COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Outcome
2.3. Independent Variables
2.4. Statistical Analysis
3. Results
3.1. Descriptive
Category | Description | Dependent Variable | Mean | 2 SD | Min | Max | Obs. |
---|---|---|---|---|---|---|---|
COVID-19-Related Inpatient Mortality | (county count of COVID-19-related inpatient mortality)/(county count of patient) × 100,000 | Inpatient Mortality per 100,000 | 9737.43 | 4426.83 | 2380.95 | 33,333.34 | 120 |
Independent Variables | |||||||
Age Group | (County count of patients by respective age group)/(county count of patients) × 100 | % of 18–54 | 25.62 | 5.19 | 0.00 | 36.75 | 120 |
% of 55–64 | 53.47 | 5.90 | 30.00 | 68.00 | 120 | ||
Sex | (County count of patients by respective sex)/(county count of patients) × 100 | % of Female | 46.94 | 6.21 | 32.56 | 77.78 | 120 |
% of Male | 53.06 | 6.21 | 22.22 | 67.44 | 120 | ||
Lung Disease | (County count of COPD patients)/(county count of patients) × 100 | 1 % of COPD | 18.46 | 5.23 | 0.00 | 33.33 | 120 |
Mechanical Ventilation Use | (County count of patients mechanically ventilated 96 hrs. plus)/(county count of patients) × 100 | % of 96 hrs. Plus | 11.27 | 4.00 | 2.86 | 22.22 | 120 |
Social Deprivation Index (SDI) | County-level SDI score ranging from 0 to 100 | SDI Score (0:100) | 66.74 | 20.91 | 3.00 | 96.00 | 120 |
Healthcare Access | County-level physician rate per 100,000 population | Physician per 100k | 109.67 | 118.60 | 0.00 | 848.99 | 120 |
County-level nurse rate per 100,000 population | Nurse per 100k | 131.44 | 87.25 | 20.54 | 483.37 | 120 | |
Air Quality | Annual average particulate matter 2.5 | PM2.5 | 7.95 | 0.63 | 5.60 | 9.80 | 120 |
3.2. OLS Regression and MGWR Model
Unstandardized β | Standardized β | 1 SE | 95% CI | p-Value | 2 VIF | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Intercept | 4629.87 | 8487.99 | −12,189.64 | 21,449.38 | 0.59 | ||
Age Group (ref: % of 18–54) | |||||||
% of 55–64 | 38.31 | 0.05 | 58.58 | −77.78 | 154.40 | 0.52 | 1.13 |
Sex (ref: % Female) | |||||||
% of Male | −65.55 | −0.09 | 55.96 | −176.43 | 45.33 | 0.24 | 1.14 |
Lung Disease | |||||||
% of COPD | 189.68 | 0.22 | 67.54 | 55.83 | 323.52 | 0.01 | 1.18 |
Mechanical Ventilation Use | |||||||
% of 96 hrs. Plus | 581.45 | 0.53 | 84.85 | 413.30 | 749.59 | <0.001 | 1.09 |
Social Deprivation Index (SDI) | |||||||
SDI Score (0:100) | −10.11 | −0.05 | 21.51 | −52.73 | 32.50 | 0.64 | 1.91 |
Healthcare Workforce | |||||||
Physicians per 100k | −1.46 | −0.04 | 4.18 | −9.74 | 6.82 | 0.73 | 2.32 |
Nurses per 100k | −3.99 | −0.08 | 5.58 | −15.06 | 7.07 | 0.48 | 2.24 |
Air Quality | |||||||
PM2.5 | −237.60 | −0.03 | 688.77 | −1602.45 | 1127.25 | 0.73 | 1.78 |
1 Mean | 1 SD | 1 Min | 1 Median | 1 Max | 2 Counties (%) | 3 Bandwidth | 4 Scale of Effect (%) | ||
---|---|---|---|---|---|---|---|---|---|
Intercept | 0.09 | 0.02 | 0.04 | 0.09 | 0.12 | 0.00 | 117 | Statewide Global | 97.50 |
Age Group (ref: % of 18–54) | |||||||||
% of 55–64 | 0.14 | 0.15 | −0.08 | 0.18 | 0.45 | 21.67 | 65 | Large Regional | 54.17 |
