Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Quantifying the Influence of Cloud and Aerosol on Solar Irradiance
2.3. Conventional Statistical Method
2.4. Random Forest
2.5. Singular Value Decomposition
2.6. Empirical Orthogonal Function
2.7. Long Short-Term Memory Network
3. Results
3.1. Spatial Characteristics of Solar Irradiance
3.2. Influence of Clouds and Aerosols on Solar Irradiance
3.3. EOF Analysis of Solar Irradiance
3.4. Monthly Forecast of Solar Irradiance
3.4.1. Application of Climate Indices
3.4.2. Comparison of Forecasting Skill
4. Discussion
4.1. CERES Data Validation
4.2. Comparison with Previous Studies
4.3. Physical Mechanisms of Cloud and Aerosol Influence on Solar Irradiance
4.4. Methodological Considerations and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Dong, L.; Duan, H.X. On comprehensive evaluation and optimization of renewable energy development in China. Resour. Sci. 2011, 33, 431–440. [Google Scholar] [CrossRef]
- Sun, J. Analysis of grid connection control technology for distributed photovoltaic power plants. Sci. Technol. Innov. 2024, 7, 13–16. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. Contribution of solar radiation to decadal temperature variability over land. Proc. Natl. Acad. Sci. USA 2013, 110, 14877–14882. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating global land surface satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Zhong, S.M. Brief description for solar energy resources, and the prediction for photovoltaic power generation. J. Shenyang Inst. Eng. (Nat. Sci.) 2012, 8, 294–299. [Google Scholar] [CrossRef]
- Jin, Z.; Yezheng, W.; Gang, Y. Estimation of daily solar radiation in China. Chin. J. Agrometeorol. 2005, 26, 165–169. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Zhao, S.; Jin, F.-F.; Stuecker, M.F.; Thompson, P.R.; Kug, J.-S.; McPhaden, M.J.; Cane, M.A.; Wittenberg, A.T.; Cai, W. Explainable El Niño predictability from climate mode interactions. Nature 2024, 630, 891–898. [Google Scholar] [CrossRef]
- Huang, G.; Hu, K.M.; Qu, X.; Tao, W.C.; Yao, S.L.; Zhao, G.J.; Jiang, W.P. A review about Indian Ocean Basin Mode and its impacts on East Asian summer climate. Chin. J. Atmos. Sci. 2016, 40, 121–130. [Google Scholar] [CrossRef]
- Kumar, K.K.; Rajagopalan, B.; Cane, M.A. On the weakening relationship between the Indian monsoon and ENSO. Science 1999, 284, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Jiang, Z.; Guan, Z.; He, J.; Xu, Z. Interannual variability of summer climate of China in association with ENSO and the Indian Ocean Dipole. In Regional Climate Studies of China. Regional Climate Studies; Fu, C., Jiang, Z., Guan, Z., He, J., Xu, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 119–154. [Google Scholar] [CrossRef]
- Wang, W.; Guan, Z.; Xu, Q.; Wang, Y. A further look at the relationship between Indian Ocean Basin-wide Mode and the Maritime Continent precipitation anomalies during boreal summer. J. Meteorol. Sci. 2017, 37, 709–717. [Google Scholar] [CrossRef]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Wang, X.; Chen, S.; Chen, J.; Li, S. Indian Ocean Dipole and ENSO’s mechanistic importance in modulating the ensuing-summer precipitation over Eastern China. Clim. Atmos. Sci. 2022, 5, 48. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Wang, X.; Wang, X.; Zhang, R.; Li, Y.; Gan, J. IOD, ENSO, and seasonal precipitation variation over Eastern China. Atmos. Res. 2022, 270, 106042. [Google Scholar] [CrossRef]
