Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data
Abstract
1. Introduction
2. Method
3. Experimental Data
3.1. Solar Data
3.2. Ionospheric Data
4. Results and Discussion
4.1. Calculation of in Different Ionospheric Regions
4.2. Analysis of the Obtained Curves
4.3. Reconstruction of the Electron Concentration Profile During the Flare
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitra, A.P. Ionospheric Effects of Solar Flares; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Solomon, S.C.; Qian, L. Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. Space Phys. 2005, 110, A10306. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, SIA 15-1–SIA 15-16. [Google Scholar] [CrossRef]
- Bekker, S.Z.; Kozlov, S.I.; Kudryavcev, V.P. Comparison and Verification of the Different Schemes for the Ionization-Recombination Cycle of the Ionospheric D-Region. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030579. [Google Scholar] [CrossRef]
- Nishimoto, S.; Watanabe, K.; Jin, H.; Kawai, T.; Imada, S.; Kawate, T.; Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Statistical analysis for EUV dynamic spectra and their impact on the ionosphere during solar flares. Earth Planets Space 2023, 75, 30. [Google Scholar] [CrossRef]
- Basak, T.; Chakrabarti, S.K. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares. Astrophys. Space Sci. 2013, 348, 315–326. [Google Scholar] [CrossRef]
- Thomson, N.R.; Clilverd, M.A. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1729–1737. [Google Scholar] [CrossRef]
- Palit, S.; Basak, T.; Mondal, S.K.; Pal, S.; Chakrabarti, S.K. Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry. Atmos. Chem. Phys. 2013, 13, 9159–9168. [Google Scholar] [CrossRef]
- Raulin, J.P.; Trottet, G.; Kretzschmar, M.; Macotela, E.L.; Pacini, A.; Bertoni, F.C.P.; Dammasch, I.E. Response of the low ionosphere to X-ray and Lyman-a solar flare emissions. J. Geophys. Res. Space Phys. 2013, 118, 570–575. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.K.; Singh, R.; Singh, R.P. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys. Space Sci. 2014, 350, 1–9. [Google Scholar] [CrossRef]
- Hayes, L.A.; O’Hara, O.S.D.; Murray, S.A.; Gallagher, P.T. Solar Flare Effects on the Earth’s Lower Ionosphere. Sol. Phys. 2021, 296, 157. [Google Scholar] [CrossRef]
- Briand, C.; Cliverd, M.; Inturi, S.; Cecconi, B. Role of hard X-ray emission in ionospheric D-layer disturbances during solar flares. Earth Planets Space 2022, 74, 41. [Google Scholar] [CrossRef]
- Nina, A. Modelling of the Electron Density and Total Electron Content in the Quiet and Solar X-ray Flare Perturbed Ionospheric D-Region Based on Remote Sensing by VLF/LF Signals. Remote Sens. 2022, 14, 54. [Google Scholar] [CrossRef]
- Bekker, S.Z.; Korsunskaya, J.A. Influence of the Neutral Atmosphere Model on the Correctness of Simulation the Electron and Ion Concentrations in the Lower Ionosphere. J. Geophys. Res. Space Phys. 2023, 128, e2023JA032007. [Google Scholar] [CrossRef]
- Wait, J.R.; Spies, K.P. Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves; Technical Note 300; National Bureau of Standards: Boulder, CO, USA, 1964. [Google Scholar]
- Thomson, N.R. Experimental daytime VLF ionospheric parameters. J. Atmos. Terr. Phys. 1993, 55, 173–184. [Google Scholar] [CrossRef]
- Ferguson, J.A. Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0; Space and Naval Warfare Systems Center: San Diego, CA, USA, 1998. [Google Scholar]
