Atmospheric Photochemical Oxidation of 4-Nitroimidazole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Theoretical
3. Results
3.1. Near-UV Absorption Spectroscopy
3.2. Direct Photochemistry
3.3. OH Oxidation
4. Discussion
4.1. Atmospheric Lifetime of 4-NI
4.2. Photochemical Oxidation Mechanisms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bejan, I.; Barnes, I.; Olariu, R.; Zhou, S.; Wiesen, P.; Benter, T. Investigations on the Gas-Phase Photolysis and OH Radical Kinetics of Methyl-2-Nitrophenols. Phys. Chem. Chem. Phys. 2007, 9, 5686–5692. [Google Scholar] [CrossRef]
- Kroflič, A.; Huš, M.; Grilc, M.; Grgić, I. Underappreciated and Complex Role of Nitrous Acid in Aromatic Nitration under Mild Environmental Conditions: The Case of Activated Methoxyphenols. Environ. Sci. Technol. 2018, 52, 13756–13765. [Google Scholar] [CrossRef]
- Dalton, A.B.; Nizkorodov, S.A. Photochemical Degradation of 4-Nitrocatechol and 2,4-Dinitrophenol in a Sugar-Glass Secondary Organic Aerosol Surrogate. Environ. Sci. Technol. 2021, 55, 14586–14594. [Google Scholar] [CrossRef]
- Witkowski, B.; Jain, P.; Gierczak, T. Aqueous Chemical Bleaching of 4-Nitrophenol Brown Carbon by Hydroxyl Radicals; Products, Mechanism, and Light Absorption. Atmos. Chem. Phys. 2022, 22, 5651–5663. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Hsieh, Y.-K.; Huang, B.-W.; Mutuku, J.K.; Chang-Chien, G.-P.; Huang, S. An Overview: PAH and Nitro-PAH Emission from the Stationary Sources and Their Transformations in the Atmosphere. Aerosol Air Qual. Res. 2022, 22, 220164. [Google Scholar] [CrossRef]
- Delić, A.; Skube, U.; Šala, M.; Kroflič, A. Kinetics and Product Identification of Water-Dissolved Nitroguaiacol Photolysis under Artificial Sunlight. Front. Chem. 2023, 11, 1211061. [Google Scholar] [CrossRef]
- Jiang, H.; Frie, A.L.; Lavi, A.; Chen, J.Y.; Zhang, H.; Bahreini, R.; Lin, Y.-H. Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile Organic Compounds. Environ. Sci. Technol. Lett. 2019, 6, 184–190. [Google Scholar] [CrossRef]
- Mayorga, R.; Chen, K.; Raeofy, N.; Woods, M.; Lum, M.; Zhao, Z.; Zhang, W.; Bahreini, R.; Lin, Y.-H.; Zhang, H. Chemical Structure Regulates the Formation of Secondary Organic Aerosol and Brown Carbon in Nitrate Radical Oxidation of Pyrroles and Methylpyrroles. Environ. Sci. Technol. 2022, 56, 7761–7770. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, H.; Li, J.; Jiang, H.; Chen, W.; Wan, C.; Jiang, B.; Dong, G.; Zeng, X.; Chen, D.; et al. Nitroaromatic Compounds from Secondary Nitrate Formation and Biomass Burning Are Major Proinflammatory Components in Organic Aerosols in Guangzhou: A Bioassay Combining High-Resolution Mass Spectrometry Analysis. Environ. Sci. Technol. 2023, 57, 21570–21580. [Google Scholar] [CrossRef]
- Shi, X.; Qiu, X.; Li, A.; Jiang, X.; Wei, G.; Zheng, Y.; Chen, Q.; Chen, S.; Hu, M.; Rudich, Y.; et al. Polar Nitrated Aromatic Compounds in Urban Fine Particulate Matter: A Focus on Formation via an Aqueous-Phase Radical Mechanism. Environ. Sci. Technol. 2023, 57, 5160–5168. [Google Scholar] [CrossRef]
