Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part II: A Numerical Study of Urban Infrastructure Effects on the Evolution of City-Scale Convection
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observational Data
2.2. Numerical Experimental Design
3. Simulations’ Intercomparison
UCM and ARW Validation
4. WRF-UCM/ARW Intercomparisons of a Simulated Convective Environment
4.1. WRF-UCM/ARW Intercomparison for QLCS#1
4.2. WRF-UCM/ARW Intercomparison for QLCS#2
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QLCS | Quasi-linear convective systems |
UHI | Urban heat island |
URI | Urban river island |
WRF-ARW | Weather Research and Forecasting-Advanced Research Weather Model |
WRF-UCM | WRF urban canopy model |
NEXRAD | Next generation Doppler weather radar |
NLCD | National Land Cover Database |
ERA5 | European Centre for Medium-Range Weather Forecasts Reanalysis 5 |
MSLP | Mean sea level pressure |
SBCAPE | Surface-based convective available potential energy |
PBL | Planetary boundary layer |
TKE | Turbulent kinetic energy |
KMDW | Midway Airport, Chicago |
KORD | O’Hare Airport, Chicago |
KPWK | Wheeling Airport, Chicago |
KLOT | Lewis University Airport, Chicago/Romeoville |
KDPA | DuPage Airport |
KGYY | Gary, Indiana |
References
- Han, J.-Y.; Baik, J.-J. A Theoretical and Numerical Study of Urban Heat Island–Induced Circulation and Convection. J. Atmos. Sci. 2008, 65, 1859–1877. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Lee, H. Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Han, L.; Wang, L.; Chen, H.; Xu, Y.; Sun, F.; Reed, K.; Deng, X.; Li, W. Impacts of Long-Term Urbanization on Summer Rainfall Climatology in Yangtze River Delta Agglomeration of China. Geophys. Res. Lett. 2022, 49, e2021GL097546. [Google Scholar] [CrossRef]
- Hosannah, N.; Gonzalez, J.E. Impacts of Aerosol Particle Size Distribution and Land Cover Land Use on Precipitation in a Coastal Urban Environment Using a Cloud-Resolving Mesoscale Model. Adv. Meteorol. 2014, 2014, 904571. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.A.; Tewari, M.; Li, Q.; Wang, Y. An Observational and Modeling Study of Characteristics of Urban Heat Island and Boundary Layer Structures in Beijing. J. Appl. Meteorol. Clim. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; Li, Q.; Fan, S. Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Clim. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Niyogi, D.; Pyle, P.; Lei, M.; Arya, S.P.; Kishtawal, C.M.; Shepherd, M.; Chen, F.; Wolfe, B. Urban Modification of Thunderstorms: An Observational Storm Climatology and Model Case Study for the Indianapolis Urban Region. J. Appl. Meteorol. Clim. 2011, 50, 1129–1144. [Google Scholar] [CrossRef]
- Niyogi, D.; Lei, M.; Kishtawal, C.; Schmid, P.; Shepherd, M. Urbanization Impacts on the Summer Heavy Rainfall Climatology over the Eastern United States. Earth Interact. 2017, 21, 1–17. [Google Scholar] [CrossRef]
- Qian, Y.; Chakraborty, T.C.; Li, J.; Li, D.; He, C.; Sarangi, C.; Chen, F.; Yang, X.; Leung, L.R. Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions. Adv. Atmos. Sci. 2022, 39, 819–860. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, L. Divergent Urban Signatures in Rainfall Anomalies Explained by Pre-Storm Environment Contrast. Geophys. Res. Lett. 2023, 50, e2022GL101658. [Google Scholar] [CrossRef]
- Steensen, B.M.; Marelle, L.; Hodnebrog, Ø.; Myhre, G. Future urban heat island influence on precipitation. Clim. Dyn. 2022, 58, 3393–3403. [Google Scholar] [CrossRef]
- Sun, X.; Luo, Y.; Gao, X.; Wu, M.; Li, M.; Huang, L.; Zhang, D.-L.; Xu, H. On the Localized Extreme Rainfall over the Great Bay Area in South China with Complex Topography and Strong UHI Effects. Mon. Weather. Rev. 2021, 149, 2777–2801. [Google Scholar] [CrossRef]
- Yang, L.; Li, Q.; Yuan, H.; Niu, Z.; Wang, L. Impacts of Urban Canopy on Two Convective Storms With Contrasting Synoptic Conditions Over Nanjing, China. J. Geophys. Res. Atmos. 2021, 126, e2020JD034509. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, J.A.; Luo, L.; Wang, Z.; Baeck, M.L. Urbanization and Rainfall Variability in the Beijing Metropolitan Region. J. Hydrometeorol. 2014, 15, 2219–2235. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Chen, B.; Huang, W. Operational Precipitation Forecast Over China Using the Weather Research and Forecasting (WRF) Model at a Gray-Zone Resolution: Impact of Convection Parameterization. Weather. Forecast. 2021, 36, 915–928. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Yang, X.-Q. A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J. Geophys. Res. Atmos. 2015, 120, 10903–10914. [Google Scholar] [CrossRef]
- Kaplan, M.L.; Karim, S.M.S.; Lin, Y.-L. Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part I: Observations of Multi-Scale Convective Evolution. Atmosphere 2025, 16, 306. [Google Scholar] [CrossRef]
- Plymouth SWC: Plymouth State Weather Center Data Archive. Available online: https://vortex.plymouth.edu/myowxp/sfc/statlog-a.html (accessed on 5 April 2024).
