 2014, 119, 7281–7296. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Zheng, Z.; Zhang, K. Dependence of the equatorial electrojet on auroral activity and in situ solar insulation. J. Geophys. Res. Space Phys. 2019, 124, 10659–10673. [Google Scholar] [CrossRef]
- Lyatsky, W.; Tan, A.; Khazanov, G.V. A simple analytical model for subauroral polarization stream (SAPS). Geophys. Res. Lett. 2006, 33, L19101. [Google Scholar] [CrossRef]
- Cowley, S.W.H. Magnetospheric asymmetries associated with the y-component of the IMF. Planet. Space Sci. 1981, 29, 79–96. [Google Scholar] [CrossRef]
- Ruohoniemi, J.M.; Greenwald, R.A. Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J. Geophys. Res. 2005, 110, A09204. [Google Scholar] [CrossRef]
- Huang, C.-S.; Foster, J.C.; Holt, J.M. Westward plasma drift in the midlatitude ionospheric F region in the midnight-dawn sector. J. Geophys. Res. 2001, 106, 30349–30362. [Google Scholar] [CrossRef]
- Clausen, L.B.N.; Baker, J.B.H.; Ruohoniemi, J.M.; Greenwald, R.A.; Thomas, E.G.; Shepherd, S.G.; Talaat, E.R.; Bristow, W.A.; Zheng, Y.; Coster, A.J.; et al. Large-scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations. J. Geophys. Res. 2012, 117, A05306. [Google Scholar] [CrossRef]
- Ebihara, Y.; Fok, M.-C.; Sazykin, S.; Thomsen, M.F.; Hairston, M.R.; Evans, D.S.; Rich, F.J.; Ejiri, M. Ring current and the magnetosphere-ionosphere coupling during the superstorm of 20 November 2003. J. Geophys. Res. 2005, 110, A09S22. [Google Scholar] [CrossRef]
- Kataoka, R.; Nishitani, N.; Ebihara, Y.; Hosokawa, K.; Ogawa, T.; Kikuchi, T.; Miyoshi, Y. Dynamic variations of a convection flow reversal in the subauroral postmidnight sector as seen by the SuperDARN Hokkaido HF radar. Geophys. Res. Lett. 2007, 34, L21105. [Google Scholar] [CrossRef]
- Makarevich, R.A.; Kellerman, A.C.; Bogdanova, Y.V.; Koustov, A.V. Time evolution of the subauroral electric fields: A case study during a sequence of two substorms. J. Geophys. Res. 2009, 114, A04312. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M. Large-scale convection patterns observed by DMSP. J. Geophys. Res. 1994, 99, 3827–3844. [Google Scholar] [CrossRef]
- Sibeck, D.G.; Angelopoulos, V. THEMIS science objectives and mission phases. Space Sci. Rev. 2008, 141, 35–59. [Google Scholar] [CrossRef]
- Cully, C.M.; Ergun, R.E.; Stevens, K.; Nammari, A.; Westfall, J. The THEMIS Digital Fields Board. Space Sci. Rev. 2008, 141, 343–355. [Google Scholar] [CrossRef]
- Grubb, R.N. The SMS/GOES space environment monitor subsystem. In NOAA Technical Memorandum ERL SEL; Space Environment Laboratory: Boulder, CO, USA, 1975; Volume 42. Available online: https://repository.library.noaa.gov/view/noaa/18586/noaa_18586_DS1.pdf (accessed on 25 June 2025).
