Assessing Total and Tropospheric Ozone via IKFS-2 Infrared Measurements on Meteor-M No. 2
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.1.1. IKFS-2 Spectra
2.1.2. Other Satellite Data
2.1.3. Ground-Based Data
2.2. Different Approaches for Solving the Inverse Problem: Discussion of Methods
2.3. The Technique for TOC and TrOC Retrieval
2.4. Optimisation of the ANNs for TOC Retrieval
3. Results and Discussions
3.1. Validation of the IKFS-2 Results
3.1.1. TOC Data Validation
Ozonesonde TOC Data
3.1.2. TrOC Data Validation
3.2. IKFS-2 vs. TROPOMI and IASI TOCs
3.3. IKFS-2 vs. IASI TrOCs
4. Conclusions
- After the IKFS-2 swath width changed to 1500 km in 2021–2022 and the ANN retraining, the TOC retrieval errors have not changed compared to the period 2015–2020. In general, the TOC errors from the IKFS-2 spectra measurements do not exceed 3%.
- The estimate of the TrOC retrieval errors is less than 2.8 and 3.8 DU for the layers below 400 hPa and 300 hPa, respectively.
- Comparison of the TOC variability measured by IKFS-2 and ozonesondes demonstrated good qualitative agreement, including the polar night period.
- Comparison of the IKFS-2 TOC results vs. the ozonesondes data also showed good quantitative agreement: MDs are 1.2% and SDDs are 7.9%, which is close to the errors of TOC measurements by ozonesondes.
- The results of TrOC satellite measurements were validated against data from 19 sites of the IRWG-NDACC network, with SDDs ranging from 2 to 4 DU, which is consistent with the results of other authors for similar measurement methods.
- Monthly mean TOC values by IKFS-2 and IASI correlate spatially well with the largest differences in polar regions (up to 10–15%), where both instruments have the largest measurement errors. Examples of the obtained TOC and TrOC distribution fields over the entire globe are given, compared with similar data from the IASI instrument.
- Monthly mean IKFS-2 TrOCs are larger than those of IASI, with the maximum differences in lower latitudes (up to ~6 DU) of most of Eurasia and North America. Correlation between TrOCs is significantly higher if a thicker atmospheric layer is considered (up to 300 hPa vs. 400 hPa). The observed lowest correlation partially coincides with the territories of annual forest fires. The best agreement between monthly mean IKFS-2 and IASI data was found in spring and autumn.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE-FTS | Atmospheric Chemistry Experiment-Fourier Transform Spectrometer |
AK | Averaging kernel |
ANN | Artificial Neural Network |
DOAS | Differential Optical Absorption Spectroscopy |
DOFS | Degrees Of Freedom for Signal |
DU | Dobson Unit |
FORLI-O3 | Fast Optimal Retrievals on Layers for IASI O3 |
FTIR | Fourier Transform InfraRed |
GAW | Global Atmosphere Watch Programme |
HITRAN | High-resolution Transmission molecular absorption database |
IASI | Infrared Atmospheric Sounding Interferometer |
IKFS | Infra Red Fourier Spectrometer |
IPCC | Intergovernmental Panel on Climate Change |
IR | Infra Red |
IRIS | Infrared Interferometer Spectrometer |
IRWG | Infra Red Work Group |
LBLRTM | Line-By-Line Radiative Transfer Model |
MD | Mean Difference |
MIPAS | Michelson Interferometer for Passive Atmospheric Sounding |
MLS | Microwave Limb Sounder |
NDACC | Network for the Detection of Atmospheric Composition Change |
OMI | Ozone Monitoring Instrument |
PC | Principal Component |
PM | Physical-Mathematical |
SAGE | Stratospheric Aerosol and Gas Experiment |
SDD | Standard Deviation of Difference |
SOC | Surface Ozone Concentration |
SOP | Standard Operating Procedures |
SW | Swath Width |
TOAR | Tropospheric Ozone Assessment Report |
TOC | Total Ozone Column |
TrOC | Tropospheric Ozone Column |
TROPOMI | TROPOspheric Monitoring Instrument |
UV | UltraViolet |
VOC | VOlatile Compounds |
WACCM | Whole Atmosphere Community Climate Model |
WMO | World Meteorological Organisation |
WOUDC | The World Ozone and Ultraviolet Radiation Data Centre |
References
- WMO. Ozone Research and Monitoring—GAW Report No. 278. 2022. Available online: https://library.wmo.int/viewer/58360/download?file=2022OzoneAssessment.pdf&type=pdf&navigator=1 (accessed on 20 May 2025).
