Spatial Heterogeneity of Drop Size Distribution and Its Implications for the Z-R Relationship in Mexico City
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Data Set
2.2. Raindrop Size Distribution and Normalized Gamma Function
2.3. Z-R Relationship
2.4. Rain Rates Classification and Seasonal Evaluation
3. Results and Discussions
3.1. Gamma Function Validation
3.2. DSD Variability Due to Rain Rates
3.3. Z-R Relationship in the Mexico City Environment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DSD | Drop size distribution |
QPE | Quantitative precipitation estimation |
R | Rain rate |
Z | Radar reflectivity |
Appendix A
Appendix B
Data Period: June 2018–June 2019 | |||||||
---|---|---|---|---|---|---|---|
Station Name | Rainy Minutes | Rainfall (mm/h) | Reflectivity (dBz) | ||||
Complete | Summer | Winter | Mean | Max | Mean | Max | |
Acopilco | 32,672 | 28,227 | 4445 | 1.96 | 90.43 | 19.69 | 56.20 |
Ajusco | 31,365 | 26,262 | 5103 | 1.58 | 86.58 | 18.42 | 55.25 |
AMC | 25,952 | 21,541 | 4411 | 1.49 | 65.24 | 18.53 | 54.79 |
Aragon | 20,653 | 17,244 | 3409 | 1.68 | 90.94 | 18.83 | 54.58 |
BosqueReal | 27,502 | 24,224 | 3278 | 1.78 | 76.21 | 18.66 | 55.45 |
CCHOTE | 22,321 | 19,231 | 3090 | 1.73 | 84.63 | 18.96 | 54.54 |
CCHVALLEJO | 22,124 | 18,724 | 3400 | 1.67 | 72.99 | 19.67 | 53.22 |
Centenario | 26,510 | 23,302 | 3208 | 1.95 | 128.62 | 19.87 | 56.11 |
Coapa | 22,822 | 19,694 | 3128 | 1.48 | 84.80 | 17.81 | 54.05 |
Contreras | 27,240 | 23,868 | 3372 | 2.04 | 78.92 | 20.18 | 54.60 |
Cuajimalpa | 30,379 | 26,722 | 3657 | 1.88 | 109.64 | 19.37 | 54.85 |
Cuauhtenco | 25,245 | 20,351 | 4894 | 1.48 | 96.74 | 18.19 | 54.62 |
IIUNAM | 25,712 | 22,663 | 3049 | 2.09 | 104.18 | 19.45 | 55.63 |
PREPA8 | 24,393 | 21,353 | 3040 | 1.95 | 85.47 | 20.02 | 55.44 |
SACMEX | 22,498 | 20,341 | 2157 | 1.74 | 73.28 | 19.39 | 54.48 |
SanBartolo | 29,099 | 25,162 | 3937 | 1.94 | 97.07 | 19.72 | 55.21 |
Tlalnepantla | 23,393 | 19,625 | 3768 | 1.77 | 153.31 | 19.77 | 55.11 |
Tulyehualco | 20,190 | 16,888 | 3302 | 1.50 | 113.93 | 19.04 | 55.04 |
UAMAZC | 22,746 | 19,413 | 3333 | 1.86 | 105.66 | 19.94 | 54.65 |
VHermosa | 29,872 | 26,285 | 3587 | 1.83 | 137.46 | 18.20 | 58.81 |
Xochimilco | 21,916 | 17,898 | 4018 | 1.75 | 84.00 | 19.04 | 53.54 |
∑ 1/mean 2 | 534,604 1 | 459,018 1 | 75,586 1 | 1.77 2 | 96.20 2 | 19.18 2 | 55.05 2 |
% | 100 | 85.86 | 14.14 |
Data Period: June 2018–June 2019 | ||||||
---|---|---|---|---|---|---|
Station Name | 2 > R | 2 ≤ R < 20 | 20 ≤ R < 40 | 40 ≤ R < 60 | 60 ≤ R < 100 | 100 ≤ R |
Acopilco | 24,517 | 7721 | 341 | 77 | 16 | 0 |
Ajusco | 25,423 | 5586 | 255 | 71 | 21 | 9 |
AMC | 21,252 | 4495 | 159 | 44 | 2 | 0 |
Aragon | 16,784 | 3584 | 212 | 51 | 13 | 9 |
BosqueReal | 21,800 | 5301 | 299 | 82 | 19 | 1 |
CCHOTE | 18,174 | 3803 | 264 | 56 | 23 | 1 |
CCHVALLEJO | 17,501 | 4351 | 221 | 46 | 5 | 0 |
Centenario | 20,139 | 5946 | 349 | 59 | 14 | 3 |
Coapa | 19,096 | 3496 | 174 | 44 | 12 | 0 |
Contreras | 20,443 | 6321 | 371 | 78 | 24 | 3 |
Cuajimalpa | 23,464 | 6514 | 302 | 79 | 19 | 1 |