- Gao, H.X.; Yuan, Z.Q.; Zhang, S.T.; Wang, X.C.; Zhang, H.Q.; Geng, H. Short-term photovoltaic power prediction based on LSTM model. Acta Energiae Solaris Sin. 2024, 45, 376–381. [Google Scholar] [CrossRef]
- Liu, Z.H. Evaluation and Improvement of Solar Radiation Prediction Methods Based on Weather Forecast Information. Master’s Thesis, University of Information Science and Technology, Nanjing, China, 2023. [Google Scholar]
- Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.; Lee, R.B., III; Smith, G.L.; Cooper, J.E. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Am. Meteorol. Soc. 1996, 77, 853–868. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, N.; Jiang, H.; Yao, L. The data fusion of multi-source downward surface solar radiation and evaluation. Remote Sens. Technol. Appl. 2018, 33, 850–856. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, R.; Shi, C.; Bai, L.; Liu, J.; Sun, S. Evaluation and comparison of downward solar radiation from new generation atmospheric reanalysis ERA5 across mainland China. J. Geo-Inf. Sci. 2021, 23, 2261–2274. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Ramanathan, V. The role of Earth Radiation Budget studies in climate and general circulation research. J. Geophys. Res. Atmos. 1987, 92, 4075–4095. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review. J. Hydrol. 2021, 598, 126266. [Google Scholar] [CrossRef]
- Ding, Y.G.; Jiang, Z.H. Generality of singular value decomposition in diagnostic analysis of meteorological field. Acta Meteorol. Sin. 1996, 54, 365–372. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Massachusetts Institute of Technology, Department of Meteorology: Cambridge, UK, 1956. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Wang, M.Y.; Hu, Y.Q.; Liu, C.L. Prediction of solar radiation values considering uncertainty of cloud cover and aerosols. Adv. Technol. Electr. Eng. Energy 2015, 34, 41–46. Available online: https://ateee.iee.ac.cn/EN/Y2015/V34/I5/41 (accessed on 9 April 2025).
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Wang, M.M.; Zou, B.; Shi, L.J.; Zeng, T.; Zhang, Y.; Lu, D.W. Research on multi-step prediction strategies of Arctic sea ice extent based on Long Short-Term Memory. Mar. Forecast. 2025, 42, 11–22. [Google Scholar] [CrossRef]
- Qin, F.; Li, D.X.; Ding, H.; Zhou, H. Characteristics of surface solar radiation and cloud fraction in China based on CERES. Acta Energiae Solaris Sin. 2022, 43, 8–14. [Google Scholar] [CrossRef]
- Lyu, W.Y.; Chen, D.P.; Hu, H.; Li, Y.; Liu, L.H.; Zhang, Y.K.; Yao, F.; Chen, P.L.; Qing, Z.X.; Guo, X. Preliminary analysis of cloud cover characteristics in major land areas of China based on optical engineering applications. J. Atmos. Environ. Opt. 2023, 18, 445–457. [Google Scholar] [CrossRef]
- Li, Y.C.; She, L.; Li, Q.M.; Wang, J.R.; Zhang, H.X. Spatiotemporal variation and influencing factors of aerosols over mainland China. J. Green Sci. Technol. 2020, 18, 4–9. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Y.; Song, X.; Pan, T. Spatiotemporal changes of solar radiation and the adaptability comparison of Ångström-Prescott calibration parameters at different temporal scales in China. Resour. Sci. 2022, 44, 287–298. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Liu, S.M. Variation Characteristics of Effective Radiation over the Tibetan Plateau Based on CERES Satellite Data. Plateau Meteorol. 2018, 37, 106–122. [Google Scholar] [CrossRef]
- Hang, Y. The Effect of Cloud Type on Earth’s Energy Balance. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2016. [Google Scholar]