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 20 May 2025).
- Dobson, G.M.B.; Harrison, D.N. Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions. Proc. R. Soc. Lond. A 1926, 110, 660–693. [Google Scholar] [CrossRef]
- Farman, J.C. Measurements of total ozone using Dobson spectrometers: Some comments on their history. Planet. Space Sci. 1989, 37, 1601–1604. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; 1225p. [Google Scholar]
- WMO. State of the Global Climate 2023. 2023. Available online: https://wmo.int/publication-series/state-of-global-climate-2023 (accessed on 20 May 2025).
- Stanek, L.W.; Sacks, J.D.; Dutton, S.J.; Dubois, J.-J.B. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmos. Environ. 2011, 45, 5655–5663. [Google Scholar] [CrossRef]
- Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Frei, M.; Burkey, K.; Emberson, L.; Uddling, J.; Broberg, M.; Feng, Z.; et al. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Glob. Change Biol. 2018, 24, 4869–4893. [Google Scholar] [CrossRef]
- Zvyagintsev, A.M. Spatial and Temporal Variability of Ozone in the Troposphere (Prostranstvenno-Vremennaya Izmenchivost Ozona v Troposphere). Ph.D. Thesis, Moskva State University “M.V. Lomonosov”, Moscow, Russia, 2013. [Google Scholar]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. 7. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the IPCC Sixth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 924–1054. Available online: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-7/ (accessed on 20 May 2025).
- Karol, I.L.; Kiselev, A.A.; Genikhovich, E.L.; Chicherin, S.S. Short-lived radiation-active impurities in the atmosphere and their role in modern climate changes. Proc. Main Voeikov Geophys. Obs. 2012, 567, 5–82. (In Russian) [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC: Climate Change 2013: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2013; pp. 1477–1495. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 20 May 2025).
- Wu, S.; Mickley, L.J.; Jacob, D.J.; Logan, J.A.; Yantosca, R.M.; Rind, D. Why are there large differences between models in global budgets of tropospheric ozone? J. Geophys. Res. 2007, 112, D05302. [Google Scholar] [CrossRef]
- Young, P.J.; Archibald, A.T.; Bowman, K.W.; Lamarque, J.-F.; Naik, V.; Stevenson, D.S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 2063–2090. [Google Scholar] [CrossRef]
- Andreev, V.V.; Arshinov, M.Y.; Belan, B.D.; Belan, S.B.; Davydov, D.K.; Demin, V.I.; Dudorova, N.V.; Elansky, N.F.; Zhamsueva, G.S.; Zayakhanov, A.S.; et al. Tropospheric ozone concentration in Russia in 2022. Atmos. Ocean. Opt. 2023, 36, 741–757. [Google Scholar] [CrossRef]
- Hanel, R.A.; Conrath, B.J. Interferometer experiment on Nimbus 3: Preliminary results. Science 1969, 165, 1258–1260. [Google Scholar] [CrossRef]
- Mettig, N.; Weber, M.; Rozanov, A.; Burrows, J.P.; Veefkind, P.; Thompson, A.M.; Stauffer, R.M.; Leblanc, T.; Ancellet, G.; Newchurch, M.J.; et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements. Atmos. Meas. Tech. 2022, 15, 2955–2978. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- McPeters, R.D.; Kroon, M.; Labow, G.; Brinksma, E.; Balis, D.; Petropavlovskikh, I.; Veefkind, J.P.; Bhartia, P.K.; Levelt, P.F. Validation of the Aura Ozone Monitoring Instrument total column ozone product. J. Geophys. Res. 2008, 113, D15S14. [Google Scholar] [CrossRef]
- McPeters, R.D.; Frith, S.; Labow, G.J. OMI total column ozone: Extending the long-term data record. Atmos. Meas. Tech. 2015, 8, 4845–4850. [Google Scholar] [CrossRef]
- Bernath, P.F. The Atmospheric Chemistry Experiment (ACE). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 3–16. [Google Scholar] [CrossRef]
- SAGE III, Stratospheric Aerosol and Gas Experiment (SAGE) III, NASA Internet Resource. Available online: https://sage.nasa.gov (accessed on 21 May 2025).