Cuauhtenco | 20,549 | 4419 | 210 | 41 | 20 | 6 |
IIUNAM | 20,192 | 4959 | 422 | 85 | 46 | 8 |
PREPA8 | 18,684 | 5298 | 304 | 71 | 26 | 10 |
SACMEX | 17,810 | 4394 | 243 | 42 | 9 | 0 |
SanBartolo | 22,234 | 6504 | 265 | 51 | 39 | 6 |
Tlalnepantla | 18,576 | 4478 | 288 | 41 | 7 | 3 |
Tulyehualco | 16,013 | 3946 | 187 | 37 | 5 | 2 |
UAMAZC | 17,737 | 4684 | 238 | 67 | 19 | 1 |
VHermosa | 23,450 | 6063 | 267 | 69 | 21 | 2 |
Xochimilco | 17,259 | 4233 | 347 | 53 | 14 | 10 |
Mean | 20,052.24 | 5052.19 | 272.29 | 59.24 | 17.81 | 3.57 |
References
- García-Ruiz, J.M.; Beguería, S.; Lana-Renault, N.; Nadal-Romero, E.; Cerdà, A. Ongoing and Emerging Questions in Water Erosion Studies. Land Degrad. Dev. 2017, 28, 5–21. [Google Scholar] [CrossRef]
- Pu, K.; Liu, X.; Wu, Y.; Hu, S.; Liu, L.; Gao, T. A Comparison Study of Raindrop Size Distribution among Five Sites at the Urban Scale during the East Asian Rainy Season. J. Hydrol. 2020, 590, 125500. [Google Scholar] [CrossRef]
- Serio, M.A.; Carollo, F.G.; Ferro, V. Raindrop Size Distribution and Terminal Velocity for Rainfall Erosivity Studies. A Review. J. Hydrol. 2019, 576, 210–228. [Google Scholar] [CrossRef]
- Ma, R.; Hu, F.; Xu, C.; Liu, J.; Zhao, S. Response of Soil Aggregate Stability and Splash Erosion to Different Breakdown Mechanisms along Natural Vegetation Restoration. Catena 2022, 208, 105775. [Google Scholar] [CrossRef]
- Zambon, N.; Johannsen, L.L.; Strauss, P.; Dostal, T.; Zumr, D.; Neumann, M.; Cochrane, T.A.; Klik, A. Rainfall Parameters Affecting Splash Erosion under Natural Conditions. Appl. Sci. 2020, 10, 4103. [Google Scholar] [CrossRef]
- Uijlenhoet, R.; Stricker, J.N.M. A Consistent Rainfall Parameterization Based on the Exponential Raindrop Size Distribution. J. Hydrol. 1999, 218, 101–127. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Adirosi, E.; Roberto, N.; Montopoli, M.; Gorgucci, E.; Baldini, L. Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD: Application to Italian Climatology. Atmosphere 2018, 9, 360. [Google Scholar] [CrossRef]
- Tokay, A.; Short, D.A. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteorol. 1996, 35, 355–371. [Google Scholar] [CrossRef]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteorol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Liu, S.; Chen, G. Impacts of Instrument Limitations on Estimated Raindrop Size Distribution, Radar Parameters, and Model Microphysics during Mei-Yu Season in East China. J. Atmos. Ocean. Technol. 2017, 34, 1021–1037. [Google Scholar] [CrossRef]
- Dolan, B.; Fuchs, B.; Rutledge, S.A.; Barnes, E.A.; Thompson, E.J. Primary Modes of Global Drop Size Distributions. J. Atmos. Sci. 2018, 75, 1453–1476. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.L.; Wang, P.K.; Lee, M.T. Raindrop Size Distribution Characteristics of Summer and Winter Season Rainfall Over North Taiwan. J. Geophys. Res. Atmos. 2018, 123, 11602–11624. [Google Scholar] [CrossRef]