Sex (ref: % Female) | |||||||||
% of Male | 0.08 | 0.01 | 0.07 | 0.07 | 0.10 | 0.00 | 119 | Statewide Global | 99.17 |
Lung Disease | |||||||||
% of COPD | 0.21 | 0.25 | −0.43 | 0.24 | 0.55 | 48.33 | 45 | Medium Regional | 37.50 |
Mechanical Ventilation Use | |||||||||
% of 96 hrs. Plus | 0.45 | 0.24 | 0.03 | 0.46 | 0.93 | 69.17 | 44 | Medium Regional | 36.67 |
Social Deprivation Index (SDI) | |||||||||
SDI Score (0:100) | 0.06 | 0.04 | −0.04 | 0.08 | 0.08 | 0.00 | 117 | Statewide Global | 97.50 |
Healthcare Access | |||||||||
Physicians per 100 k | −0.02 | 0.02 | −0.03 | −0.02 | 0.03 | 0.00 | 119 | Statewide Global | 99.17 |
Nurses per 100 k | −0.06 | 0.01 | −0.08 | −0.07 | −0.03 | 0.00 | 119 | Statewide Global | 99.17 |
Air Quality | |||||||||
PM2.5 | 0.05 | 0.01 | 0.02 | 0.05 | 0.07 | 0.00 | 119 | Statewide Global | 99.17 |
1 Mean | 1 SD | 1 Min | 1 Median | 1 Max | 2 Counties (%) | 3 Bandwidth | 4 Scale of Effect (%) | ||
---|---|---|---|---|---|---|---|---|---|
Age Group (ref: % of 18–54) | |||||||||
% of 55–64 | 0.35 | 0.06 | 0.24 | 0.34 | 0.45 | 21.67 | 65 | Large Regional | 54.17 |
Lung Disease | |||||||||
% of COPD | 0.38 | 0.23 | −0.43 | 0.43 | 0.55 | 48.33 | 45 | Medium Regional | 37.50 |
Mechanical Ventilation Use | |||||||||
% of 96 hrs. Plus | 0.57 | 0.18 | 0.26 | 0.56 | 0.93 | 69.17 | 44 | Medium Regional | 36.67 |
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. COVID Data Tracker. 2025. Available online: https://covid.cdc.gov/covid-data-tracker/#maps_percent-covid-deaths (accessed on 21 April 2025).
- Puebla Neira, D.A.; Watts, A.; Seashore, J.; Duarte, A.; Nishi, S.P.; Polychronopoulou, E.; Kuo, Y.F.; Baillargeon, J.; Sharma, G. Outcomes of Patients with COPD Hospitalized for Coronavirus Disease 2019. Chronic Obstr. Pulm. Dis. 2021, 8, 517–527. [Google Scholar] [CrossRef]
- Brakefield, W.S.; Olusanya, O.A.; White, B.; Shaban-Nejad, A. Social Determinants and Indicators of COVID-19 Among Marginalized Communities: A Scientific Review and Call to Action for Pandemic Response and Recovery. Disaster Med. Public Health Prep. 2022, 17, e193. [Google Scholar] [CrossRef] [PubMed]
- Potere, N.; Valeriani, E.; Candeloro, M.; Tana, M.; Porreca, E.; Abbate, A.; Spoto, S.; Rutjes, A.W.S.; Di Nisio, M. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: A systematic review and meta-analysis. Crit. Care 2020, 24, 389. [Google Scholar] [CrossRef]
- Su, W.; Wu, X.; Geng, X.; Zhao, X.; Liu, Q.; Liu, T. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health 2019, 19, 1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, Z.; Huang, T.; Wang, B.; Sun, Z.; Gao, X.; Wang, W. Short-Term Effects of Air Pollution on the Risk of Influenza in Jinan, China during 2020–2021: A Time-Series Analysis. Atmosphere 2023, 14, 53. [Google Scholar] [CrossRef]
- Kim, J.M.; Chung, Y.S.; Jo, H.J.; Lee, N.J.; Kim, M.S.; Woo, S.H.; Park, S.; Kim, J.W.; Kim, H.M.; Han, M.G. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res. Perspect. 2020, 11, 3–7. [Google Scholar] [CrossRef]