- Li, Y.Y.; Yu, R.C.; Xu, Y.P.; Zhang, X.H. The formation and diurnal changes of stratiform clouds in southern China. Acta Meteorol. Sin. 2003, 61, 733–743. [Google Scholar] [CrossRef]
- Cai, H.K.; Feng, X.; Chen, Q.L.; Sun, Y.; Wu, Z.M.; Tie, X. Spatial and temporal features of the frequency of cloud occurrence over China based on CALIOP. Adv. Meteorol. 2017, 2017, 4548357. [Google Scholar] [CrossRef]
- Mao, Q.J.; Yang, K.Y. Study on optical scattering characteristics of core-shell particles and particle groups. Laser Optoelectron. Prog. 2024, 61, 514–521. [Google Scholar] [CrossRef]
- Zheng, X.B.; Luo, Y.X.; Zhao, T.L.; Chen, J.; Kang, W.M. Geographical and climatological characterization of aerosol distribution in China. Sci. Geogr. Sin. 2012, 32, 265–272. [Google Scholar] [CrossRef]
Index | Definition |
---|---|
IOD | SST anomaly difference between the western (50–70° E, 10° S–10° N) and eastern (90–110° E, 10–0° N) tropical Indian Ocean |
SIOD | SST anomaly difference between the south-central (65–85° E, 25–10° S) and southeastern (90–120° E, 30–5° S) Indian Ocean |
IOB | Area-averaged SST anomaly over the Indian Ocean (20° S–20° N, 40–110° E) |
ENSO | SST anomaly in the Niño 3.4 region (5° N–5° S, 120–170° W) |
AMM | Leading mode of maximum covariance analysis for SST and 10 m winds over the Atlantic (21° S–32° N, 74° W–15° E) |
PMM | Analogous to AMM but for the Pacific basin |
EOF Modes | Variance Contribution/% | Cumulative Variance% |
---|---|---|
1 | 19.67 | 19.67 |
2 | 11.87 | 31.54 |
3 | 8.15 | 36.96 |
4 | 7.34 | 47.03 |
5 | 6.65 | 53.67 |
r | Regression Coefficients | Importance Score | |
---|---|---|---|
IOD | −0.0059 | 0.14 | 0.176 |
SIOD | 0.0495 | 0.08 | 0.140 |
IOB | −0.1802 * | −0.73 | 0.198 |
ENSO | −0.0316 | 0.19 | 0.177 |
AMM | 0.0949 | 0.10 | 0.167 |
PMM | 0.0049 | −0.12 | 0.141 |
8:2 | 7:3 | 6:4 | ||||
---|---|---|---|---|---|---|
r | RMSE | r | RMSE | r | RMSE | |
Training set | 0.82 | 0.62 | 0.81 | 0.68 | 0.83 | 0.65 |
Testing set | 0.83 | 0.69 | 0.82 | 0.73 | 0.83 | 0.70 |
Irradiance | IOB and Irradiance | ENSO and Irradiance | IOD and Irradiance | |||||
---|---|---|---|---|---|---|---|---|
Input Length/Month | r | RMSE | r | RMSE | r | RMSE | r | RMSE |
1 | 0.73 | 0.68 | 0.74 | 0.72 | 0.67 | 0.75 | 0.64 | 0.78 |
3 | 0.51 | 0.86 | 0.56 | 0.86 | 0.47 | 0.88 | 0.38 | 0.92 |
6 | 0.34 | 0.94 | 0.44 | 0.92 | 0.34 | 0.94 | 0.25 | 0.98 |
9 | 0.29 | 0.95 | 0.40 | 0.94 | 0.27 | 0.96 | 0.24 | 0.97 |
12 | 0.28 | 0.96 | 0.40 | 0.94 | 0.26 | 0.96 | 0.23 | 0.98 |
Irradiance | IOB and Irradiance | ENSO and Irradiance | IOD and Irradiance | |||||
---|---|---|---|---|---|---|---|---|
Input Length/Month | r | RMSE | r | RMSE | r | RMSE | r | RMSE |
1 | 0.99 | 0.55 | 0.99 | 0.56 | 0.98 | 0.62 | 0.95 | 0.62 |
3 | 0.83 | 0.69 | 0.84 | 0.63 | 0.84 | 0.70 | 0.84 | 0.63 |
6 | 0.59 | 0.95 | 0.66 | 0.88 | 0.62 | 0.93 | 0.61 | 0.93 |
9 | 0.42 | 1.05 | 0.54 | 1.00 | 0.51 | 1.00 | 0.49 | 1.00 |
12 | 0.37 | 1.09 | 0.40 | 1.08 | 0.38 | 1.06 | 0.27 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, X. Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China. Atmosphere 2025, 16, 730. https://doi.org/10.3390/atmos16060730
Zhang S, Wang X. Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China. Atmosphere. 2025; 16(6):730. https://doi.org/10.3390/atmos16060730
Chicago/Turabian StyleZhang, Shuting, and Xiaochun Wang. 2025. "Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China" Atmosphere 16, no. 6: 730. https://doi.org/10.3390/atmos16060730
APA StyleZhang, S., & Wang, X. (2025). Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China. Atmosphere, 16(6), 730. https://doi.org/10.3390/atmos16060730