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; You, D.; Li, C.; Han, C.; Tang, N.; Yang, H.; Xue, X. Photolysis of Nitroaromatic Compounds under Sunlight: A Possible Daytime Photochemical Source of Nitrous Acid? Environ. Sci. Technol. Lett. 2021, 8, 747–752. [Google Scholar] [CrossRef]
- Bejan, I.G.; Olariu, R.-I.; Wiesen, P. Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions. Atmosphere 2020, 11, 1346. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Zhao, Y.; Du, P.; Li, H.; Li, J.; Shen, H.; Liu, Z.; Jiang, Y.; Chen, J.; et al. Atmospheric Nitrated Phenolic Compounds in Particle, Gaseous, and Aqueous Phases During Cloud Events at a Mountain Site in North China: Distribution Characteristics and Aqueous-Phase Formation. J. Geophys. Res. Atmos. 2022, 127, e2022JD037130. [Google Scholar] [CrossRef]
- Barsotti, F.; Bartels-Rausch, T.; De Laurentiis, E.; Ammann, M.; Brigante, M.; Mailhot, G.; Maurino, V.; Minero, C.; Vione, D. Photochemical Formation of Nitrite and Nitrous Acid (HONO) upon Irradiation of Nitrophenols in Aqueous Solution and in Viscous Secondary Organic Aerosol Proxy. Environ. Sci. Technol. 2017, 51, 7486–7495. [Google Scholar] [CrossRef]
- Maxut, A.; Nozière, B.; Fenet, B.; Mechakra, H. Formation Mechanisms and Yields of Small Imidazoles from Reactions of Glyoxal with NH4+ in Water at Neutral pH. Phys. Chem. Chem. Phys. 2015, 17, 20416–20424. [Google Scholar] [CrossRef]
- Teich, M.; van Pinxteren, D.; Kecorius, S.; Wang, Z.; Herrmann, H. First Quantification of Imidazoles in Ambient Aerosol Particles: Potential Photosensitizers, Brown Carbon Constituents, and Hazardous Components. Environ. Sci. Technol. 2016, 50, 1166–1173. [Google Scholar] [CrossRef]
- Safaei, Z.; Shiroudi, A.; Zahedi, E.; Sillanpää, M. Atmospheric Oxidation Reactions of Imidazole Initiated by Hydroxyl Radicals: Kinetics and Mechanism of Reactions and Atmospheric Implications. Phys. Chem. Chem. Phys. 2019, 21, 8445–8456. [Google Scholar] [CrossRef]
- Lian, X.; Zhang, G.; Yang, Y.; Lin, Q.; Fu, Y.; Jiang, F.; Peng, L.; Hu, X.; Chen, D.; Wang, X.; et al. Evidence for the Formation of Imidazole from Carbonyls and Reduced Nitrogen Species at the Individual Particle Level in the Ambient Atmosphere. Environ. Sci. Technol. Lett. 2020, 8, 9–15. [Google Scholar] [CrossRef]
- Lin, X.; Huang, M.; Lu, T.; Zhao, W.; Hu, C.; Gu, X.; Zhang, W. Characterization of Imidazole Compounds in Aqueous Secondary Organic Aerosol Generated from Evaporation of Droplets Containing Pyruvaldehyde and Inorganic Ammonium. Atmosphere 2022, 13, 970. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, R.; Sit, P.H.-L.; He, M.; Chan, C.K. Formation and Oxidation of Imidazole in Tropospheric Aqueous-Phase Chemistry: A Computational Study. ACS EST Air 2024, 1, 617–627. [Google Scholar] [CrossRef]
- Bannan, T.J.; Booth, A.M.; Jones, B.T.; O’Meara, S.; Barley, M.H.; Riipinen, I.; Percival, C.J.; Topping, D. Measured Saturation Vapor Pressures of Phenolic and Nitro-Aromatic Compounds. Environ. Sci. Technol. 2017, 51, 3922–3928. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.C.; Vitello, L.B.; Erman, J.E. 4-Nitroimidazole Binding to Horse Metmyoglobin: Evidence for Preferential Anion Binding. Arch. Biochem. Biophys. 2000, 382, 284–295. [Google Scholar] [CrossRef]
