COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Outcome
2.3. Independent Variables
2.4. Statistical Analysis
3. Results
3.1. Descriptive
Category | Description | Dependent Variable | Mean | 2 SD | Min | Max | Obs. |
---|---|---|---|---|---|---|---|
COVID-19-Related Inpatient Mortality | (county count of COVID-19-related inpatient mortality)/(county count of patient) × 100,000 | Inpatient Mortality per 100,000 | 9737.43 | 4426.83 | 2380.95 | 33,333.34 | 120 |
Independent Variables | |||||||
Age Group | (County count of patients by respective age group)/(county count of patients) × 100 | % of 18–54 | 25.62 | 5.19 | 0.00 | 36.75 | 120 |
% of 55–64 | 53.47 | 5.90 | 30.00 | 68.00 | 120 | ||
Sex | (County count of patients by respective sex)/(county count of patients) × 100 | % of Female | 46.94 | 6.21 | 32.56 | 77.78 | 120 |
% of Male | 53.06 | 6.21 | 22.22 | 67.44 | 120 | ||
Lung Disease | (County count of COPD patients)/(county count of patients) × 100 | 1 % of COPD | 18.46 | 5.23 | 0.00 | 33.33 | 120 |
Mechanical Ventilation Use | (County count of patients mechanically ventilated 96 hrs. plus)/(county count of patients) × 100 | % of 96 hrs. Plus | 11.27 | 4.00 | 2.86 | 22.22 | 120 |
Social Deprivation Index (SDI) | County-level SDI score ranging from 0 to 100 | SDI Score (0:100) | 66.74 | 20.91 | 3.00 | 96.00 | 120 |
Healthcare Access | County-level physician rate per 100,000 population | Physician per 100k | 109.67 | 118.60 | 0.00 | 848.99 | 120 |
County-level nurse rate per 100,000 population | Nurse per 100k | 131.44 | 87.25 | 20.54 | 483.37 | 120 | |
Air Quality | Annual average particulate matter 2.5 | PM2.5 | 7.95 | 0.63 | 5.60 | 9.80 | 120 |
3.2. OLS Regression and MGWR Model
Unstandardized β | Standardized β | 1 SE | 95% CI | p-Value | 2 VIF | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Intercept | 4629.87 | 8487.99 | −12,189.64 | 21,449.38 | 0.59 | ||
Age Group (ref: % of 18–54) | |||||||
% of 55–64 | 38.31 | 0.05 | 58.58 | −77.78 | 154.40 | 0.52 | 1.13 |
Sex (ref: % Female) | |||||||
% of Male | −65.55 | −0.09 | 55.96 | −176.43 | 45.33 | 0.24 | 1.14 |
Lung Disease | |||||||
% of COPD | 189.68 | 0.22 | 67.54 | 55.83 | 323.52 | 0.01 | 1.18 |
Mechanical Ventilation Use | |||||||
% of 96 hrs. Plus | 581.45 | 0.53 | 84.85 | 413.30 | 749.59 | <0.001 | 1.09 |
Social Deprivation Index (SDI) | |||||||
SDI Score (0:100) | −10.11 | −0.05 | 21.51 | −52.73 | 32.50 | 0.64 | 1.91 |
Healthcare Workforce | |||||||
Physicians per 100k | −1.46 | −0.04 | 4.18 | −9.74 | 6.82 | 0.73 | 2.32 |
Nurses per 100k | −3.99 | −0.08 | 5.58 | −15.06 | 7.07 | 0.48 | 2.24 |
Air Quality | |||||||
PM2.5 | −237.60 | −0.03 | 688.77 | −1602.45 | 1127.25 | 0.73 | 1.78 |
1 Mean | 1 SD | 1 Min | 1 Median | 1 Max | 2 Counties (%) | 3 Bandwidth | 4 Scale of Effect (%) | ||
---|---|---|---|---|---|---|---|---|---|
Intercept | 0.09 | 0.02 | 0.04 | 0.09 | 0.12 | 0.00 | 117 | Statewide Global | 97.50 |
Age Group (ref: % of 18–54) | |||||||||
% of 55–64 | 0.14 | 0.15 | −0.08 | 0.18 | 0.45 | 21.67 | 65 | Large Regional | 54.17 |
