Ground-Level Ozone Exposure and Type 2 Diabetes Incidence: An Ecological Study of Environmental and Social Determinants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- (a)
- A city’s 2017 socioeconomic cluster value. This value is determined by using a CBS socioeconomic index, ranging from 1—the lowest socioeconomic ranking to 10—the highest socioeconomic ranking. A municipality’s socioeconomic index includes 14 components related to demography, education, employment, and standard of living. The 14 index components are as follows:
- 1.
- Median age.
- 2.
- Dependency ratio (ratio between working-age population (20–64) and dependents (0–19 and 65+)).
- 3.
- Percentage of households with four or more children.
- 4.
- Average years of schooling (ages 25–54).
- 5.
- Percentage of individuals with an academic degree (ages 27–54).
- 6.
- Percentage of individuals with income from employment (ages 25–54).
- 7.
- Percentage of women (ages 25–54) with no income from employment.
- 8.
- Percentage of employed individuals earning more than twice the average wage.
- 9.
- Percentage of employed individuals earning below the minimum wage.
- 10.
- Percentage of individuals aged 20+ receiving income support or old-age/survivors’ allowance.
- 11.
- Average monthly income per capita.
- 12.
- Average number of privately owned vehicles per 100 residents aged 17+.
- 13.
- Average vehicle license fee (used as an estimate of vehicle value).
- 14.
- Average number of days spent abroad per person.
- (b)
- Standardized rate of T2D per 1000 people for the entire Israeli population (general population’s T2D rate) between the years 2017 and 2019.
- (c)
- Standardized rate of T2D patients per 100,000 people aged ≥ 45 (rate of T2D among the adults aged ≥ 45 population) between the years 2017 and 2019.
2.2. Statistical Analyses
3. Results
4. Discussion
4.1. Associations Between the Ozone Concentrations and the Incidence of Type 2 Diabetes
4.2. Type 2 Diabetes, Ground-Level Ozone Exposure, Socioeconomic Status, and Environmental Health Policy Recommendations
4.3. Research Strengths and Limitations and Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
O3 | Ozone |
PM | Particulate matter |
NO2 | Nitrogen dioxide |
NOx | Nitrogen oxides |
VOCs | Volatile Organic Compounds |
CBS | Israel Central Bureau of Statistics |
IMoEP | Israeli Ministry of Environmental Protection |
GDM | Gestational Diabetes Mellitus |
T2D | Type 2 diabetes |
SES | Socioeconomic status |
BATs | Best available technologies |
EU | European Union |
HMO | Health maintenance organization |
ICDC | Israel Center for Disease Control |
BMI | Body mass index |
References
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Roser, M. Data Review: How Many People Die from Air Pollution? Our World in Data, October 2023. Available online: https://ourworldindata.org/data-review-air-pollution-deaths (accessed on 19 November 2023).
- WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 19 November 2023).