- Ji, L.; Chen, H.; Li, L.; Chen, B.; Xiao, X.; Chen, M.; Zhang, G. Raindrop Size Distributions and Rain Characteristics Observed by a PARSIVEL Disdrometer in Beijing, Northern China. Remote Sens. 2019, 11, 1479. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Lei, H.; Xie, Y.; Wen, L.; Yang, J. Characteristics of Summer Season Raindrop Size Distribution in Three Typical Regions of Western Pacific. J. Geophys. Res. Atmos. 2019, 124, 4054–4073. [Google Scholar] [CrossRef]
- Ma, Y.; Ni, G.; Chandra, C.V.; Tian, F.; Chen, H. Statistical Characteristics of Raindrop Size Distribution during Rainy Seasons in the Beijing Urban Area and Implications for Radar Rainfall Estimation. Hydrol. Earth Syst. Sci. 2019, 23, 4153–4170. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Li, D.; Qi, Y.; Zhang, Z.; Li, H.; Li, D.; Qi, Y. Spatial Variability of Raindrop Size Distribution at Beijing City Scale and Its Implications for Polarimetric Radar QPE. Remote Sens. 2023, 15, 3964. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, H.; Guo, C.; Feng, L. Characteristics of the Raindrop Size Distributions and Their Retrieved Polarimetric Radar Parameters in Northern and Southern China. Atmos. Res. 2014, 135–136, 59–75. [Google Scholar] [CrossRef]
- Wang, D.; Chen, S.; Kong, Y.; Gu, X.; Li, X.; Nan, X.; Yue, S.; Shen, H. Raindrop Size Distribution Characteristics for Typhoons over the Coast in Eastern China. Atmosphere 2024, 15, 951. [Google Scholar] [CrossRef]
- Hachani, S.; Boudevillain, B.; Delrieu, G.; Bargaoui, Z. Drop Size Distribution Climatology in Cévennes-Vivarais Region, France. Atmosphere 2017, 8, 233. [Google Scholar] [CrossRef]
- Han, J.Y.; Baik, J.J.; Lee, H. Urban Impacts on Precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Jaffrain, J.; Studzinski, A.; Berne, A. A Network of Disdrometers to Quantify the Small-Scale Variability of the Raindrop Size Distribution. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Yun, Y.; Li, J.; Guo, X.; Lv, Y.; Wang, D.; Li, L.; Zhang, Y. Regional Variability of Summertime Raindrop Size Distribution from a Network of Disdrometers in Beijing. Atmos. Res. 2021, 257, 105591. [Google Scholar] [CrossRef]
- Cristiano, E.; Ten Veldhuis, M.C.; Van De Giesen, N. Spatial and Temporal Variability of Rainfall and Their Effects on Hydrological Response in Urban Areas—A Review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef]
- Maier, R.; Krebs, G.; Pichler, M.; Muschalla, D.; Gruber, G. Spatial Rainfall Variability in Urban Environments—High-Density Precipitation Measurements on a City-Scale. Water 2020, 12, 1157. [Google Scholar] [CrossRef]
- López López, M.R.; Pedrozo-Acuña, A.; Severiano Covarrubias, M.L. Evaluation of ECMWF’s Forecasting System for Probabilistic Urban Flood Prediction: A Case Study in Mexico City. J. Hydroinform. 2022, 24, 38–55. [Google Scholar] [CrossRef]
- Jauregui, E.; Romales, E. Urban Effects on Convective Precipitation in Mexico City. Atmos. Environ. 1996, 30, 3383–3389. [Google Scholar] [CrossRef]
- Martinez-Lopez, B.; Quintanar, A.I.; Cabos-Narvaez, W.D.; Gay-Garcia, C.; Sein, D.V. Nonlinear Trends and Nonstationary Oscillations as Extracted From Annual Accumulated Precipitation at Mexico City. Earth Space Sci. 2018, 5, 473–485. [Google Scholar] [CrossRef]