- Polyakov, A.V.; Timofeyev, Y.M.; Ionov, D.V.; Virolainen, Y.A.; Steele, H.M.; Newchurch, M.J. Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III) measurements using a new algorithm. J. Geophys. Res. 2005, 110, D06303. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Mégie, G.; Widemann, T.; Chassefière, E.; Pellinen, R.; Kyrola, E.; Korpela, S.; Simon, P. Monitoring of ozone trend by stellar occultations: The GOMOS instrument. Adv. Space Res. 1991, 11, 237–242. [Google Scholar] [CrossRef]
- Lee, K.A.; Lay, R.R.; Jarnot, F.; Cofield, R.E.; Pickett, H.M.; Stek, P.C.; Flower, D.A. EOS Aura MLS: First year post-launch engineering assessment. Proc. SPIE 5882 Earth Obs. Syst. X 2005, 58821D, 464–475. [Google Scholar] [CrossRef]
- Glatthor, N.; von Clarmann, T.; Fischer, H.; Funke, B.; Gil-López, S.; Grabowski, U.; Höpfner, M.; Kellmann, S.; Linden, A.; López-Puertas, M.; et al. Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra: A sensitivity study. Atmos. Chem. Phys. 2006, 6, 2767–2781. [Google Scholar] [CrossRef]
- AC SAF VALIDATION REPORT. Validated Products: IASI-MetopA, IASI-MetopB and IASI-MetopC Total Ozone and Ozone Profiles. Available online: https://acsaf.org/docs/vr/Validation_Report_IASI_O3_Feb_2022.pdf (accessed on 21 May 2025).
- Kouyate, M.; Arola, A.; Benedictow, A.; Bennouna, Y.; Blake, L.; Bouarar, I.; Cuevas, E.; Errera, Q.; Eskes, H.J.; Griesfeller, J.; et al. Validation Report of the CAMS Near-Real-Time Global Atmospheric Composition Service: June–August 2023. Available online: https://atmosphere.copernicus.eu/node/1105 (accessed on 17 June 2025).
- Johnson, M.S.; Rozanov, A.; Weber, M.; Mettig, N.; Sullivan, J.; Newchurch, M.J.; Kuang, S.; Leblanc, T.; Chouza, F.; Berkoff, T.A.; et al. TOLNet validation of satellite ozone profiles in the troposphere: Impact of retrieval wavelengths. Atmos. Meas. Tech. 2024, 17, 2559–2582. [Google Scholar] [CrossRef]
- Timofeyev, Y.M.; Uspensky, A.B.; Zavelevich, F.S.; Polyakov, A.V.; Virolainen, Y.A.; Rublev, A.N.; Kukharsky, A.V.; Kiseleva, J.V.; Kozlov, D.A.; Kozlov, I.A.; et al. Hyperspectral infrared atmospheric sounder IKFS-2 on “Meteor-M” No. 2—Four years in orbit. J. Quant. Spectrosc. Radiat. Transf. 2019, 238, 106579. [Google Scholar] [CrossRef]
- Polyakov, A.; Virolainen, Y.; Nerobelov, G.; Kozlov, D.; Timofeyev, Y. Six Years of IKFS-2 Global Ozone Total Column Measurements. Remote Sens. 2023, 15, 2481. [Google Scholar] [CrossRef]
- Polyakov, A.V.; Virolainen, Y.A.; Nerobelov, G.M.; Akishina, S.V. Technique for Determining Tropospheric Ozone Content from Spectral Measurements of Outgoing Thermal Radiation by the IKFS-2 Satellite Instrument. Izv. Atmos. Ocean. Phys. 2024, 60, 533–543. [Google Scholar] [CrossRef]
- Polyakov, A.V.; Kriukovskikh, E.P.; Virolainen, Y.A.; Nerobelov, G.M.; Kozlov, D.A.; Timofeyev, Y.M. Determining the Total Ozone Column from Spectral Measurements of IKFS-2 in 2015–2022. Izv. Atmos. Ocean. Phys. 2024, 60, 689–698. [Google Scholar] [CrossRef]
- Fioletov, V.E.; Kerr, J.B.; Hare, E.W.; Labow, G.J.; McPeters, R.D. An assessment of the world ground-based total ozone network performance from the comparison with satellite data. J. Geophys. Res. Atmos. 1999, 104, 1737–1747. [Google Scholar] [CrossRef]
- Vigouroux, C.; Blumenstock, T.; Coffey, M.; Errera, Q.; García, O.; Jones, N.B.; Hannigan, J.W.; Hase, F.; Liley, B.; Mahieu, E.; et al. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmos. Chem. Phys. 2015, 15, 2915–2933. [Google Scholar]
- HEGIFTOM Focus Working Group. TOAR-II Intercomparison Guidelines for Observations of Tropospheric Column Ozone and Tropospheric Ozone Profiles. 2022. Available online: https://igacproject.org/sites/default/files/2022-03/TOAR-II_Guidelines_for_TCO_and_Profile_Intercomparisons.pdf (accessed on 21 May 2025).