- Mannucci, P.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, G.; Suarez-Varela, M.M. Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. Atmosphere 2024, 15, 779. [Google Scholar] [CrossRef]
- Ni, J.; Jin, J.; Wang, Y.; Li, B.; Wu, Q.; Chen, Y.; He, C. Surface ozone in global cities: A synthesis of basic features, exposure risk, and leading meteorological driving factors. Geogr. Sustain. 2024, 5, 64–76. [Google Scholar] [CrossRef]
- Gozlu, M.; Senol, O.; Cirakli, U.; Aslan, H.; Akbulut, F.; Gokkaya, D. The effect of air pollution quality on lung cancer rates in middle-income and high-income countries: A panel data analysis approach. Front. Public Health 2024, 12, 1372320. [Google Scholar] [CrossRef]
- Barnett-Itzhaki, Z.; Levi, A. Effects of chronic exposure to ambient air pollutants on COVID-19 morbidity and mortality-A lesson from OECD countries. Environ. Res. 2021, 195, 110723. [Google Scholar] [CrossRef]
- Barnett-Itzhaki, Z.; Levi, A. Association between Chronic Exposure to Ambient Air Pollutants, Demography, Vaccination Level, and the Spread of COVID-19 during 2021 Delta Variant Morbidity Wave. Atmosphere 2022, 13, 1845. [Google Scholar] [CrossRef]
- Sun, F.; Gong, X.; Wei, L.; Zhang, Y.; Ge, M.; Xiong, L. Assessing the impact of short-term ozone exposure on excess deaths from cardiovascular disease: A multi-pollutant model in Nanjing, China’s Yangtze River Delta. Front. Public Health 2024, 12, 1353384. [Google Scholar] [CrossRef]
- Fu, G.; Cheng, H.; Lu, Q.; Liu, H.; Zhang, X.; Zhang, X. The synergistic effect of high temperature and ozone on the number of deaths from circulatory system diseases in Shijiazhuang, China. Front. Public Health 2023, 11, 1266643. [Google Scholar] [CrossRef]
- Fang, X.; Huang, S.; Zhu, Y.; Lei, J.; Xu, Y.; Niu, Y.; Chen, R. Short-term exposure to ozone and asthma exacerbation in adults: A longitudinal study in China. Front. Public Health 2023, 10, 1070231. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X. Consequences of acute ozone exposure imposed on the culminated allergic pulmonary inflammation in an established murine model of asthma. Front. Biosci. 2013, 18, 838. [Google Scholar] [CrossRef]
- Surit, P.; Wongtanasarasin, W.; Boonnag, C.; Wittayachamnankul, B. Association between air quality index and effects on emergency department visits for acute respiratory and cardiovascular diseases. PLoS ONE 2023, 18, e0294107. [Google Scholar] [CrossRef]
- Shore, S.A. The metabolic response to ozone. Front. Immunol. 2019, 10, 2890. [Google Scholar] [CrossRef]
- Snow, S.J.; Henriquez, A.R.; Costa, D.L.; Kodavanti, U.P. Neuroendocrine regulation of air pollution health effects: Emerging insights. Toxicol. Sci. 2018, 164, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhang, M.; Zhu, J.; Yang, X.; Bigambo, F.M.; Snijders, A.M.; Wang, X.; Hu, W.; Lv, W.; Xia, Y. The effect of ambient ozone exposure on three types of diabetes: A meta-analysis. Environ. Health 2023, 22, 32. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, R.; Xu, Z.; Jin, J.; Wang, J.; Yang, T.; Wei, J.; Huang, J.; Li, G. Long-term exposure to ozone and diabetes incidence: A longitudinal cohort study in China. Sci. Total Environ. 2022, 816, 151634. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P.; Zhou, Y.; Cheng, Y.; Li, J.; Xiao, X.; Yin, C.; Li, J.; Meng, X.; Zhang, Y. Associations of ozone exposure with gestational diabetes mellitus and glucose homeostasis: Evidence from a birth cohort in Shanghai, China. Sci. Total Environ. 2023, 857, 159184. [Google Scholar] [CrossRef]
- Jerrett, M.; Brook, R.; White, L.F.; Burnett, R.T.; Yu, J.; Su, J.; Seto, E.; Marshall, J.; Palmer, J.R.; Rosenberg, L.; et al. Ambient ozone and incident diabetes: A prospective analysis in a large cohort of african american women. ISEE Conf. Abstr. 2015, 2015, 3655. [Google Scholar] [CrossRef]
- Jerrett, M.; Brook, R.; White, L.F.; Burnett, R.T.; Yu, J.; Su, J.; Seto, E.; Marshall, J.; Palmer, J.R.; Rosenberg, L.; et al. Ambient ozone and incident diabetes: A prospective analysis in a large cohort of African American women. Environ. Int. 2017, 102, 42–47. [Google Scholar] [CrossRef]