- Ochoa, C.A.; Quintanar, A.I.; Raga, G.B.; Baumgardner, D. Changes in Intense Precipitation Events in Mexico City. J. Hydrometeorol. 2015, 16, 1804–1820. [Google Scholar] [CrossRef]
- Mocva-Kurek, R.K.; Rico-Ramirez, M.A.; Pedrozo-Acuña, A. Estimation of Raindrop Size Distribution in Mexico City by a Network of Disdrometers: Implications for Z-R Relationships. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019; IAHR: Madrid, Spain, 2019. [Google Scholar]
- Montero-Martínez, G.; Gómez-Balvás, S.S.; García-García, F. Study of Rain Classification and the Tendency of Gamma DSD Parameterizations in Mexico. Atmos. Res. 2021, 252, 105431. [Google Scholar] [CrossRef]
- Schuur, T.J.; Ryzhkov, A.V.; Clabo, D.R. Climatological Analysis of DSDs in Oklahoma as Revealed by 2D-Video Disdrometer and Polarimetric WSR-88D. In Proceedings of the 11th Conference on Mesoscale Processes and the 32nd Conference on Radar Meteorology, Albuquerque, NM, USA, 24–29 October 2005; pp. 571–577. [Google Scholar]
- Jauregui, E. Heat Island Development in Mexico City. Atmos. Environ. 1997, 31, 3821–3831. [Google Scholar] [CrossRef]
- Pedrozo-Acuña, A.; Agustín Breña-Naranjo, J.; Soriano-Monzalvo, J.C.; Blanco-Figueroa, J.; Magos-Hernández, J.; Alejandro Sánchez-Peralta, J. The Hydrological Observatory of Mexico City (OH-IIUNAM): A Unique Setup for Hydrological Research within Large Urban Environments. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar]
- Bringi, V.N.; Chandrasekar, V. Radar Rainfall Estimation (Chapter 8). In Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University: Cambridge, UK, 2001; pp. 534–569. ISBN 9780511541094. [Google Scholar]
- Harikumar, R.; Sampath, S.; Sasi Kumar, V. Variation of Rain Drop Size Distribution with Rain Rate at a Few Coastal and High Altitude Stations in Southern Peninsular India. Adv. Space Res. 2010, 45, 576–586. [Google Scholar] [CrossRef]
- Nyssen, J.; Vandenreyken, H.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Salles, C.; Govers, G. Rainfall Erosivity and Variability in the Northern Ethiopian Highlands. J. Hydrol. 2005, 311, 172–187. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, W.; Suh, S.H.; Lee, D.I.; You, C.H. The Characteristics of Raindrop Size Distribution at Windward and Leeward Side over Mountain Area. Remote Sens. 2022, 14, 2419. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Y.; Tian, J.; Kang, X. Raindrop Size Distribution Measurements at High Altitudes in the Northeastern Tibetan Plateau during Summer. Adv. Atmos. Sci. 2023, 40, 1244–1256. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, W.; Kou, M. Statistical Characteristics of Raindrop Size Distribution during Rainy Seasons in Complicated Mountain Terrain. Hydrol. Earth Syst. Sci. 2023, 27, 3895–3910. [Google Scholar] [CrossRef]
- Mallet, C.; Barthes, L. Estimation of Gamma Raindrop Size Distribution Parameters: Statistical Fluctuations and Estimation Errors. J. Atmos. Ocean. Technol. 2009, 26, 1572–1584. [Google Scholar] [CrossRef]