- Tarasick, D.; Galbally, I.E.; Cooper, O.R.; Schultz, M.G.; Ancellet, G.; Leblanc, T.; Wallington, T.J.; Ziemke, J.; Liu, X.; Steinbacher, M.; et al. Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem. Sci. Anthr. 2019, 7, 39. [Google Scholar] [CrossRef]
- Tarasick, D.W.; Smit, H.G.J.; Thompson, A.M.; Morris, G.A.; Witte, J.C.; Davies, J.; Nakano, T.; Van Malderen, R.; Stauffer, R.M.; Johnson, B.J.; et al. Improving ECC ozonesonde data quality: Assessment of current methods and outstanding issues. Earth Space Sci. 2021, 8, e2019EA000914. [Google Scholar] [CrossRef]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.-F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anthr. 2018, 6, 39. [Google Scholar] [CrossRef]
- Asmus, V.V.; Zagrebaev, V.A.; Makridenko, L.A.; Milekhin, O.E.; Solovyev, V.I.; Uspenskii, A.B.; Frolov, A.V.; Khailov, M.N. Meteorological satellites based on Meteor-M polar orbiting platform. Russ. Meteorol. Hydrol. 2014, 39, 787–794. [Google Scholar] [CrossRef]
- Golovin, Y.M.; Zavelevich, F.S.; Nikulin, A.G.; Kozlov, D.A.; Monakhov, D.O.; Kozlov, I.A.; Arkhipov, S.A.; Tselikov, V.A.; Romanovskii, A.S. Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth’s atmosphere. Izv. Atmos. Ocean. Phys. 2014, 50, 1004–1015. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding. Theory and Practice; Series on Atmospheric, Oceanic and Planetary Physics; World Scientific: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000; Volume 2, 238p. [Google Scholar]
- Kozlov, D.A.; Kozlov, I.A.; Uspensky, A.B.; Rublev, A.N.; Timofeyev, Y.M.; Polyakov, A.V.; Kolesnikov, M.V. Characterization of the noise covariance matrix of the IKFS-2 infrared Fourier transform spectrometer measurements. Izv. Atmos. Ocean. Phys. 2022, 58, 1160–1172. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Anderson, G.; Clough, S.; Kneizys, F.; Chetwynd, J.; Shettle, E. AFGL Atmospheric Constituent Profiles (0.120km); Air Force Geophysics Laboratory: Hanscom MA, USA, 1986; 43p, Available online: https://www.researchgate.net/publication/235054307_AFGL_Atmospheric_Constituent_Profiles_0120km (accessed on 21 May 2025).
- Kuttippurath, J.; Kumar, P.; Nair, P.J.; Chakraborty, A. Accuracy of satellite total column zone measurements in polar vortex conditions: Comparison with groundbased observations in 1979–2013. Remote Sens. Environ. 2018, 209, 648–659. [Google Scholar] [CrossRef]
- OMI DATA. Available online: https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMTO3.003/ (accessed on 25 April 2023).