- Yao, J.; Tang, Y.; Zhang, Y.; Ruan, M.; Wu, W.; Sun, J. New Theoretical Investigation of Mechanism, Kinetics, and Toxicity in the Degradation of Dimetridazole and Ornidazole by Hydroxyl Radicals in Aqueous Phase. J. Hazard. Mater. 2022, 422, 126930. [Google Scholar] [CrossRef] [PubMed]
- Chiarinelli, J.; Casavola, A.R.; Castrovilli, M.C.; Bolognesi, P.; Cartoni, A.; Wang, F.; Richter, R.; Catone, D.; Tosic, S.; Marinkovic, B.P.; et al. Radiation Damage Mechanisms of Chemotherapeutically Active Nitroimidazole Derived Compounds. Front. Chem. 2019, 7, 329. [Google Scholar] [CrossRef]
- Prados-Joya, G.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Ferro-garcía, M. Photodegradation of the Antibiotics Nitroimidazoles in Aqueous Solution by Ultraviolet Radiation. Water Res. 2011, 45, 393–403. [Google Scholar] [CrossRef]
- Gueymard, C.A. The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Solar Spectral Irradiance: Air Mass 1.5. Available online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5 (accessed on 13 November 2019).
- Willett, K.L.; Hites, R.A. Chemical Actinometry: Using o-Nitrobenzaldehyde to Measure Lamp Intensity in Photochemical Experiments. J. Chem. Educ. 2000, 77, 900. [Google Scholar] [CrossRef]
- Stadler, E.; Eibel, A.; Fast, D.; Freißmuth, H.; Holly, C.; Wiech, M.; Moszner, N.; Gescheidt, G. A Versatile Method for the Determination of Photochemical Quantum Yields via Online UV-Vis Spectroscopy. Photochem. Photobiol. Sci. 2018, 17, 660–669. [Google Scholar] [CrossRef]
- Zhao, R.; Lee, A.K.Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J.P.D. Photochemical Processing of Aqueous Atmospheric Brown Carbon. Atmos. Chem. Phys. 2015, 15, 6087–6100. [Google Scholar] [CrossRef]
- Ayatollahi, S.; Kalnina, D.; Song, W.; Turks, M.; Cooper, W.J. Radiation Chemistry of Salicylic and Methyl Substituted Salicylic Acids: Models for the Radiation Chemistry of Pharmaceutical Compounds. Radiat. Phys. Chem. 2013, 92, 93–98. [Google Scholar] [CrossRef]
- Tang, S.; Li, F.; Tsona, N.T.; Lu, C.; Wang, X.; Du, L. Aqueous-Phase Photooxidation of Vanillic Acid: A Potential Source of Humic-Like Substances (HULIS). ACS Earth Space Chem. 2020, 4, 862–872. [Google Scholar] [CrossRef]
- Harrison, A.W.; Ferris, B.; Rushdi, A.; Sofos, C.; De Bruyn, W.J. Reaction of Glyoxal and Ammonium as a Potential Contributor to Protein-like Fluorescence in Atmospheric Measurements. ACS Earth Space Chem. 2022, 6, 2698–2708. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys. 1999, 110, 2822–2827. [Google Scholar] [CrossRef]
- Simmie, J.M.; Somers, K.P. Benchmarking Compound Methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the Active Thermochemical Tables: A Litmus Test for Cost-Effective Molecular Formation Enthalpies. J. Phys. Chem. A 2015, 119, 7235–7246. [Google Scholar] [CrossRef]
- Hennigan, C.J.; McKee, M.; Pratap, V.; Boegner, B.; Reno, J.; Garcia, L.; McLaren, M.; Lance, S.M. pH Dependence of Brown-Carbon Optical Properties in Cloud Water. Atmos. Chem. Phys. 2023, 23, 14437–14449. [Google Scholar] [CrossRef]