- Paxton, L.J.; Morrison, D.; Zhang, Y.; Kil, H.; Wolven, B.; Ogorzalek, B.S.; Humm, D.C.; Meng, C.-I. Validation of remote sensing products produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI): A far UV-imaging spectrograph on DMSP F-16. In Proceedings of the Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, San Diego, CA, USA, 29 July–3 August 2001; Volume 4485. [Google Scholar] [CrossRef]
- Cousins, E.D.P.; Matsuo, T.; Richmond, A.D. SuperDARN assimilative mapping. J. Geophys. Res. Space Phys. 2013, 118, 7954–7962. [Google Scholar] [CrossRef]
- Anderson, B.J.; Angappan, R.; Barik, A.; Vines, S.K.; Stanley, S.; Bernasconi, P.N.; Korth, H.; Barnes, R.J. Iridium communications satellite constellation data for study of Earth’s magnetic field. Geochem. Geophys. Geosystems 2021, 22, e2020GC009515. [Google Scholar] [CrossRef]
- Martinis, C.; Baumgardner, J.; Mendillo, M.; Taylor, M.J.; Moffat-Griffin, T.; Wroten, J.; Sullivan, C.; Macinnis, R.; Alford, B.; Nishimura, Y. First ground-based conjugate observations of stable auroral red (SAR) arcs. J. Geophys. Res. Space Phys. 2019, 124, 4658–4671. [Google Scholar] [CrossRef]
- Forsyth, C.; Rae, I.J.; Coxon, J.C.; Freeman, M.P.; Jackman, C.M.; Gjerloev, J.; Fazakerley, A.N. A new technique for determining substorm onsets and phases from indices of the Electrojet (SOPHIE). J. Geophys. Res. Space Phys. 2015, 120, 10592–10606. [Google Scholar] [CrossRef]
- Newell, P.T.; Gjerloev, J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 2011, 116, A12211. [Google Scholar] [CrossRef]
- Pinto, O.J.; Gonzalez, W.D.; Gonzalez, A.L.C.; Mendes, O.J. The South Atlantic Magnetic Anomaly: Three decades of research. J. Atmos. Terr. Phys. 1992, 54, 1129–1134. [Google Scholar] [CrossRef]
- Mishin, E.; Streltsov, A. On the kinetic theory of subauroral arcs. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030667. [Google Scholar] [CrossRef]
- Heilig, B.; Stolle, C.; Kervalishvili, G.; Rauberg, J.; Miyoshi, Y.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Nakamura, S.; et al. Relation of the plasmapause to the midlatitude ionospheric trough, the sub-auroral temperature enhancement and the distribution of small-scale field aligned currents as observed in the magnetosphere by THEMIS, RBSP, and Arase, and in the topside ionosphere by Swarm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029646. [Google Scholar] [CrossRef]
- Mishin, E.V.; Streltsov, A.V. Toward the unified theory of SAID-linked subauroral arcs. J. Geophys. Res. Space Phys. 2024, 129, e2023JA032196. [Google Scholar] [CrossRef]
- Wing, S.; Ohtani, S.; Newell, P.T.; Higuchi, T.; Ueno, G.; Weygand, J.M. Dayside field-aligned current source regions. J. Geophys. Res. 2010, 115, A12215. [Google Scholar] [CrossRef]
- Thomas, E.G.; Shepherd, S.G. Statistical patterns of ionospheric convection derived from mid-latitude, high-latitude, and polar SuperDARN HF radar observations. J. Geophys. Res. 2018, 123, 3196–3216. [Google Scholar] [CrossRef]
- Heppner, J.P.; Maynard, N.C. Empirical high-latitude electric field models. J. Geophys. Res. 1987, 92, 4467–4489. [Google Scholar] [CrossRef]
- Tanaka, T.; Ebihara, Y.; Watanabe, M.; Den, M.; Fujita, S.; Kikuchi, T.; Hashimoto, K.K.; Kataoka, R. Global simulation study for the time sequence of events leading to the substorm onset. J. Geophys. Res. Space Phys. 2017, 122, 6210–6239. [Google Scholar] [CrossRef]
- McPherron, R.L.; Russell, C.T.; Aubry, M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 1973, 78, 3131–3149. [Google Scholar] [CrossRef]
- Frank, L.A. Relationship of the plasma sheet, ring current, trapping boundary, and plasmapause near the magnetic equator and local midnight. J. Geophys. Res. 1971, 76, 2265–2275. [Google Scholar] [CrossRef]