- Bringi, V.N.; Rico-Ramirez, M.A.; Thurai, M. Rainfall Estimation with an Operational Polarimetric C-Band Radar in the United Kingdom: Comparison with a Gauge Network and Error Analysis. J. Hydrometeorol. 2011, 12, 935–954. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, C.; Wu, L. Regional Variability of Raindrop Size Distribution from a Network of Disdrometers over Complex Terrain in Southern China. Remote Sens. 2023, 15, 2678. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. The Polarimetric Basis for Characterizing Precipitation (Chapter 7). In Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University: Cambridge, UK, 2001; pp. 378–533. ISBN 9780511541094. [Google Scholar]
- Ryzhkov, A.V.; Zrnic, D.S. Microphysical and Dielectric Properties of Hydrometeors. In Radar Polarimetry for Weather Observations; Springer: Cham, Switzerland, 2019; pp. 63–96. [Google Scholar]
- Testud, J.; Le Bouar, E.; Obligis, E.; Ali-Mehenni, M. The Rain Profiling Algorithm Applied to Polarimetric Weather Radar. J. Atmos. Ocean. Technol. 2000, 17, 332–356. [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Clim. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M.K. The Distribution of Raindrops with Size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W. Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band. J. Appl. Meteorol. 1977, 16, 1322–1331. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler Radar Characteristics of Precipitation at Vertical Incidence. Rev. Geophys. 1973, 11, 1. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W.; Marks, F.D.; Amitai, E.; Williams, C.R. Systematic Variation of Drop Size and Radar-Rainfall Relations. J. Geophys. Res. Atmos. 1999, 104, 6155–6169. [Google Scholar] [CrossRef]
- Nzeukou, A.; Sauvageot, H.; Ochou, A.D.; Kebe, C.M.F. Raindrop Size Distribution and Radar Parameters at Cape Verde. J. Appl. Meteorol. 2004, 43, 90–105. [Google Scholar] [CrossRef]
- Narayana Rao, T.; Radhakrishna, B.; Nakamura, K.; Prabhakara Rao, N. Differences in Raindrop Size Distribution from Southwest Monsoon to Northeast Monsoon at Gadanki. Q. J. R. Meteorol. Soc. 2009, 135, 1630–1637. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhou, Y.; Tong, Z.; Jiang, Y.; Chen, P. Characteristics of Orographic Raindrop Size Distribution in the Tianshan Mountains, China. Atmos. Res. 2022, 278, 106332. [Google Scholar] [CrossRef]
- Rainfall Intensity Classification of the National Center for Hydrology and Meteorology, Royal Government of Bhutan. Available online: https://www.nchm.gov.bt/attachment/ckfinder/userfiles/files/Rainfall%20intensity%20classification.pdf (accessed on 28 April 2025).
- Magaña, V.; Amador, J.A.; Medina, S.; Magaña, V.; Amador, J.A.; Medina, S. The Midsummer Drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Lee, C.K.; Lee, G.W.; Zawadzki, I.; Kim, K.E. A Preliminary Analysis of Spatial Variability of Raindrop Size Distributions during Stratiform Rain Events. J. Appl. Meteorol. Climatol. 2009, 48, 270–283. [Google Scholar] [CrossRef]