- Gavrilov, B.G.; Ermak, V.M.; Poklad, Y.V.; Ryakhovskii, I.A. Estimate of Variations in the Parameters of the Midlatitude Lower Ionosphere Caused by the Solar Flare of September 10, 2017. Geomagn. Aeron. 2019, 59, 587–592. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kundu, S.; Basak, T.; Ghosh, S.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K.; Sasmal, S. Numerical simulation of lower ionospheric reflection parameters by using International Reference Ionosphere (IRI) model and validation with Very Low Frequency (VLF) radio signal characteristics. Adv. Space Res. 2021, 67, 1599–1611. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Lakhina, G.S.; Li, G.; Zank, G.P. A brief review of “solar flare effects” on the ionosphere. Radio Sci. 2009, 44, RS0A17. [Google Scholar] [CrossRef]
- Hazarika, R.; Kalita, B.R.; Bhuyan, P.K. Ionospheric response to X-class solar flares in the ascending half of the subdued solar cycle 24. J. Earth Syst. Sci. 2016, 125, 1235–1244. [Google Scholar] [CrossRef]
- Watanabe, K.; Jin, H.; Nishimoto, S.; Imada, S.; Kawai, T.; Kawate, T.; Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Model-based reproduction and validation of the total spectra of a solar flare and their impact on the global environment at the X9.3 event of September 6, 2017. Earth Planets Space 2021, 73, 96. [Google Scholar] [CrossRef]
- Turunen, E.; Matveinen, H.; Ranta, H. Sodankylä ion Chemistry (SIC) Model; Report No. 49; Geophysical Publications: Sodankylä, Finland, 1992. [Google Scholar]
- Krivolutsky, A.A.; Cherepanova, L.A.; V’yushkova, T.Y.; Repnev, A.I. The three-dimensional global numerical model CHARM-I: The incorporation of processes in the ionospheric D-region. Geomagn. Aeron. 2015, 55, 467–486. [Google Scholar] [CrossRef]
- Kovács, T.; Plane, J.M.C.; Feng, W.; Nagy, T.; Chipperfield, M.P.; Verronen, P.T.; Andersson, M.E.; Newnham, D.A.; Clilverd, M.A.; Marsh, D.R. D-region ion–neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4)—WACCM-SIC and WACCM-rSIC. Geosci. Model Dev. 2016, 9, 3123–3136. [Google Scholar] [CrossRef]
- Verronen, P.T.; Andersson, M.E.; Marsh, D.R.; Kovács, T.; Plane, J.M.C. WACCM-D—Whole Atmosphere Community Climate Model with D-region ion chemistry. J. Adv. Model. Earth Syst. 2016, 8, 954–975. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Burns, A.G.; Chamberlin, P.C.; Coster, A.; Zhang, S.-R.; Solomon, S.C. Solar Flare and Geomagnetic Storm Effects on the Thermosphere and Ionosphere During 6–11 September 2017. J. Geophys. Res. Space Phys. 2019, 124, 2298–2311. [Google Scholar] [CrossRef]
- Yan, M.; Dang, T.; Cao, Y.-T.; Cui, J.; Zhang, B.; Liu, Z.; Lei, J. A Comparative Study of Ionospheric Response to Solar Flares at Earth, Venus, and Mars. Astrophys. J. 2022, 939, 23. [Google Scholar] [CrossRef]
- Wan, W.; Liu, L.; Yuan, H.; Ning, B.; Zhang, S. The GPS measured SITEC caused by the very intense solar flare on July 14, 2000. Adv. Space Res. 2005, 36, 2462–2467. [Google Scholar] [CrossRef]
- García-Rigo, A.; Hernández-Pajares, J.M.; Juan, J.M.; Sanz, J. Solar flare detection system based on global positioning system data: First results. Adv. Space Res. 2007, 39, 889–895. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Chen, Y.; Wan, W. Statistical analysis of ionospheric responses to solar flares in the solar cycle 23. J. Geophys. Res. Space Phys. 2013, 118, 576–582. [Google Scholar] [CrossRef]
- De Paula, E.R.; Martinon, A.R.F.; Carrano, C.; Moraes, A.O.; Neri, J.A.C.F.; Cecatto, J.R.; Abdu, M.A.; Neto, A.C.; Monico, J.F.G.; da Costa Silva, W. Solar Flare and Radio Burst Effects on GNSS Signals and the Ionosphere During September 2017. Radio Sci. 2022, 57, e2021RS007418. [Google Scholar] [CrossRef]
- Bekker, S.Z.; Ryakhovsky, I.A. Estimation of the Contribution of the Ionospheric D Region to the TEC Value During a Series of Solar Flares in September 2017. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032577. [Google Scholar] [CrossRef]
- Barta, V.; Satori, G.; Berenyi, K.A.; Kis, A.; Williams, E. Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa. Ann. Geophys. 2019, 37, 747–761. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Tshisaphungo, M.; Katamzi-Joseph, Z.T.; Matamba, T.M.; Nndanganeni, R. Ionospheric Response to the M- and X-Class Solar Flares of 28 October 2021 Over the African Sector. Space Weather 2020, 20, e2022SW003104. [Google Scholar] [CrossRef]