- Horwitz, J.L.; Cobb, W.K.; Baugher, C.R.; Chappell, C.R.; Frank, L.A.; Eastman, T.E.; Anderson, R.R.; Shelley, E.G.; Young, D.T. On the relationship of the plasmapause to the equatorward boundary of the auroral oval and to the inner edge of the plasma sheet. J. Geophys. Res. 1982, 87, 9059–9069. [Google Scholar] [CrossRef]
- Gkioulidou, M.; Wang, C.-P.; Lyons, L.R. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver. J. Geophys. Res. 2011, 116, A12213. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. Mathematical models of magnetospheric convection and its coupling to the ionosphere. In Particles and Field in the Magnetosphere, Astrophysics and Space Science Library; McCormack, B.M., Renzini, A., Eds.; Springer: New York NY, USA, 1970; Volume 17, pp. 60–71. [Google Scholar] [CrossRef]
- Southwood, D.J. The role of hot plasma in magnetospheric convection. J. Geophys. Res. 1977, 82, 5512–5520. [Google Scholar] [CrossRef]
- Kirpichev, I.P.; Antonova, E.E.; Stepanova, M.V. On the relationship between regions of large-scale field-aligned currents and regions of plateau in plasma pressure observed in the equatorial plane of the Earth’s magnetosphere. Geophys. Res. Lett. 2023, 50, e2023GL105190. [Google Scholar] [CrossRef]
- Cornwall, J.M.; Coroniti, F.V.; Thorne, R.M. Turbulent loss of ring current protons. J. Geophys. Res. 1970, 75, 4699–4709. [Google Scholar] [CrossRef]
- Khazanov, G.V.; Gamayunov, K.V.; Jordanova, V.K. Self-consistent model of magnetospheric ring current and electromagnetic ion cyclotron waves: The 2–7 May 1998 storm. J. Geophys. Res. 2003, 108, 1419. [Google Scholar] [CrossRef]
- Denton, M.H.; Thomsen, M.F.; Korth, H.; Lynch, S.; Zhang, J.C.; Liemohn, M.W. Bulk plasma properties at geosynchronous orbit. J. Geophys. Res. 2005, 110, A07223. [Google Scholar] [CrossRef]
- Mishin, E.V.; Puhl-Quinn, P.A.; Santolik, O. SAID: A turbulent plasmaspheric boundary layer. Geophys. Res. Lett. 2010, 37, L07106. [Google Scholar] [CrossRef]
- Mishin, E.; Streltsov, A. Mesoscale and Small-Scale Structure of the Subauroral Geospace. In Space Physics and Aeronomy Collection Volume 3: Ionosphere Dynamics and Applications, Geophysical Monograph Series; Huang, C., Lu, G., Eds.; American Geophysical Union: Washington, DC, USA, 2021; Volume 260, pp. 135–154. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Foster, J.; Rich, F.J.; Swider, W. Storm time electric field penetration observed at mid-latitude. J. Geophys. Res. 1991, 96, 5707–5721. [Google Scholar] [CrossRef]
- Sangha, H.; Milan, S.E.; Carter, J.A.; Fogg, A.R.; Anderson, B.J.; Korth, H.; Paxton, L.J. Bifurcated Region 2 field-aligned currents associated with substorms. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027041. [Google Scholar] [CrossRef]
- Maimaiti, M.; Baker, J.B.H.; Ruohoniemi, J.M.; Kunduri, B.S.R. Morphology of nightside subauroral ionospheric convection: Monthly, seasonal, Kp, and IMF dependencies. J. Geophys. Res. Space Phys. 2019, 124, 4608–4626. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G. Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 2010, 37, L17104. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G.; Krall, J. Three-dimensional equatorial spread F modeling. Geophys. Res. Lett. 2008, 35, L10102. [Google Scholar] [CrossRef]
- Schunk, R.W.; Banks, P.M.; Raitt, W.J. Effects of electric fields and other processes upon the nighttime high-latitude F layer. J. Geophys. Res. 1976, 81, 3271–3282. [Google Scholar] [CrossRef]
- Huba, J.D.; Maute, A.; Crowley, G. SAMI3_ICON: Model of the ionosphere/plasmasphere system. Space Sci. Rev. 2017, 212, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.; Spiro, R.; Rich, F. Extension of convection modeling into the high-latitude ionosphere: Some theoretical difficulties. J. Atmos. Terr. Phys. 1991, 53, 817–829. [Google Scholar] [CrossRef]