- Garane, K.; Koukouli, M.-E.; Verhoelst, T.; Lerot, C.; Heue, K.-P.; Fioletov, V.; Balis, D.; Bais, A.; Bazureau, A.; Dehn, A.; et al. TROPOMI/S5P total ozone column data: Global ground-based validation and consistency with other satellite missions. Atmos. Meas. Tech. 2019, 12, 5263–5287. [Google Scholar] [CrossRef]
- TROPOMI DATA Copernicus Sentinel Data Processed by ESA; German Aerospace Center (DLR), Sentinel-5P TROPOMI Total Ozone Column 1-Orbit L2 5.5 km × 3.5 km; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2024. [CrossRef]
- Dufour, G.; Eremenko, M.; Griesfeller, A.; Barret, B.; LeFlochmoen, E.; Clerbaux, C.; Hadji-Lazaro, J.; Coheur, P.-F.; Hurtmans, D. Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes. Atmos. Meas. Tech. 2012, 5, 611–630. [Google Scholar] [CrossRef]
- Hurtmans, D.; Coheur, P.-F.; Wespes, C.; Clarisse, L.; Scharf, O.; Clerbaux, C.; Hadji-Lazaro, J.; George, M.; Turquety, S. FORLI radiative transfer and retrieval code for IASI. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1391–1408. [Google Scholar] [CrossRef]
- Boynard, A.; Hurtmans, D.; Garane, K.; Goutai, F.; Hadji-Lazaro, J.; Koukouli, M.E.; Wespes, C.; Vigouroux, C.; Keppens, A.; Pommereau, J.-P.; et al. Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer-Dobson, SAOZ, FTIR) and ozonesonde measurements. Atmos. Meas. Tech. 2018, 11, 5125–5152. [Google Scholar] [CrossRef]
- Virolainen, Y.A.; Ionov, D.V.; Polyakov, A.V. Analysis of long-term measurements of tropospheric ozone at the St. Petersburg State University observational site in Peterhof. Izv. Atmos. Ocean. Phys. 2023, 59, 287–295. [Google Scholar] [CrossRef]
- Virolainen, Y.A.; Nerobelov, G.M.; Polyakov, A.V. Comparison of satellite and ground-based measurements of tropospheric ozone columns in the vicinity of St. Petersburg. Izv. Atmos. Ocean. Phys. 2023, 59, 411–420. [Google Scholar] [CrossRef]
- HEGIFTOM Database. TOAR-II HEGIFTOM: Description of Homogenized Ozonesonde Free-Tropospheric Ozone Time Series. Available online: https://hegiftom.meteo.be/ (accessed on 21 May 2025).
- McPeters, R.D.; Labow, G.J. Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J. Geophys. Res. 2012, 117, D10303. [Google Scholar] [CrossRef]
- Smit, H.G.J.; Thompson, A.M. The Panel for the Assessment of Standard Operating Procedures for Ozonesondes, v2.0 (ASOPOS 2.0). In Ozonesonde Measurement Principles and Best Operational Practices, GAW Report 268; World Meteorological Organization: Geneva, Switzerland, 2021; Available online: https://library.wmo.int/idurl/4/57720 (accessed on 25 April 2023).
- Kerr, J.B. New methodology for deriving total ozone and other atmospheric variables from Brewer spectrophotometer direct sun spectra. J. Geophys. Res. 2002, 107, 4731. [Google Scholar] [CrossRef]
- García, O.E.; Sanromá, E.; Schneider, M.; Hase, F.; León-Luis, S.F.; Blumenstock, T.; Sepúlveda, E.; Redondas, A.; Carreño, V.; Torres, C.; et al. Improved ozone monitoring by ground-based FTIR spectrometry. Atmos. Meas. Tech. 2022, 15, 2557–2577. [Google Scholar] [CrossRef]
- García, O.E.; Schneider, M.; Redondas, A.; González, Y.; Hase, F.; Blumenstock, T.; Sepúlveda, E. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry. Atmos. Meas. Tech. 2012, 5, 2917–2931. [Google Scholar] [CrossRef]