Sex (ref: % Female) | |||||||||
% of Male | 0.08 | 0.01 | 0.07 | 0.07 | 0.10 | 0.00 | 119 | Statewide Global | 99.17 |
Lung Disease | |||||||||
% of COPD | 0.21 | 0.25 | −0.43 | 0.24 | 0.55 | 48.33 | 45 | Medium Regional | 37.50 |
Mechanical Ventilation Use | |||||||||
% of 96 hrs. Plus | 0.45 | 0.24 | 0.03 | 0.46 | 0.93 | 69.17 | 44 | Medium Regional | 36.67 |
Social Deprivation Index (SDI) | |||||||||
SDI Score (0:100) | 0.06 | 0.04 | −0.04 | 0.08 | 0.08 | 0.00 | 117 | Statewide Global | 97.50 |
Healthcare Access | |||||||||
Physicians per 100 k | −0.02 | 0.02 | −0.03 | −0.02 | 0.03 | 0.00 | 119 | Statewide Global | 99.17 |
Nurses per 100 k | −0.06 | 0.01 | −0.08 | −0.07 | −0.03 | 0.00 | 119 | Statewide Global | 99.17 |
Air Quality | |||||||||
PM2.5 | 0.05 | 0.01 | 0.02 | 0.05 | 0.07 | 0.00 | 119 | Statewide Global | 99.17 |
1 Mean | 1 SD | 1 Min | 1 Median | 1 Max | 2 Counties (%) | 3 Bandwidth | 4 Scale of Effect (%) | ||
---|---|---|---|---|---|---|---|---|---|
Age Group (ref: % of 18–54) | |||||||||
% of 55–64 | 0.35 | 0.06 | 0.24 | 0.34 | 0.45 | 21.67 | 65 | Large Regional | 54.17 |
Lung Disease | |||||||||
% of COPD | 0.38 | 0.23 | −0.43 | 0.43 | 0.55 | 48.33 | 45 | Medium Regional | 37.50 |
Mechanical Ventilation Use | |||||||||
% of 96 hrs. Plus | 0.57 | 0.18 | 0.26 | 0.56 | 0.93 | 69.17 | 44 | Medium Regional | 36.67 |
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. COVID Data Tracker. 2025. Available online: https://covid.cdc.gov/covid-data-tracker/#maps_percent-covid-deaths (accessed on 21 April 2025).
- Puebla Neira, D.A.; Watts, A.; Seashore, J.; Duarte, A.; Nishi, S.P.; Polychronopoulou, E.; Kuo, Y.F.; Baillargeon, J.; Sharma, G. Outcomes of Patients with COPD Hospitalized for Coronavirus Disease 2019. Chronic Obstr. Pulm. Dis. 2021, 8, 517–527. [Google Scholar] [CrossRef]
- Brakefield, W.S.; Olusanya, O.A.; White, B.; Shaban-Nejad, A. Social Determinants and Indicators of COVID-19 Among Marginalized Communities: A Scientific Review and Call to Action for Pandemic Response and Recovery. Disaster Med. Public Health Prep. 2022, 17, e193. [Google Scholar] [CrossRef] [PubMed]
- Potere, N.; Valeriani, E.; Candeloro, M.; Tana, M.; Porreca, E.; Abbate, A.; Spoto, S.; Rutjes, A.W.S.; Di Nisio, M. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: A systematic review and meta-analysis. Crit. Care 2020, 24, 389. [Google Scholar] [CrossRef]
- Su, W.; Wu, X.; Geng, X.; Zhao, X.; Liu, Q.; Liu, T. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health 2019, 19, 1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, Z.; Huang, T.; Wang, B.; Sun, Z.; Gao, X.; Wang, W. Short-Term Effects of Air Pollution on the Risk of Influenza in Jinan, China during 2020–2021: A Time-Series Analysis. Atmosphere 2023, 14, 53. [Google Scholar] [CrossRef]
- Kim, J.M.; Chung, Y.S.; Jo, H.J.; Lee, N.J.; Kim, M.S.; Woo, S.H.; Park, S.; Kim, J.W.; Kim, H.M.; Han, M.G. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res. Perspect. 2020, 11, 3–7. [Google Scholar] [CrossRef]