DMSP | ||
---|---|---|
Instrumentation | Observables | Cadence |
SSIES SLP | Ne (1/cm3) | 1 s |
SSIES SLP | Te (K) | 4 s |
SSIES RPA | Ti (K) | 4 s |
SSIES IDM | VHOR (m/s) | 1 s |
SSIES IDM | VVER (m/s) | 1 s |
THEMIS | ||
---|---|---|
Instrumentation | Observables | Cadence |
EFI | EX, EY, and EZ (mV/m) | 3 s |
ESA | Spacecraft potential (V) | 3 s |
ESA | Ion and electron energy flux (eV/cm2-s-sr-eV) | 3 s |
ESA | Ti⊥ (eV) and Ti‖ (eV) | 3 s |
GMOM | Pi (eV/cm3) | 3 s |
GMOM | VeX, VeY, and VeZ (km/s) | 3 s |
MOM | Pi (eV/cm3) | 3 s |
HF FBK | HF Vpeak (V) | 4 s |
DMSP F15 Observed SAPS Event | DMSP F15 Observables | ||||||
---|---|---|---|---|---|---|---|
Number | Date | UT (Hr:Mn) | MLAT (°S) | MLT (Hr:Mn) | Ne 103 (cm−3) | VHOR (m/s) | Te (K) |
1 | 22 February 2015 | 22:08 | 61.37 | 00:05 | 2.5 | −1200 | 6250 |
2 | 9 September 2015 | 6:13 | 49.55 | 01:46 | 2.8 | −2900 | 5500 |
3 | 20 September 2015 | 1:35 | 57.34 | 00:07 | 1.4 | +3000 | 6500 |
4 | 1 January 2016 | 21:24 | 59.33 | 00:38 | 3.5 | −1200 | 5500 |
5 | 9 January 2016 | 20:57 | 60.62 | 00:36 | 3.0 | −2500 | 6500 |
6 | 12 January 2016 | 21:50 | 57.11 | 00:39 | 3.5 | −2400 | 6000 |
7 | 19 January 2016 | 23:20 | 52.83 | 00:44 | 3.0 | −2400 | 6000 |
8 | 23 January 2016 | 20:35 | 60.89 | 00:37 | 3.1 | −2200 | 5750 |
9 | 18 February 2016 | 1:46 | 51.97 | 00:18 | 2.1 | −2800 | 7000 |
10 | 20 March 2016 | 5:38 | 59.09 | 00:56 | 2.8 | −1700 | 5500 |
SAPS Event | UT (Hr:Mn) | IMF | SYM-H (nT) | Kp | AE (nT) | Substorm Onset UT (Hr:Mn) | |
---|---|---|---|---|---|---|---|
BY (nT) | BZ (nT) | ||||||
22 February 2015 | 22:08 | −2.71 | −6.45 | 2 | 2+ | 37 | 17:11 * |
9 September 2015 | 6:13 | 4.81 | −9.63 | −90 | 6 | 760 | 6:01 *; 6:05 # |
20 September 2015 | 1:35 | 3.39 | 3.07 | −3 | 3 | 47 | 1:45 * |
20 September 2015 | 3:36 | 4.75 | 4.08 | −15 | 5− | 612 | 1:45 * |
21 September 2015 | 3:21 | 2.29 | 0.76 | −34 | 3− | 279 | 3:35 *# |
7 October 2015 | 3:02 | 9.41 | 2.73 | −12 | 6 | 384 | 2:27 * |
1 January 2016 | 21:24 | −1.15 | −12.96 | −30 | 2 | 132 | 18:25 *# |
9 January 2016 | 20:57 | 4.84 | 2.3 | 0 | 1+ | 90 | 17:03 *# |
12 January 2016 | 21:50 | −7.20 | −1.40 | −24 | 3 | 296 | 20:19 * |
19 January 2016 | 23:20 | −4.51 | 10.22 | 10 | 1 | 24 | - |
23 January 2016 | 20:35 | −2.12 | −1.26 | −10 | 3− | 54 | 19:33 * |
18 February 2016 | 1:46 | −1.25 | 4.30 | −55 | 4+ | 70 | (17 Feb) 22:50 *# |
20 March 2016 | 5:38 | −4.73 | 1.85 | −26 | 3− | 68 | 3:06 #* |
THEMIS Observed SAPS Event | THEMIS Observables | ||||||
---|---|---|---|---|---|---|---|
Number | Date | UT (Hr:Mn) | MLAT (°S) | MLT (Hr:Mn) | EX (mV/m) | EY (mV/m) | EZ (mV/m) |
1 | 20 September 2015 | 3:36 | 63.48 | 00:47 | −10 | 12 | 9 |
2 | 21 September 2015 | 3:21 | 62.05 | 00:28 | −13 | 16 | 8 |
3 | 7 October 2015 | 3:02 | 54.57 | 00:47 | 15 | 8 | 11 |
Variables | 22 February 2015 | 23 January 2016 | ||
---|---|---|---|---|
DMSP | SAMI3 | DMSP | SAMI3 | |
Ne (1000/cm3) | 2.4700 | 4.0131 | 2.9300 | 2.6415 |
Te (K) | 6400.0 | 2245.4 | 5720.0 | 2251.6 |
zonal E × B (m/s) | −1200.800 | −146.400 | −2242.300 | −79.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, I.; Lovell, B.C. Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region. Atmosphere 2025, 16, 862. https://doi.org/10.3390/atmos16070862
Horvath I, Lovell BC. Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region. Atmosphere. 2025; 16(7):862. https://doi.org/10.3390/atmos16070862
Chicago/Turabian StyleHorvath, Ildiko, and Brian C. Lovell. 2025. "Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region" Atmosphere 16, no. 7: 862. https://doi.org/10.3390/atmos16070862
APA StyleHorvath, I., & Lovell, B. C. (2025). Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region. Atmosphere, 16(7), 862. https://doi.org/10.3390/atmos16070862