- Buzás, A.; Kouba, D.; Mielich, J.; Burešová, D.; Mošna, Z.; Koucká Knížová, P.; Barta, V. Investigating the effect of large solar flares on the ionosphere based on novel Digisonde data comparing three different methods. Front. Astron. Space Sci. 2023, 10, 1201625. [Google Scholar] [CrossRef]
- Yasyukevich, Y.; Astafyeva, E.; Padokhin, A.; Ivanova, V.; Syrovatskii, S.; Podlesnyi, A. The 6 September 2017 X-Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation. Space Weather 2018, 16, 1013–1027. [Google Scholar] [CrossRef]
- Meza, A.; van Zele, M.A.; Rovira, M. Solar flare effect on the geomagnetic field and Ionosphere. J. Atmos. Sol.-Terr. Phys. 2009, 71, 1322–1332. [Google Scholar] [CrossRef]
- Lopes-Urias, C.; Vazquez-Becerra, G.E.; Nayak, K.; Lopez-Montes, R. Response of Analysis of Ionospheric Disturbances during X-Class Solar Flares (2021–2022) Using GNSS Data and Wavelet Analysis. Remote Sens. 2023, 15, 4626. [Google Scholar] [CrossRef]
- Liu, X.; Fan, X.; Liu, J.; Kong, X.; Chen, Y.; Li, Q.; Li, S.; Zheng, J. Response of Global Ionospheric Currents to Solar Flares with Extreme Ultraviolet Late Phases. Astrophys. J. 2024, 963, 27. [Google Scholar] [CrossRef]
- Sreeraj, M.S.; Sumod, S.G.; Kavya, E.M.; Mildred, S.; Pant, T.K.; Hari, P. Global Ionospheric Response to X-Class Flares During the Solar Cycle 24: An Investigation Using IGS Network. J. Geophys. Res. Space Phys. 2025, 130, 2024JA033290. [Google Scholar] [CrossRef]
- Leonovich, L.A.; Afraimovich, E.L.; Romanova, E.B.; Taschilin, A.V. Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network. Ann. Geophys. 2002, 20, 1935–1941. [Google Scholar] [CrossRef]
- Leonovich, L.A.; Taschilin, A.V.; Portnyagina, O.Y. Dependence of the ionospheric response on the solar flare parameters based on the theoretical modeling and GPS data. Geomagn. Aeron. 2010, 50, 201–210. [Google Scholar] [CrossRef]
- Bekker, S.; Milligan, R.O.; Ryakhovsky, I.A. The influence of different phases of a solar flare on changes in the total electron content in the Earth’s ionosphere. Astrophys. J. 2024, 971, 188. [Google Scholar] [CrossRef]
- Liu, J.; Qian, L.; Wang, W.; Pham, K.; Kong, X.; Chen, Y.; Liu, W.; Liu, L.; Liu, X. Energy Deposition into the Ionosphere during a Solar Flare with Extreme-ultraviolet Late Phase. Astrophys. J. Lett. 2024, 963, L8. [Google Scholar] [CrossRef]
- Woods, T.N. Extreme Ultraviolet Late-Phase Flares: Before and During the Solar Dynamics Observatory Mission. Sol. Phys. 2014, 289, 3391–3401. [Google Scholar] [CrossRef]
- Lillis, R.J.; Brain, D.A.; Engl, S.L.; Withers, P.; Fillingim, M.O.; Safaeinili, A. Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux. J. Geophys. Res. Space Phys. 2010, 115, A11314. [Google Scholar] [CrossRef]
- Ieda, A.; Oyama, S.; Vanhamäki, H.; Fujii, R.; Nakamizo, A.; Amm, O.; Hori, T.; Takeda, M.; Ueno, G.; Yoshikawa, A.; et al. Approximate forms of daytime ionospheric conductance. J. Geophys. Res. Space Phys. 2014, 119, 10397–10415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekker, S. Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data. Atmosphere 2025, 16, 825. https://doi.org/10.3390/atmos16070825
Bekker S. Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data. Atmosphere. 2025; 16(7):825. https://doi.org/10.3390/atmos16070825
Chicago/Turabian StyleBekker, Susanna. 2025. "Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data" Atmosphere 16, no. 7: 825. https://doi.org/10.3390/atmos16070825
APA StyleBekker, S. (2025). Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data. Atmosphere, 16(7), 825. https://doi.org/10.3390/atmos16070825