- Tokay, A.; Bashor, P.G. An Experimental Study of Small-Scale Variability of Raindrop Size Distribution. J. Appl. Meteorol. Climatol. 2010, 49, 2348–2365. [Google Scholar] [CrossRef]
- Das, S.; Maitra, A. Characterization of Tropical Precipitation Using Drop Size Distribution and Rain Rate-Radar Reflectivity Relation. Theor. Appl. Climatol. 2018, 132, 275–286. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A Comparison Study of Summer Season Raindrop Size Distribution Between Palau and Taiwan, Two Islands in Western Pacific. J. Geophys. Res. Atmos. 2017, 122, 11787–11805. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra. J. Appl. Meteorol. 1998, 37, 912–923. [Google Scholar] [CrossRef]
- Méndez Antonio, B.; Magaña, V.; Caetano, E.; da Silveira, R.B.; Domínguez, R. Analysis of Daily Precipitation Based on Weather Radar Information in México City. Atmosfera 2009, 22, 299–313. [Google Scholar]
- Magana, V.; Pérez, J.; Méndez, M. Diagnosis and Prognosis of Extreme Precipitation Events in the Mexico City Basin. Geofis. Int. 2003, 42, 247–259. [Google Scholar] [CrossRef]
- Vargas, N.; Magaña, V. Climatic Risk in the Mexico City Metropolitan Area Due to Urbanization. Urban Clim. 2020, 33, 100644. [Google Scholar] [CrossRef]
- Harikumar, R. Orographic Effect on Tropical Rain Physics in the Asian Monsoon Region. Atmos. Sci. Lett. 2016, 17, 556–563. [Google Scholar] [CrossRef]
- Zwiebel, J.; Van Baelen, J.; Anquetin, S.; Pointin, Y.; Boudevillain, B. Impacts of Orography and Rain Intensity on Rainfall Structure. The Case of the HyMeX IOP7a Event. Q. J. R. Meteorol. Soc. 2016, 142, 310–319. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P. Exploring the Transient Behavior of Z-R Relationships: Implications for Radar Rainfall Estimation. J. Appl. Meteorol. Climatol. 2009, 48, 2127–2143. [Google Scholar] [CrossRef]
- Das, S.K.; Konwar, M.; Chakravarty, K.; Deshpande, S.M. Raindrop Size Distribution of Different Cloud Types over the Western Ghats Using Simultaneous Measurements from Micro-Rain Radar and Disdrometer. Atmos. Res. 2017, 186, 72–82. [Google Scholar] [CrossRef]
- Yuan, L.; Mikelonis, A.M.; Pirhalla, M. Exploring the Statistical Characteristics of Coastal Winter Precipitation Measured Using a Parsivel2 Disdrometer: A Case Study in North Carolina. Atmos. Res. 2024, 307, 107487. [Google Scholar] [CrossRef]
- Zawadzki, I.; De Agostinho Antonio, M. Equilibrium Raindrop Size Distributions in Tropical Rain. J. Atmos. Sci. 1988, 45, 3452–3459. [Google Scholar] [CrossRef]
- Tenório, R.S.; Moraes, M.C.D.S.; Kwon, B.H. Raindrop Distribution in the Eastern Coast of Northeastern Brazil Using Disdrometer Data. Rev. Bras. Meteorol. 2010, 25, 415–426. [Google Scholar] [CrossRef]
- Chen, B.; Hu, Z.; Liu, L.; Zhang, G. Raindrop Size Distribution Measurements at 4,500 m on the Tibetan Plateau During TIPEX-III. J. Geophys. Res. Atmos. 2017, 122, 11092–11106. [Google Scholar] [CrossRef]
- Jwa, M.; Jin, H.G.; Lee, J.; Moon, S.; Baik, J.J. Characteristics of Raindrop Size Distribution in Seoul, South Korea According to Rain and Weather Types. Asia Pac. J. Atmos. Sci. 2020, 57, 605–617. [Google Scholar] [CrossRef]