- Vigouroux, C.; De Mazière, M.; Demoulin, P.; Servais, C.; Hase, F.; Blumenstock, T.; Kramer, I.; Schneider, M.; Mellqvist, J.; Strandberg, A.; et al. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmos. Chem. Phys. 2008, 8, 6865–6886. [Google Scholar] [CrossRef]
- Marsh, D.R.; Mills, M.J.; Kinnison, D.E.; Lamarque, J.-F.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Björklund, R.; Vigouroux, C.; Effertz, P.; García, O.E.; Geddes, A.; Hannigan, J.; Miyagawa, K.; Kotkamp, M.; Langerock, B.; Nedoluha, G.; et al. Intercomparison of long-term ground-based measurements of total, tropospheric, and stratospheric ozone at Lauder, New Zealand. Atmos. Meas. Tech. 2024, 17, 6819–6849. [Google Scholar] [CrossRef]
- Garkusha, A.S.; Polyakov, A.V.; Timofeev, Y.M.; Virolainen, Y.A. Determination of the total ozone content from data of satellite IR Fourier-spectrometer. Izv. Atmos. Ocean. Phys. 2017, 53, 433–440. [Google Scholar] [CrossRef]
- Polyakov, A.; Virolainen, Y.; Nerobelov, G.; Timofeyev, Y.; Solomatnikova, A. Total ozone measurements using IKFS-2 spectrometer aboard Meteor-M N2 satellite in 2019–2020. Int. J. Remote Sens. 2021, 42, 8709–8733. [Google Scholar] [CrossRef]
- Wasserman, P.D. Neural Computing: Theory and Practice; Van Nostrand Reinhold: New York, NY, USA, 1989; 230p. [Google Scholar]
- Turquety, S.; Hadji-Lazaro, J.; Clerbaux, C.; Hauglustaine, D.A.; Clough, S.A.; Cassé, V.; Schlüssel, P.; Mégie, G. Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer. J. Geophys. Res. 2004, 109, D21301. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef]
- Polyakov, A.V.; Timofeev, Y.M.; Virolainen, Y.A. Using artificial neural networks in the temperature and humidity sounding of the atmosphere. Izv. Atmos. Ocean. Phys. 2014, 50, 330–336. [Google Scholar] [CrossRef]
- Polyakov, A.V. The method of artificial neural networks in retrieving vertical profiles of atmospheric parameters. Atmos. Ocean. Opt. 2014, 27, 247–252. [Google Scholar] [CrossRef]
- Rublev, A.N.; Uspenskii, A.B.; Trotsenko, A.N.; Udalova, T.A.; Volkova, E.V. Detecting and evaluating the cloud amount according to atmospheric high spectral resolution IR sounding data. Issled. Zemli Kosmosa 2004, 3, 43–51. [Google Scholar]
- Asmus, V.V.; Timofeyev, Y.M.; Polyakov, A.V.; Uspensky, A.B.; Golovin, Y.M.; Zavelevich, F.S.; Kozlov, D.A.; Rublev, A.N.; Kukharsky, A.V.; Pyatkin, E.V.; et al. Atmospheric temperature sounding with the Fourier spectrometer. Izv. Atmos. Ocean. Phys. 2017, 53, 428–432. [Google Scholar] [CrossRef]
- WMO/GAW. 2024 Global Atmosphere Watch Programme (GAW). Available online: https://community.wmo.int/en/activity-areas/gaw (accessed on 21 May 2025).
- Matveeva, A.G. Forest Fire Dynamics in the Far East of Russia. Sib. For. J. 2021, 6, 30–38. (In Russian) [Google Scholar] [CrossRef]
- Cavallaro, N.; Shrestha, G.; Birdsey, R.; Mayes, M.A.; Najjar, R.G.; Reed, S.C.; Romero-Lankao, P.; Zhu, Z. USGCRP, 2018: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report; U.S. Global Change Research Program: Washington, DC, USA, 2018; 878p. Available online: https://carbon2018.globalchange.gov (accessed on 21 May 2025).
Climate Model | Tropics | Middle Latitudes | Subarctic | ||
---|---|---|---|---|---|
Summer | Winter | Summer | Winter | ||
DOFS | 4.4 | 4.3 | 3.9 | 4.3 | 3.4 |
TOC error, % | 0.6 | 0.6 | 0.7 | 0.6 | 1.1 |