- Nor, N.S.M.; Yip, C.W.; Ibrahim, N.; Jaafar, M.H.; Rashid, Z.Z.; Mustafa, N.; Hamid, H.H.A.; Chandru, K.; Latif, M.T.; Saw, P.E.; et al. Particulate matter (PM(2.5)) as a potential SARS-CoV-2 carrier. Sci. Rep. 2021, 11, 2508. [Google Scholar] [CrossRef]
- Shao, L.; Cao, Y.; Jones, T.; Santosh, M.; Silva, L.F.O.; Ge, S.; da Boit, K.; Feng, X.; Zhang, M.; BeruBe, K. COVID-19 mortality and exposure to airborne PM(2.5): A lag time correlation. Sci. Total Environ. 2022, 806, 151286. [Google Scholar] [CrossRef]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef]
- Denslow, S.; Wingert, J.R.; Hanchate, A.D.; Rote, A.; Westreich, D.; Sexton, L.; Cheng, K.; Curtis, J.; Jones, W.S.; Lanou, A.J.; et al. Rural-urban outcome differences associated with COVID-19 hospitalizations in North Carolina. PLoS ONE 2022, 17, e0271755. [Google Scholar] [CrossRef]
- Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Chai, S.J.; Kirley, P.D.; Alden, N.B.; et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 States, March 1–30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 458–464. [Google Scholar] [CrossRef]
- Gold, J.A.W.; Wong, K.K.; Szablewski, C.M.; Patel, P.R.; Rossow, J.; da Silva, J.; Natarajan, P.; Morris, S.B.; Fanfair, R.N.; Rogers-Brown, J.; et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19—Georgia, March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Imam, Z.; Odish, F.; Gill, I.; O’Connor, D.; Armstrong, J.; Vanood, A.; Ibironke, O.; Hanna, A.; Ranski, A.; Halalau, A. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J. Intern. Med. 2020, 288, 469–476. [Google Scholar] [CrossRef]
- Roth, G.A.; Emmons-Bell, S.; Alger, H.M.; Bradley, S.M.; Das, S.R.; de Lemos, J.A.; Gakidou, E.; Elkind, M.S.V.; Hay, S.; Hall, J.L.; et al. Trends in Patient Characteristics and COVID-19 In-Hospital Mortality in the United States During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e218828. [Google Scholar] [CrossRef] [PubMed]
- Mendy, A.; Wu, X.; Keller, J.L.; Fassler, C.S.; Apewokin, S.; Mersha, T.B.; Xie, C.; Pinney, S.M. Air pollution and the pandemic: Long-term PM(2.5) exposure and disease severity in COVID-19 patients. Respirology 2021, 26, 1181–1187. [Google Scholar] [CrossRef]
- Howland, R.E.; Wang, S.; Ellen, I.G.; Glied, S. Not a New Story: Place- and Race-Based Disparities in COVID-19 and Influenza Hospitalizations among Medicaid-Insured Adults in New York City. J. Urban Health 2022, 99, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.; Chang, T.Y.; Shah, M.; Pramanik, R.; Shah, S.B. Racial and Ethnic Disparities in SARS-CoV-2 Testing and COVID-19 Outcomes in a Medicaid Managed Care Cohort. Am. J. Prev. Med. 2021, 61, 644–651. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Leung, Y.; Mei, C.-L.; Zhang, W.-X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ. Plan. A Econ. Space 2000, 32, 9–32. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Liu, J.; Li, Y.; Liu, D.; Tong, J.; Li, Z.; Yu, D.; Fan, Y.; Bi, X.; et al. Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models. PLoS ONE 2020, 15, e0238280. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, Y.; Azimian, A. Exploring temporal varying demographic and economic disparities in COVID-19 infections in four U.S. areas: Based on OLS, GWR, and random forest models. Comput. Urban Sci. 2021, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, J. Exploration of spatial-temporal varying impacts on COVID-19 cumulative case in Texas using geographically weighted regression (GWR). Environ. Sci. Pollut. Res. 2021, 28, 43732–43746. [Google Scholar] [CrossRef] [PubMed]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Bazell, C.; Alston, M.; Feigler, N.; Germack, H.D.; Leary, S.; Fopalan, W.; Mannino, D. Variation in Prevalence and Burden of Chronic Obstructive Pulmonary Disease by State and Insurance Type in the United States. Chronic Obstr. Pulm. Dis. 2025, 12, 158–174. [Google Scholar] [CrossRef]
- UK Center of Excellence in Rural Health. Demographics, Analytics, Trends and Access (K-DATA); UK Center of Excellence in Rural Health: Hazard, KY, USA, 2022. [Google Scholar]
- Kamour, A.; David, M.; Kanotra, S. Prevalence and Comorbidities of Chronic Obstructive Pulmonary Disease Among Adults in Kentucky Across Gender and Area Development Districts, 2011. Chronic Obstr. Pulm. Dis. 2015, 2, 296–312. [Google Scholar] [CrossRef]
- UK Center of Excellence in Rural Health. Kentucky Physician Report; University of Kentucky (UK): Lexington, KY, USA, 2022. [Google Scholar]
- CHFS. Health Facility and Services Data. 2024. Available online: https://www.chfs.ky.gov/agencies/ohda/Pages/hfsd.aspx (accessed on 15 March 2024).
- NCHS. COVID-19 Hospital Encounters by Week from Selected Hospitals. 2020. Available online: https://www.cdc.gov/nchs/covid19/nhcs/hospital-encounters-by-week.htm (accessed on 28 June 2024).
- Ahmad, F.B.; Cisewski, J.A.; Xu, J.; Anderson, R.N. Provisional Mortality Data—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 488–492. [Google Scholar] [CrossRef]
- Chronic Conditions Data Warehouse. Condition Categories. 2024. Available online: https://www2.ccwdata.org/web/guest/condition-categories (accessed on 28 June 2024).
- Bruce, S.S.; Navi, B.B.; Zhang, C.; Kim, J.; Devereux, R.B.; Schenck, E.J.; Sedrakyan, A.; Díaz, I.; Kamel, H. Transesophageal echocardiography and risk of respiratory failure in patients who had ischemic stroke or transient ischemic attack: An IDEAL phase 4 study. BMJ Surg. Interv. Health Technol. 2022, 4, e000116. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Butler, D.C.; Petterson, S.; Phillips, R.L.; Bazemore, A.W. Measures of social deprivation that predict health care access and need within a rational area of primary care service delivery. Health Serv. Res. 2013, 48, 539–559. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Area Health Resources Files (AHRF). 2021. Available online: https://data.hrsa.gov/topics/health-workforce/ahrf (accessed on 25 April 2024).
- Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. 2025. Available online: https://ephtracking.cdc.gov/ (accessed on 25 April 2024).