- Niu, S.; Jia, X.; Sang, J.; Liu, X.; Lu, C.; Liu, Y. Distributions of Raindrop Sizes and Fall Velocities in a Semiarid Plateau Climate: Convective versus Stratiform Rains. J. Appl. Meteorol. Climatol. 2010, 49, 632–645. [Google Scholar] [CrossRef]
- Marshall, J.S.; Hitschfeld, W.; Gunn, K.L.S. Advances in Radar Weather. Adv. Geophys. 1955, 2, 1–56. [Google Scholar] [CrossRef]
- Battan, L.J. Radar Observation of the Atmosphere; University of Chicago Press: Chicago, IL, USA, 1973; Volume 99, ISBN 0226039196. [Google Scholar]
- Yu, N. Précipitations Méditerranéennes Intenses—Caractérisation Microphysique et Dynamique Dans l’atmosphère et Impacts Au Sol. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2012. [Google Scholar]
- Raghavan, S. Radar Meteorology; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2003; Volume 27. [Google Scholar]
- Calheiros, R.V.; Oliveira, C.; Beneti, C.; Calvetti, L. Distrometric Drop Size Distribution in South Brazil: Derived Z-R Relationships and Comparisons with Radar Measurements. In Proceedings of the 38th AMS Conference on Radar Meteorology, Chicago, IL, USA, 28 August–1 September 2017; AMS: Chicago, IL, USA, 2017. [Google Scholar]
- Yeo, J.X.; Lee, Y.H.; Ong, J.T. Radar Measured Rain Attenuation with Proposed Z-R Relationship at a Tropical Location. AEU—Int. J. Electron. Commun. 2015, 69, 458–461. [Google Scholar] [CrossRef]
- Pedrozo-Acuña, A.; Magos-Hernández, J.A.; Sánchez-Peralta, J.A.; Amaro-Loza, A.; Breña-Naranjo, A. Real-Time and Discrete Precipitation Monitoring in Mexico City: Implementation and Application. In Proceedings of the HydroSenSoft, International Symposium on Hydro-Environment Sensors and Software, Madrid, Spain, 1–3 March 2017; IAHR: Madrid, Spain, 2017. [Google Scholar]
- OTT, H.G. Operating Instructions Present Weather Sensor OTT Parsivel2; OTT Hydromet: Kempten, Germany, 2016. [Google Scholar]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
No. | Station Name | Latitude | Longitude | Elevation (m.a.s.l.) 1 | Region |
---|---|---|---|---|---|
1 | Acopilco | 19.322 | −99.329 | 2949.63 | High mountain |
2 | Ajusco | 19.215 | −99.188 | 2849.55 | High mountain |
3 | AMC | 19.241 | −99.174 | 2606.05 | High mountain |
4 | Aragón | 19.466 | −99.08 | 2226.61 | Flat urban |
5 | Bosque Real | 19.436 | −99.283 | 2401.89 | High mountain |
6 | CCH ote | 19.384 | −99.06 | 2230.26 | Flat urban Flat |
7 | CCH Vallejo | 19.484 | −99.141 | 2232.41 | Flat urban |
8 | Centenario | 19.356 | −99.239 | 2514.88 | High mountain |
9 | Coapa | 19.288 | −99.134 | 2236.39 | Flat urban |
10 | Contreras | 19.306 | −99.247 | 2542.2 | High mountain |
11 | Cuajimalpa | 19.355 | −99.292 | 2728.35 | High mountain |
12 | Cuauhtenco | 19.193 | −99.098 | 2756.71 | High mountain |
13 | IIUNAM | 19.329 | −99.182 | 2271.93 | Flat urban |
14 | Prepa8 | 19.367 | −99.195 | 2298.72 | Flat urban |
15 | SACMEX | 19.425 | −99.137 | 2227.14 | Flat urban |
16 | San Bartolo | 19.326 | −99.28 | 2751.84 | High mountain |
17 | Tlalnepantla | 19.539 | −99.195 | 2249 | Flat urban |