- NOAA NEXRAD: NOAA National Weather Service (NWS) Radar Operations Center (1992): NOAA Next Generation Radar (NEXRAD) Level 3 Products. [Precipitation]. NOAA National Centers for Environmental Information. NCEI DSI 7000. Available online: https://www.ncei.noaa.gov/maps/radar/ (accessed on 5 April 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; National Center for Atmospheric Research: Boulder, CO, USA, 2021; p. 550. [Google Scholar]
- Barlage, M.; Miao, S.; Chen, F. Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities. J. Geophys. Res. Atmos. 2016, 121, 4487–4498. [Google Scholar] [CrossRef]
- Dewitz, J. National Land Cover Database (NLCD) 2011 Land Cover Conterminous United States [Data set]; U.S. Geological Survey data release; U.S. Geological Survey: Reston, VA, USA, 2020. [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Janić, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model; National Centers for Environmental Prediction: College Park, MD, USA, 2001.
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 24, 163–187. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, S.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Clim. 2011, 31, 273–288. [Google Scholar] [CrossRef]
Model. | WRF-ARW | WRF-UCM |
---|---|---|
Version | v4.4 | v4.4.2 |
Map Projection | Lambert Conformal | |
Horizontal Grid Distribution | Arakawa C-grid | |
Horizontal Grid Resolution | D01 = 16 km, D02 = 4 km, D03 = 1 km | |
Domain Size (Grid points) | D01 = 280 by 140, D02 = 617 by 373, D03 = 693 by 517 in x (west–east) and y (north–south) direction. | |
Vertical Co-ordinate | Terrain-following non-hydrostatic hybrid pressure vertical coordinate | |
Vertical Levels | 50 | |
Domain Top | 50 hPa | |
Static Data | MODIFIED_IGBP_MODIS_NOAH (21 categories) | National Land Cover Database (NLCD 2011)—40 categories |
Physics | ||
Microphysics | Thompson | |
Cumulus | Multi-scale Kain–Fritsch Scheme (only for D01) | |
Planetary Boundary Layer (PBL) | Mellor–Yamada–Janjic Scheme (MYJ) | |
Surface layer | Eta Similarity Scheme | |
Land-Surface Physics | Unified Noah Land Surface Model | |
Radiation Scheme | Long Wave: RRTMG; Short Wave: RRTMG | |
Urban Surface Physics | No | Single Layer Urban Canopy Model [31] |
Dynamics | ||
Time Integration | Third-order Runge–Kutta | |
Turbulence and mixing | Second-order diffusion term (option 1 in the WRF namelist). | |
Eddy Coefficient | Horizontal Smagorinsky first-order closure | |
Upper-level Damping | w-Rayleigh damping |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, S.M.S.; Kaplan, M.L.; Lin, Y.-L. Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part II: A Numerical Study of Urban Infrastructure Effects on the Evolution of City-Scale Convection. Atmosphere 2025, 16, 652. https://doi.org/10.3390/atmos16060652
Karim SMS, Kaplan ML, Lin Y-L. Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part II: A Numerical Study of Urban Infrastructure Effects on the Evolution of City-Scale Convection. Atmosphere. 2025; 16(6):652. https://doi.org/10.3390/atmos16060652
Chicago/Turabian StyleKarim, S. M. Shajedul, Michael L. Kaplan, and Yuh-Lang Lin. 2025. "Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part II: A Numerical Study of Urban Infrastructure Effects on the Evolution of City-Scale Convection" Atmosphere 16, no. 6: 652. https://doi.org/10.3390/atmos16060652
APA StyleKarim, S. M. S., Kaplan, M. L., & Lin, Y.-L. (2025). Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part II: A Numerical Study of Urban Infrastructure Effects on the Evolution of City-Scale Convection. Atmosphere, 16(6), 652. https://doi.org/10.3390/atmos16060652