- Zhan, Q.; Meng, X.; Wang, H.; Yu, Y.; Su, X.; Huang, Y.; Kan, H. Long-term low-level ozone exposure and the incidence of type 2 diabetes mellitus and glycemic levels: A prospective cohort study from Southwest China. Ecotoxicol. Environ. Saf. 2025, 293, 118028. [Google Scholar] [CrossRef]
- Yu, Y.; Jerrett, M.; Paul, K.C.; Su, J.; Shih, I.F.; Wu, J.; Lee, E.; Inoue, K.; Haan, M.; Ritz, B. Ozone exposure, outdoor physical activity, and incident type 2 diabetes in the SALSA cohort of older Mexican Americans. Environ. Health Perspect. 2021, 129, 097004. [Google Scholar] [CrossRef]
- Vella, R.E.; Pillon, N.J.; Zarrouki, B.; Croze, M.L.; Koppe, L.; Guichardant, M.; Pesenti, S.; Chauvin, M.A.; Rieusset, J.; Géloën, A.; et al. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes 2015, 64, 1011–1024. [Google Scholar] [CrossRef]
- Ying, Z.; Allen, K.; Zhong, J.; Chen, M.; Williams, K.M.; Wagner, J.G.; Lewandowski, R.; Sun, Q.; Rajagopalan, S.; Harkema, J.R. Subacute inhalation exposure to ozone induces systemic inflammation but not insulin resistance in a diabetic mouse model. Inhal. Toxicol. 2016, 28, 155–163. [Google Scholar] [CrossRef]
- Lee, T.C.; Glynn, R.J.; Peña, J.M.; Paynter, N.P.; Conen, D.; Ridker, P.M.; Pradhan, A.D.; Buring, J.E.; Albert, M.A. Socioeconomic status and incident type 2 diabetes mellitus: Data from the Women’s Health Study. PLoS ONE 2011, 6, e27670. [Google Scholar] [CrossRef]
- Steptoe, A.; Hamer, M.; O’Donnell, K.; Venuraju, S.; Marmot, M.G.; Lahiri, A. Socioeconomic status and subclinical coronary disease in the Whitehall II epidemiological study. PLoS ONE 2010, 5, e8874. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Huang, D.; Wang, Y.; Li, Q. Impact of social class on health: The mediating role of health self-management. PLoS ONE 2021, 16, e0254692. [Google Scholar] [CrossRef]
- Evans, G.W.; Kantrowitz, E. Socioeconomic status and health: The potential role of environmental risk exposure. Annu. Rev. Public Health 2002, 23, 303–331. [Google Scholar] [CrossRef]
- Hajat, A.; Hsia, C.; O’Neill, M.S. Socioeconomic disparities and air pollution exposure: A global review. Curr. Environ. Health Rep. 2015, 2, 440–450. [Google Scholar] [CrossRef]
- Korc, M.E. A socioeconomic assessment of human exposure to ozone in the south coast air basin of California. J. Air Waste Manag. Assoc. 1996, 46, 547–557. [Google Scholar] [CrossRef]
- Son, J.-Y.; Kim, H.; Lee, J.T.; Kim, S.Y. Relationship between the exposure to ozone in Seoul and the childhood asthma-related hospital admissions according to the socioeconomic status. J. Prev. Med. Public Health 2006, 39, 81–86. [Google Scholar]
- Levi, A.; Barnett-Itzhaki, Z. Effects of chronic exposure to ambient air pollutants, demographic, and socioeconomic factors on COVID-19 morbidity: The Israeli case study. Environ. Res. 2021, 202, 111673. [Google Scholar] [CrossRef]
- Costa, I.G.; McConell, K.; Adduono, K.; Camargo-Plazas, P.; Koné, A. Exploring diabetes status and social determinants of health influencing diabetes-related complications in a Northwestern community, Ontario, Canada: A mixed method study protocol. PLoS ONE 2023, 18, e0273953. [Google Scholar] [CrossRef]
- Smith, J.P. Nature and causes of trends in male diabetes prevalence, undiagnosed diabetes, and the socioeconomic status health gradient. Proc. Natl. Acad. Sci. USA 2007, 104, 13225–13231. [Google Scholar] [CrossRef]
- Brancati, F.L.; Whelton, P.K.; Kuller, L.H.; Klag, M.J. Diabetes mellitus, race, and socioeconomic status a population-based study. Ann. Epidemiol. 1996, 6, 67–73. [Google Scholar] [CrossRef]
- Kapur, A.; Schmidt, M.I.; Barceló, A. Diabetes in socioeconomically vulnerable populations. Int. J. Endocrinol. 2015, 2015, 247636. [Google Scholar] [CrossRef]
- Peykari, N.; Djalalinia, S.; Qorbani, M.; Sobhani, S.; Farzadfar, F.; Larijani, B. Socioeconomic inequalities and diabetes: A systematic review from Iran. J. Diabetes Metab. Disord. 2015, 14, 8. [Google Scholar] [CrossRef]
- Berman, T.; Barnett-Itzhaki, Z. Environmental Health in Israel 2020; Israel Ministry of Health: Jerusalem, Israel, 2020; pp. 1–156. Available online: https://www.gov.il/BlobFolder/reports/health-and-environment-in-israel-2020/he/files_publications_environment_health-and-environment-in-israel-2020.pdf (accessed on 10 April 2025).