18 | Tulyeahualco | 19.25 | −99.01 | 2248.03 | Flat urban |
19 | UAM Az | 19.504 | −99.189 | 2241.24 | Flat urban |
20 | Vista Hermosa | 19.372 | −99.276 | 2623.11 | High mountain |
21 | Xochimilco | 19.25 | −99.107 | 2241.76 | Flat urban |
No. and Station Name | log(<Nw>) (mm−1 m−3) | <Do> (mm) | <µ> | a | b | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
1—Acopilco | 3.858 | 3.954 | 0.994 | 0.448 | 8.197 | 5.332 | 177.198 | 1.567 |
2—Ajusco | 3.937 | 4.153 | 0.944 | 0.417 | 8.599 | 5.382 | 162.264 | 1.622 |
3—AMC | 3.818 | 3.945 | 0.967 | 0.424 | 8.585 | 5.319 | 179.452 | 1.644 |
4—Aragon | 3.722 | 3.829 | 0.992 | 0.446 | 6.042 | 4.723 | 211.967 | 1.688 |
5—BosqueReal | 3.822 | 4.078 | 0.979 | 0.452 | 7.723 | 5.223 | 187.569 | 1.644 |
6—CCHOTE | 3.649 | 3.725 | 1.034 | 0.482 | 8.263 | 5.239 | 208.757 | 1.642 |
7—CCHVALLEJO | 3.686 | 3.766 | 1.031 | 0.428 | 8.285 | 5.165 | 195.684 | 1.628 |
8—Centenario | 3.790 | 3.927 | 1.019 | 0.449 | 8.196 | 5.226 | 184.630 | 1.586 |
9—Coapa | 3.737 | 3.814 | 0.960 | 0.421 | 7.844 | 5.075 | 196.207 | 1.620 |
10—Contreras | 3.809 | 3.925 | 1.026 | 0.463 | 7.982 | 5.307 | 180.372 | 1.620 |
11—Cuajimalpa | 3.764 | 3.853 | 1.006 | 0.442 | 8.522 | 5.319 | 185.716 | 1.585 |
12—Cuauhtenco | 3.949 | 4.181 | 0.952 | 0.446 | 8.393 | 5.423 | 167.374 | 1.651 |
13—IIUNAM | 3.751 | 3.965 | 1.035 | 0.498 | 6.628 | 4.796 | 206.772 | 1.657 |
14—PREPA8 | 3.722 | 3.824 | 1.048 | 0.481 | 8.012 | 5.184 | 203.315 | 1.590 |
15—SACMEX | 3.701 | 3.840 | 1.040 | 0.486 | 6.845 | 4.825 | 217.306 | 1.653 |
16—SanBartolo | 3.872 | 4.028 | 0.990 | 0.443 | 8.148 | 5.374 | 172.911 | 1.611 |
17—Tlalnepantla | 3.653 | 3.724 | 1.048 | 0.462 | 8.198 | 5.144 | 207.021 | 1.623 |
18—Tulyehualco | 3.700 | 3.863 | 1.027 | 0.443 | 8.280 | 5.237 | 204.493 | 1.588 |
19—UAMAZC | 3.708 | 3.784 | 1.043 | 0.466 | 8.018 | 5.169 | 196.593 | 1.640 |
20—VHermosa | 3.846 | 4.067 | 0.976 | 0.451 | 7.057 | 5.025 | 191.456 | 1.629 |
21—Xochimilco | 3.707 | 3.800 | 1.045 | 0.489 | 7.960 | 5.184 | 200.339 | 1.644 |
Mean | 3.772 | 1.007 | 7.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocva-Kurek, R.K.; Pedrozo-Acuña, A.; Rico-Ramírez, M.A. Spatial Heterogeneity of Drop Size Distribution and Its Implications for the Z-R Relationship in Mexico City. Atmosphere 2025, 16, 585. https://doi.org/10.3390/atmos16050585
Mocva-Kurek RK, Pedrozo-Acuña A, Rico-Ramírez MA. Spatial Heterogeneity of Drop Size Distribution and Its Implications for the Z-R Relationship in Mexico City. Atmosphere. 2025; 16(5):585. https://doi.org/10.3390/atmos16050585
Chicago/Turabian StyleMocva-Kurek, Roberta Karinne, Adrián Pedrozo-Acuña, and Miguel Angel Rico-Ramírez. 2025. "Spatial Heterogeneity of Drop Size Distribution and Its Implications for the Z-R Relationship in Mexico City" Atmosphere 16, no. 5: 585. https://doi.org/10.3390/atmos16050585
APA StyleMocva-Kurek, R. K., Pedrozo-Acuña, A., & Rico-Ramírez, M. A. (2025). Spatial Heterogeneity of Drop Size Distribution and Its Implications for the Z-R Relationship in Mexico City. Atmosphere, 16(5), 585. https://doi.org/10.3390/atmos16050585