TrOC error, % | 9.9 | 8.3 | 9.8 | 8.2 | 12.3 |
1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|
No. | ANN Training Period (SW) | Comparisons Period (SW) | Satellite Measurements | Ground-Based Measurements | ||
MD, % | SDD, % | MD, % | SDD, % | |||
1 | 2015–2020 (1000) | 2015–2020 (1000) | −2.05 | 2.63 | −0.47 | 2.73 |
2 | 2021–2022 (1000) | −1.47 | 2.47 | 0.89 | 2.52 | |
3 | 2021–2022 (1000–1500) | −1.73 | 3.49 | −0.02 | 3.00 | |
4 | 2015–2022 (1500) | 2015–2020 (1000) | −2.02 | 2.58 | −0.40 | 2.71 |
5 | 2015–2022 (1500) | −2.13 | 2.65 | −0.41 | 2.67 | |
6 | 2021–2022 (1000) | −1.86 | 2.20 | 0.21 | 2.28 | |
7 | 2021–2022 (1000–1500) | −2.43 | 2.86 | −1.02 | 2.30 |
Site | 100 km IKFS-2 Average | 200 km IKFS-2 Average | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Up to 400 hPa | Up to 300 hPa | Up to 400 hPa | Up to 300 hPa | |||||||||
N | Δ, DU | σ, DU (%) | N | Δ, DU | σ, DU (%) | N | Δ, DU | σ, DU (%) | N | Δ, DU | σ, DU (%) | |
Thule | 513 | −0.3 | 3.3 (15) | 504 | +0.4 | 3.9 (13) | 554 | −0.3 | 3.3 (14.6) | 546 | +0.4 | 3.9 (12.8) |
St. Petersburg | 209 | −0.5 | 3.4 (13.5) | 209 | −0.8 | 4.0 (13) | 249 | −0.3 | 3.5 (13.9) | 250 | −0.6 | 4.3 (13.7) |
Jungfraujoch | 390 | −12.9 | 2.2 (21) | 390 | −13.9 | 2.8 (18.8) | 444 | −13.1 | 2.4 (22) | 444 | −14.2 | 3.0 (19.9) |
Toronto | 544 | −2.3 | 5.3 (23) | 544 | −2.5 | 6.0 (22) | 681 | −2.2 | 5.2 (23) | 681 | −2.4 | 5.8 (21) |
Rikubetsu | 81 | −1.6 | 3.8 (16.5) | 81 | −1.7 | 4.7 (16.3) | 94 | −2.0 | 3.4 (15) | 94 | −2.2 | 4.3 (14.9) |
Boulder | 358 | −2.8 | 2.3 (13.5) | 359 | −3.9 | 2.9 (13.9) | 443 | −2.5 | 2.5 (15) | 443 | −3.4 | 3.1 (14.8) |
Tsukuba | 112 | +1.2 | 4.6 (17.7) | 112 | +1.6 | 4.7 (14.7) | 166 | +1.3 | 4.1 (15.5) | 166 | +1.5 | 4.5 (14.3) |
Izaña | 302 | −8.5 | 2.0 (12.2) | 302 | −8.9 | 2.3 (10.9) | 385 | −8.6 | 1.9 (12) | 386 | −9.2 | 2.3 (11) |
Mauna Loa | 515 | −8.6 | 2.2 (21) | 515 | −9.1 | 2.5 (18) | 662 | −8.5 | 2.1 (20) | 662 | −9.3 | 2.5 (18) |
Altzomoni | 206 | −11.1 | 2.4 (30) | 205 | −9.9 | 2.6 (23) | 283 | −11.0 | 2.2 (27) | 283 | −10.2 | 2.5 (22) |
Maido | 332 | −6.0 | 2.1 (13.8) | 333 | −7.5 | 2.5 (12.5) | 424 | −5.9 | 2.2 (14.1) | 425 | −7.5 | 2.6 (12.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, A.; Virolainen, Y.; Nerobelov, G.; Akishina, S.; Kozlov, D.; Kriukovskikh, E.; Timofeyev, Y. Assessing Total and Tropospheric Ozone via IKFS-2 Infrared Measurements on Meteor-M No. 2. Atmosphere 2025, 16, 777. https://doi.org/10.3390/atmos16070777
Polyakov A, Virolainen Y, Nerobelov G, Akishina S, Kozlov D, Kriukovskikh E, Timofeyev Y. Assessing Total and Tropospheric Ozone via IKFS-2 Infrared Measurements on Meteor-M No. 2. Atmosphere. 2025; 16(7):777. https://doi.org/10.3390/atmos16070777
Chicago/Turabian StylePolyakov, Alexander, Yana Virolainen, Georgy Nerobelov, Svetlana Akishina, Dmitry Kozlov, Ekaterina Kriukovskikh, and Yuri Timofeyev. 2025. "Assessing Total and Tropospheric Ozone via IKFS-2 Infrared Measurements on Meteor-M No. 2" Atmosphere 16, no. 7: 777. https://doi.org/10.3390/atmos16070777
APA StylePolyakov, A., Virolainen, Y., Nerobelov, G., Akishina, S., Kozlov, D., Kriukovskikh, E., & Timofeyev, Y. (2025). Assessing Total and Tropospheric Ozone via IKFS-2 Infrared Measurements on Meteor-M No. 2. Atmosphere, 16(7), 777. https://doi.org/10.3390/atmos16070777