- Levy, I.; Karakis, I.; Berman, T.; Amitay, M.; Barnett-Itzhaki, Z. A hybrid model for evaluating exposure of the general population in Israel to air pollutants. Environ. Monit. Assess. 2020, 192, 4. [Google Scholar] [CrossRef]
- Israel Central Bureau of Statistics. Health Profile of Districts, Subdistricts and Localities with over 10,000 Inhabitants by Population Group—2014–2020. Updated 28 May 2022. Available online: https://www.gov.il/en/departments/central_bureau_of_statistics/govil-landing-page (accessed on 8 January 2024).
- Monteiro, A.; Miranda, A.I.; Borrego, C.; Vautard, R.; Ferreira, J.; Perez, A.T. Long-term assessment of particulate matter using CHIMERE model. Atmos. Environ. 2007, 41, 7726–7738. [Google Scholar] [CrossRef]
- Levy, Y.I.; Broday, D.M. Improving modeled air pollution concentration maps by residual interpolation. Sci. Total Environ. 2017, 598, 780–788. [Google Scholar] [CrossRef]
- Suman, S.; Biswas, A.; Kohaf, N.; Singh, C.; Johns, R.; Jakkula, P.; Hastings, N. The Diabetes-Heart Disease Connection: Recent Discoveries and Implications. Curr. Probl. Cardiol. 2023, 48, 101923. [Google Scholar] [CrossRef]
- Alderete, T.L.; Chen, Z.; Toledo-Corral, C.M.; Contreras, Z.A.; Kim, J.S.; Habre, R.; Chatzi, L.; Bastain, T.; Breton, C.V.; Gilliland, F.D. Ambient and traffic-related air pollution exposures as novel risk factors for metabolic dysfunction and type 2 diabetes. Curr. Epidemiol. Rep. 2018, 5, 79–91. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Raaschou-Nielsen, O.; Ketzel, M.; Jensen, S.S.; Hvidberg, M.; Loft, S.; Tjønneland, A.; Overvad, K.; Sørensen, M. Diabetes incidence and long-term exposure to air pollution. Diabetes Care 2012, 35, 92–98. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, H.; Hu, X.; Xie, Y.; Rui, D. The Impact of Air Pollutant Exposure on Diabetes Hospital Admissions in a City in Xinjiang. Atmosphere 2025, 16, 244. [Google Scholar] [CrossRef]
- Weinroth, E.; Luria, M.; Ben-Nun, A.; Kaplan, J.; Peleg, M.; Mahrer, I. Air pollution emission inventory survey for Israel. Isr. J. Chem. 2006, 46, 59–68. [Google Scholar] [CrossRef]
- Li, Y.L.; Chuang, T.W.; Chang, P.Y.; Lin, L.Y.; Su, C.T.; Chien, L.N.; Chiou, H.Y. Long-term exposure to ozone and sulfur dioxide increases the incidence of type 2 diabetes mellitus among aged 30 to 50 adult population. Environ. Res. 2021, 194, 110624. [Google Scholar] [CrossRef]
- Brandt, E.B.; Beck, A.F.; Mersha, T.B. Air pollution, racial disparities, and COVID-19 mortality. J. Allergy Clin. Immunol. 2020, 146, 61–63. [Google Scholar] [CrossRef]