- Nor, N.S.M.; Yip, C.W.; Ibrahim, N.; Jaafar, M.H.; Rashid, Z.Z.; Mustafa, N.; Hamid, H.H.A.; Chandru, K.; Latif, M.T.; Saw, P.E.; et al. Particulate matter (PM(2.5)) as a potential SARS-CoV-2 carrier. Sci. Rep. 2021, 11, 2508. [Google Scholar] [CrossRef]
- Shao, L.; Cao, Y.; Jones, T.; Santosh, M.; Silva, L.F.O.; Ge, S.; da Boit, K.; Feng, X.; Zhang, M.; BeruBe, K. COVID-19 mortality and exposure to airborne PM(2.5): A lag time correlation. Sci. Total Environ. 2022, 806, 151286. [Google Scholar] [CrossRef]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef]
- Denslow, S.; Wingert, J.R.; Hanchate, A.D.; Rote, A.; Westreich, D.; Sexton, L.; Cheng, K.; Curtis, J.; Jones, W.S.; Lanou, A.J.; et al. Rural-urban outcome differences associated with COVID-19 hospitalizations in North Carolina. PLoS ONE 2022, 17, e0271755. [Google Scholar] [CrossRef]
- Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Chai, S.J.; Kirley, P.D.; Alden, N.B.; et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 States, March 1–30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 458–464. [Google Scholar] [CrossRef]
- Gold, J.A.W.; Wong, K.K.; Szablewski, C.M.; Patel, P.R.; Rossow, J.; da Silva, J.; Natarajan, P.; Morris, S.B.; Fanfair, R.N.; Rogers-Brown, J.; et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19—Georgia, March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Imam, Z.; Odish, F.; Gill, I.; O’Connor, D.; Armstrong, J.; Vanood, A.; Ibironke, O.; Hanna, A.; Ranski, A.; Halalau, A. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J. Intern. Med. 2020, 288, 469–476. [Google Scholar] [CrossRef]
- Roth, G.A.; Emmons-Bell, S.; Alger, H.M.; Bradley, S.M.; Das, S.R.; de Lemos, J.A.; Gakidou, E.; Elkind, M.S.V.; Hay, S.; Hall, J.L.; et al. Trends in Patient Characteristics and COVID-19 In-Hospital Mortality in the United States During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e218828. [Google Scholar] [CrossRef] [PubMed]
- Mendy, A.; Wu, X.; Keller, J.L.; Fassler, C.S.; Apewokin, S.; Mersha, T.B.; Xie, C.; Pinney, S.M. Air pollution and the pandemic: Long-term PM(2.5) exposure and disease severity in COVID-19 patients. Respirology 2021, 26, 1181–1187. [Google Scholar] [CrossRef]
- Howland, R.E.; Wang, S.; Ellen, I.G.; Glied, S. Not a New Story: Place- and Race-Based Disparities in COVID-19 and Influenza Hospitalizations among Medicaid-Insured Adults in New York City. J. Urban Health 2022, 99, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.; Chang, T.Y.; Shah, M.; Pramanik, R.; Shah, S.B. Racial and Ethnic Disparities in SARS-CoV-2 Testing and COVID-19 Outcomes in a Medicaid Managed Care Cohort. Am. J. Prev. Med. 2021, 61, 644–651. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Leung, Y.; Mei, C.-L.; Zhang, W.-X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ. Plan. A Econ. Space 2000, 32, 9–32. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Liu, J.; Li, Y.; Liu, D.; Tong, J.; Li, Z.; Yu, D.; Fan, Y.; Bi, X.; et al. Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models. PLoS ONE 2020, 15, e0238280. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, Y.; Azimian, A. Exploring temporal varying demographic and economic disparities in COVID-19 infections in four U.S. areas: Based on OLS, GWR, and random forest models. Comput. Urban Sci. 2021, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, J. Exploration of spatial-temporal varying impacts on COVID-19 cumulative case in Texas using geographically weighted regression (GWR). Environ. Sci. Pollut. Res. 2021, 28, 43732–43746. [Google Scholar] [CrossRef] [PubMed]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Bazell, C.; Alston, M.; Feigler, N.; Germack, H.D.; Leary, S.; Fopalan, W.; Mannino, D. Variation in Prevalence and Burden of Chronic Obstructive Pulmonary Disease by State and Insurance Type in the United States. Chronic Obstr. Pulm. Dis. 2025, 12, 158–174. [Google Scholar] [CrossRef]
- UK Center of Excellence in Rural Health. Demographics, Analytics, Trends and Access (K-DATA); UK Center of Excellence in Rural Health: Hazard, KY, USA, 2022. [Google Scholar]
- Kamour, A.; David, M.; Kanotra, S. Prevalence and Comorbidities of Chronic Obstructive Pulmonary Disease Among Adults in Kentucky Across Gender and Area Development Districts, 2011. Chronic Obstr. Pulm. Dis. 2015, 2, 296–312. [Google Scholar] [CrossRef]
- UK Center of Excellence in Rural Health. Kentucky Physician Report; University of Kentucky (UK): Lexington, KY, USA, 2022. [Google Scholar]
- CHFS. Health Facility and Services Data. 2024. Available online: https://www.chfs.ky.gov/agencies/ohda/Pages/hfsd.aspx (accessed on 15 March 2024).
- NCHS. COVID-19 Hospital Encounters by Week from Selected Hospitals. 2020. Available online: https://www.cdc.gov/nchs/covid19/nhcs/hospital-encounters-by-week.htm (accessed on 28 June 2024).
- Ahmad, F.B.; Cisewski, J.A.; Xu, J.; Anderson, R.N. Provisional Mortality Data—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 488–492. [Google Scholar] [CrossRef]
- Chronic Conditions Data Warehouse. Condition Categories. 2024. Available online: https://www2.ccwdata.org/web/guest/condition-categories (accessed on 28 June 2024).
- Bruce, S.S.; Navi, B.B.; Zhang, C.; Kim, J.; Devereux, R.B.; Schenck, E.J.; Sedrakyan, A.; Díaz, I.; Kamel, H. Transesophageal echocardiography and risk of respiratory failure in patients who had ischemic stroke or transient ischemic attack: An IDEAL phase 4 study. BMJ Surg. Interv. Health Technol. 2022, 4, e000116. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Butler, D.C.; Petterson, S.; Phillips, R.L.; Bazemore, A.W. Measures of social deprivation that predict health care access and need within a rational area of primary care service delivery. Health Serv. Res. 2013, 48, 539–559. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Area Health Resources Files (AHRF). 2021. Available online: https://data.hrsa.gov/topics/health-workforce/ahrf (accessed on 25 April 2024).
- Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. 2025. Available online: https://ephtracking.cdc.gov/ (accessed on 25 April 2024).