- Mahanty, C.; Kumar, R.; Mishra, B.K. Analyses the effects of COVID-19 outbreak on human sexual behaviour using ordinary least-squares based multivariate logistic regression. Qual. Quant. 2021, 55, 1239–1259. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesth. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Klee, E.W. Data mining for biomarker development: A review of tissue specificity analysis. Clin. Lab. Med. 2008, 28, 127–143. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Ku, B.S.; Druss, B.G. Associations Between Primary Care Provider Shortage Areas and County-Level COVID-19 Infection and Mortality Rates in the USA. J. Gen. Intern. Med. 2020, 35, 3404–3405. [Google Scholar] [CrossRef] [PubMed]
- Janke, A.T.; Mei, H.; Rothenberg, C.; Becher, R.D.; Lin, Z.; Venkatesh, A.K. Analysis of Hospital Resource Availability and COVID-19 Mortality Across the United States. J. Hosp. Med. 2021, 16, 211–214. [Google Scholar] [CrossRef]
- Kadri, S.S.; Sun, J.; Lawandi, A.; Strich, J.R.; Busch, L.M.; Keller, M.; Babiker, A.; Yek, C.; Malik, S.; Krack, J.; et al. Association Between Caseload Surge and COVID-19 Survival in 558 U.S. Hospitals, March to August 2020. Ann. Intern. Med. 2021, 174, 1240–1251. [Google Scholar] [CrossRef]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical Supply Shortages—The Need for Ventilators and Personal Protective Equipment during the COVID-19 Pandemic. N. Engl. J. Med. 2020, 382, e41. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Q.; Wei, Y.; Chen, R.; Kan, H. Global association between air pollution and COVID-19 mortality: A systematic review and meta-analysis. Sci. Total Environ. 2024, 906, 167542. [Google Scholar] [CrossRef]
- Sheppard, N.; Carroll, M.; Gao, C.; Lane, T. Particulate matter air pollution and COVID-19 infection, severity, and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2023, 880, 163272. [Google Scholar] [CrossRef]
- Biswas, M.; Rahaman, S.; Biswas, T.K.; Haque, Z.; Ibrahim, B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology 2020, 64, 36–47. [Google Scholar] [CrossRef]
- Graziani, D.; Soriano, J.B.; Del Rio-Bermudez, C.; Morena, D.; Diaz, T.; Castillo, M.; Alonso, M.; Ancochea, J.; Lumbreras, S.; Izquierdo, J.L. Characteristics and Prognosis of COVID-19 in Patients with COPD. J. Clin. Med. 2020, 9, 3259. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Auld, S.C.; Caridi-Scheible, M.; Blum, J.M.; Robichaux, C.; Kraft, C.; Jacob, J.T.; Jabaley, C.S.; Carpenter, D.; Kaplow, R.; Hernandez-Romieu, A.C.; et al. ICU and ventilator mortality among critically ill adults with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Hogg-Graham, R.; Carman, A.; Mays, G.P.; Zephyr, P.M.D. Geographic Variation in the Structure of Kentucky’s Population Health Systems: An Urban, Rural, and Appalachian Comparison. J. Appalach. Health 2020, 2, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, N.; Bertella, E. Lifestyle interventions in prevention and comprehensive management of COPD. Breathe 2018, 14, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Croft, J.B.; Wheaton, A.G.; Liu, Y.; Xu, F.; Lu, H.; Matthews, K.A.; Cunningham, T.J.; Wang, Y.; Holt, J.B. Urban-Rural County and State Differences in Chronic Obstructive Pulmonary Disease—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 205–211. [Google Scholar] [CrossRef]
- Cunningham, M.; Patel, K.; McCall, T.; Hall, K.; Garofalini, C.; Lee, J.; Alford, A. 2022 National Profile of Local Health Departments; National Association of County and City Health Officials: Washington, DC, USA, 2024. [Google Scholar]
- Leider, J.P.; Meit, M.; McCullough, J.M.; Resnick, B.; Dekker, D.; Alfonso, Y.N.; Bishai, D. The State of Rural Public Health: Enduring Needs in a New Decade. Am. J. Public Health 2020, 110, 1283–1290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakib, S.H.; Little, B.B.; Karimi, S.M.; Goldsby, M. COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors. Atmosphere 2025, 16, 684. https://doi.org/10.3390/atmos16060684
Shakib SH, Little BB, Karimi SM, Goldsby M. COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors. Atmosphere. 2025; 16(6):684. https://doi.org/10.3390/atmos16060684
Chicago/Turabian StyleShakib, Shaminul H., Bert B. Little, Seyed M. Karimi, and Michael Goldsby. 2025. "COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors" Atmosphere 16, no. 6: 684. https://doi.org/10.3390/atmos16060684
APA StyleShakib, S. H., Little, B. B., Karimi, S. M., & Goldsby, M. (2025). COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors. Atmosphere, 16(6), 684. https://doi.org/10.3390/atmos16060684