- Commodore-Mensah, Y.; Selvin, E.; Aboagye, J.; Turkson-Ocran, R.A.; Li, X.; Himmelfarb, C.D.; Ahima, R.S.; Cooper, L.A. Hypertension, overweight/obesity, and diabetes among immigrants in the United States: An analysis of the 2010–2016 National Health Interview Survey. BMC Public Health 2018, 18, 773. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Q.; Li, K.; Wen, X. Association of socioeconomic status and health-related behavior with elderly health in China. PLoS ONE 2018, 13, e0204237. [Google Scholar] [CrossRef]
Exposure to Ozone in | Population | Model p-Value | Intercept Beta (p) | Ozone Beta (p) | R2 | RMSE | Standard Deviation |
---|---|---|---|---|---|---|---|
2017 | General population | <0.01 | 15.40 (0.32) | 0.67 (<0.01) | 0.11 | 17.3 | 18.2 |
2017 | Adults (ages ≥ 45) | <0.01 | −18.97 (0.63) | 1.73 (<0.01) | 0.11 | 44.2 | 46.7 |
2019 | General population | <0.01 | 6.53 (0.71) | 0.79 (<0.01) | 0.12 | 17.2 | 18.2 |
2019 | Adults (ages ≥ 45) | <0.01 | −25.10 (0.58) | 1.77 (<0.01) | 0.08 | 44.7 | 46.7 |
Exposure to Ozone in | Population | Model p-Value | Intercept Beta (p) | Socioeconomic Cluster Beta (p) | Ozone Beta (p) | R2 (f2) | RMSE | Standard Deviation |
---|---|---|---|---|---|---|---|---|
2017 | General population | <0.01 | 88.2 (<0.01) | −48.0 (<0.01) | 1.05 (0.87) | 0.55 (1.23) | 12.4 | 18.2 |
2017 | Adults (ages ≥ 45) | <0.01 | 148.5 (<0.01) | −97.2 (<0.01) | 16.6 (0.45) | 0.39 (0.64) | 37.0 | 46.7 |
2019 | General population | <0.01 | 88.4 (<0.01) | −48.1 (<0.01) | 0.69 (0.93) | 0.55 (1.23) | 12.4 | 18.2 |
2019 | Adults (ages ≥ 45) | <0.01 | 154.1 (<0.01) | −100.8 (<0.01) | 6.65 (0.76) | 0.38 (0.61) | 37.2 | 46.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levi, A.; Carasso Romano, G.H.; Barnett-Itzhaki, Z. Ground-Level Ozone Exposure and Type 2 Diabetes Incidence: An Ecological Study of Environmental and Social Determinants. Atmosphere 2025, 16, 528. https://doi.org/10.3390/atmos16050528
Levi A, Carasso Romano GH, Barnett-Itzhaki Z. Ground-Level Ozone Exposure and Type 2 Diabetes Incidence: An Ecological Study of Environmental and Social Determinants. Atmosphere. 2025; 16(5):528. https://doi.org/10.3390/atmos16050528
Chicago/Turabian StyleLevi, Adi, Gal Hagit Carasso Romano, and Zohar Barnett-Itzhaki. 2025. "Ground-Level Ozone Exposure and Type 2 Diabetes Incidence: An Ecological Study of Environmental and Social Determinants" Atmosphere 16, no. 5: 528. https://doi.org/10.3390/atmos16050528
APA StyleLevi, A., Carasso Romano, G. H., & Barnett-Itzhaki, Z. (2025). Ground-Level Ozone Exposure and Type 2 Diabetes Incidence: An Ecological Study of Environmental and Social Determinants. Atmosphere, 16(5), 528. https://doi.org/10.3390/atmos16050528