- Mahanty, C.; Kumar, R.; Mishra, B.K. Analyses the effects of COVID-19 outbreak on human sexual behaviour using ordinary least-squares based multivariate logistic regression. Qual. Quant. 2021, 55, 1239–1259. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesth. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Klee, E.W. Data mining for biomarker development: A review of tissue specificity analysis. Clin. Lab. Med. 2008, 28, 127–143. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Ku, B.S.; Druss, B.G. Associations Between Primary Care Provider Shortage Areas and County-Level COVID-19 Infection and Mortality Rates in the USA. J. Gen. Intern. Med. 2020, 35, 3404–3405. [Google Scholar] [CrossRef] [PubMed]
- Janke, A.T.; Mei, H.; Rothenberg, C.; Becher, R.D.; Lin, Z.; Venkatesh, A.K. Analysis of Hospital Resource Availability and COVID-19 Mortality Across the United States. J. Hosp. Med. 2021, 16, 211–214. [Google Scholar] [CrossRef]
- Kadri, S.S.; Sun, J.; Lawandi, A.; Strich, J.R.; Busch, L.M.; Keller, M.; Babiker, A.; Yek, C.; Malik, S.; Krack, J.; et al. Association Between Caseload Surge and COVID-19 Survival in 558 U.S. Hospitals, March to August 2020. Ann. Intern. Med. 2021, 174, 1240–1251. [Google Scholar] [CrossRef]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical Supply Shortages—The Need for Ventilators and Personal Protective Equipment during the COVID-19 Pandemic. N. Engl. J. Med. 2020, 382, e41. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Q.; Wei, Y.; Chen, R.; Kan, H. Global association between air pollution and COVID-19 mortality: A systematic review and meta-analysis. Sci. Total Environ. 2024, 906, 167542. [Google Scholar] [CrossRef]
- Sheppard, N.; Carroll, M.; Gao, C.; Lane, T. Particulate matter air pollution and COVID-19 infection, severity, and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2023, 880, 163272. [Google Scholar] [CrossRef]
- Biswas, M.; Rahaman, S.; Biswas, T.K.; Haque, Z.; Ibrahim, B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology 2020, 64, 36–47. [Google Scholar] [CrossRef]
- Graziani, D.; Soriano, J.B.; Del Rio-Bermudez, C.; Morena, D.; Diaz, T.; Castillo, M.; Alonso, M.; Ancochea, J.; Lumbreras, S.; Izquierdo, J.L. Characteristics and Prognosis of COVID-19 in Patients with COPD. J. Clin. Med. 2020, 9, 3259. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Auld, S.C.; Caridi-Scheible, M.; Blum, J.M.; Robichaux, C.; Kraft, C.; Jacob, J.T.; Jabaley, C.S.; Carpenter, D.; Kaplow, R.; Hernandez-Romieu, A.C.; et al. ICU and ventilator mortality among critically ill adults with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Hogg-Graham, R.; Carman, A.; Mays, G.P.; Zephyr, P.M.D. Geographic Variation in the Structure of Kentucky’s Population Health Systems: An Urban, Rural, and Appalachian Comparison. J. Appalach. Health 2020, 2, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, N.; Bertella, E. Lifestyle interventions in prevention and comprehensive management of COPD. Breathe 2018, 14, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Croft, J.B.; Wheaton, A.G.; Liu, Y.; Xu, F.; Lu, H.; Matthews, K.A.; Cunningham, T.J.; Wang, Y.; Holt, J.B. Urban-Rural County and State Differences in Chronic Obstructive Pulmonary Disease—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 205–211. [Google Scholar] [CrossRef]
- Cunningham, M.; Patel, K.; McCall, T.; Hall, K.; Garofalini, C.; Lee, J.; Alford, A. 2022 National Profile of Local Health Departments; National Association of County and City Health Officials: Washington, DC, USA, 2024. [Google Scholar]
- Leider, J.P.; Meit, M.; McCullough, J.M.; Resnick, B.; Dekker, D.; Alfonso, Y.N.; Bishai, D. The State of Rural Public Health: Enduring Needs in a New Decade. Am. J. Public Health 2020, 110, 1283–1290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakib, S.H.; Little, B.B.; Karimi, S.M.; Goldsby, M. COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors. Atmosphere 2025, 16, 684. https://doi.org/10.3390/atmos16060684
Shakib SH, Little BB, Karimi SM, Goldsby M. COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors. Atmosphere. 2025; 16(6):684. https://doi.org/10.3390/atmos16060684
Chicago/Turabian StyleShakib, Shaminul H., Bert B. Little, Seyed M. Karimi, and Michael Goldsby. 2025. "COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors" Atmosphere 16, no. 6: 684. https://doi.org/10.3390/atmos16060684
APA StyleShakib, S. H., Little, B. B., Karimi, S. M., & Goldsby, M. (2025). COVID-19 Mortality Among Hospitalized Medicaid Patients in Kentucky (2020–2021): A Geospatial Study of Social, Medical, and Environmental Risk Factors. Atmosphere, 16(6), 684. https://doi.org/10.3390/atmos16060684