- Giussani, A.; Worth, G.A. Insights into the Complex Photophysics and Photochemistry of the Simplest Nitroaromatic Compound: A CASPT2//CASSCF Study on Nitrobenzene. J. Chem. Theory Comput. 2017, 13, 2777–2788. [Google Scholar] [CrossRef]
- Feketeová, L.; Postler, J.; Zavras, A.; Scheier, P.; Denifl, S.; O’Hair, R.A.J. Decomposition of Nitroimidazole Ions: Experiment and Theory. Phys. Chem. Chem. Phys. 2015, 17, 12598–12607. [Google Scholar] [CrossRef]
- Meißner, R.; Feketeová, L.; Ribar, A.; Fink, K.; Limão-Vieira, P.; Denifl, S. Electron Ionization of Imidazole and Its Derivative 2-Nitroimidazole. J. Am. Soc. Mass Spectrom. 2019, 30, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole Degradation by UV and UV/H2O2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Yao, B.; Hou, S.; Fang, J.; Yan, S.; Song, W. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. Environ. Sci. Technol. 2017, 51, 2954–2962. [Google Scholar] [CrossRef]
- Llano, J.; Eriksson, L.A. Mechanism of Hydroxyl Radical Addition to Imidazole and Subsequent Water Elimination. J. Phys. Chem. B 1999, 103, 5598–5607. [Google Scholar] [CrossRef]
- Gümüş, S. OH Radical Reactions with Nitroimidazole and Nitrotriazole Derivatives. J. Energ. Mater. 2012, 30, 156–168. [Google Scholar] [CrossRef]
- Ma, L.; Worland, R.; Jiang, W.; Niedek, C.; Guzman, C.; Bein, K.J.; Zhang, Q.; Anastasio, C. Predicting Photooxidant Concentrations in Aerosol Liquid Water Based on Laboratory Extracts of Ambient Particles. Atmos. Chem. Phys. 2023, 23, 8805–8821. [Google Scholar] [CrossRef]
- Petersen-Sonn, E.A.; Brigante, M.; Deguillaume, L.; Jaffrezo, J.-L.; George, C. Tropospheric Multiphase Chemistry: Excited Triplet States Compete with OH Radicals and Singlet Molecular Oxygen. ACS Earth Space Chem. 2025, 9, 533–544. [Google Scholar] [CrossRef]
- Herrmann, H.; Hoffmann, D.; Schaefer, T.; Bräuer, P.; Tilgner, A. Tropospheric Aqueous-Phase Free-Radical Chemistry: Radical Sources, Spectra, Reaction Kinetics and Prediction Tools. ChemPhysChem 2010, 11, 3796–3822. [Google Scholar] [CrossRef]
- Deng, T.; Hu, S.; Huang, X.; Song, J.; Xu, Q.; Wang, Y.; Liu, F. A Novel Strategy for Colorimetric Detection of Hydroxyl Radicals Based on a Modified Griess Test. Talanta 2019, 195, 152–157. [Google Scholar] [CrossRef]
4-NI | VEE (eV) | λ (nm) | f |
---|---|---|---|
4-NI: Gas Phase | 5.07 | 244.4 | 0.1532 |
4-NI: SMD | 4.21 | 282.0 | 0.2245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondapalli, N.; Cernero, O.; Welch, A.; Harrison, A.W. Atmospheric Photochemical Oxidation of 4-Nitroimidazole. Atmosphere 2025, 16, 624. https://doi.org/10.3390/atmos16050624
Kondapalli N, Cernero O, Welch A, Harrison AW. Atmospheric Photochemical Oxidation of 4-Nitroimidazole. Atmosphere. 2025; 16(5):624. https://doi.org/10.3390/atmos16050624
Chicago/Turabian StyleKondapalli, Nayan, Oliver Cernero, Aaron Welch, and Aaron W. Harrison. 2025. "Atmospheric Photochemical Oxidation of 4-Nitroimidazole" Atmosphere 16, no. 5: 624. https://doi.org/10.3390/atmos16050624
APA StyleKondapalli, N., Cernero, O., Welch, A., & Harrison, A. W. (2025). Atmospheric Photochemical Oxidation of 4-Nitroimidazole. Atmosphere, 16(5), 624. https://doi.org/10.3390/atmos16050624