Evaluation of the Spatio-Temporal Variation of Extreme Cold Events in Southeastern Europe Using an Intensity–Duration Model and Excess Cold Factor Severity Index
Abstract
:1. Introduction
2. Data and Methods
2.1. Climatologically Justified Threshold Indicators
- Annual number of cold days (ncd-5)—i.e., the annual count of days when tn < −5 °C;
- Maximum number of consecutive cold days (ccd-5)—i.e., the longest continuous calendar period when tn < −5 °C;
- Cold spells duration at different tn-thresholds (csd-5/-10/-12/-14/-16/-18/-20)—i.e., the annual count of days when tn ≤ −5, −10, −12, −14, −16, −18 and −20 °C for at least 7, 5, 4, 4, 3, 3 and 2 consecutive days, respectively.
2.2. Excess Cold Factor (ECF)
- -
- L1 (low intensity), when 0 < ECFsev < 1;
- -
- L2 (severe), when 1 ≤ ECFsev < 3;
- -
- L3 (extreme), when 3 ≤ ECFsev.
2.3. Software Products Used in the Research
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
tn | Daily minimum temperature |
Csa/Csb | Köppen–Geiger classification: temperate climate with dry hot/warm summer |
Cfa/Cfb | Köppen–Geiger classification: temperate climate with no dry hot/warm summer |
Dfa/Dfb/Dfc | Köppen–Geiger classification: boreal climate with hot/warm/cold summer |
ECA&D | European Climate Assessment and Dataset project |
ECE | Extreme cold event |
ECF | Excess cold factor |
ECFsev | ECF severity index |
EHF | Excess heat factor |
ETCCDI | WMO Expert Team on Climate Change Detection and Indices |
EURO-CORDEX | Coordinated Downscaling Experiment—European Domain |
GHCNd | Global Historical Climatology Network daily dataset of the U.S. National Climatic Data Center (NCDC) |
GSOD | Global Surface Summary of the Day (GSOD) dataset of the U.S. National Centers for Environmental Information (NCEI) |
NIMH | National Institute of Meteorology and Hydrology, Bulgaria |
SEE | Southeastern Europe |
WMO | World Meteorological Organization |
Appendix A
Station ID | Station Name | Country Code (ISO 3166-1) [94] | Latitude (N) | Longitude (E) | Altitude (m) | Data Source | KGC | Environment |
---|---|---|---|---|---|---|---|---|
S1 | Belgrade (Obs.) | RS | 44.8000 | 20.4667 | 132 | ECA&D | Cfa | urban |
S2 | Tulcea | RO | 45.1831 | 28.8167 | 4 | ECA&D | Cfa | suburban |
S3 | Sulina | RO | 45.1667 | 29.7331 | 3 | ECA&D | Cfa | rural |
S4 | Roșiorii de Vede | RO | 44.1000 | 24.9831 | 102 | ECA&D | Cfa | rural |
S5 | Craiova | RO | 44.2300 | 23.8700 | 192 | ECA&D | Cfa | rural |
S6 | Constanța | RO | 44.2200 | 28.6300 | 13 | ECA&D | Cfa | suburban |
S7 | Thessaloniki Airport | GR | 40.5200 | 22.9700 | 7 | GHCNd | Cfa | airport |
S8 | Edirne | TR | 41.6700 | 26.5700 | 51 | GHCNd | Cfa | urban |
S9 | Sadovo | BG | 42.1500 | 24.9500 | 155 | NIMH | Cfa | rural |
S10 | Sandanski | BG | 41.5200 | 23.2700 | 206 | NIMH | Cfa | suburban |
S11 | Obraztsov Chiflik | BG | 43.8000 | 26.0331 | 156 | NIMH | Cfa | suburban |
S12 | Goren Chiflik | BG | 43.0094 | 27.6297 | 29 | NIMH | Cfa | suburban |
S13 | Burgas | BG | 42.4977 | 27.4827 | 22 | NIMH | Cfa | suburban |
S14 | Kardzhali | BG | 41.6500 | 25.3700 | 331 | NIMH | Cfa | suburban |
S15 | Vidin | BG | 43.9942 | 22.8525 | 31 | NIMH | Cfa | suburban |
S16 | Knezha | BG | 43.5000 | 24.0831 | 116 | NIMH | Cfa | rural |
S17 | Sevlievo | BG | 43.0256 | 25.1151 | 197 | NIMH | Cfa | suburban |
S18 | Ihtiman | BG | 42.4381 | 23.8196 | 637 | NIMH | Cfb | urban |
S19 | Shumen | BG | 43.2796 | 26.9440 | 217 | NIMH | Cfb | suburban |
S20 | Sliven | BG | 42.6776 | 26.3398 | 259 | NIMH | Cfb | urban |
S21 | Zagreb- Grič | HR | 45.8167 | 15.9781 | 156 | ECA&D | Cfb | urban |
S22 | Budapest | HU | 47.5108 | 19.0206 | 153 | ECA&D | Cfb | urban |
S23 | Arad | RO | 46.1331 | 21.3500 | 116 | ECA&D | Cfb | suburban |
S24 | Drobeta-TurnuSeverin | RO | 44.6331 | 22.6331 | 77 | ECA&D | Cfb | suburban |
S25 | Hurbanovo | SK | 47.8667 | 18.1831 | 115 | ECA&D | Cfb | suburban |
S26 | Niš | RS | 43.3331 | 21.9000 | 201 | ECA&D | Cfb | suburban |
S27 | Sarajevo | BA | 43.8678 | 18.4228 | 630 | ECA&D | Cfb | urban |
S28 | Pécs-Pogány | HU | 46.0056 | 18.2328 | 202 | ECA&D | Cfb | airport |
S29 | Szeged | HU | 46.2558 | 20.0903 | 81 | ECA&D | Cfb | suburban |
S30 | Debrecen Airport | HU | 47.4903 | 21.6106 | 107 | ECA&D | Cfb | airport |
S31 | Gospić | HR | 44.5500 | 15.3667 | 564 | ECA&D | Cfb | suburban |
S32 | Osijek | HR | 45.5331 | 18.6331 | 88 | ECA&D | Cfb | suburban |
S33 | Novi Sad | RS | 45.3331 | 19.8500 | 84 | ECA&D | Cfb | suburban |
S34 | Šmartno priSlovenj Gradcu | SI | 46.4894 | 15.1108 | 444 | ECA&D | Cfb | rural |
S35 | Ogulin | HR | 45.2039 | 15.2717 | 326 | ECA&D | Cfb | rural |
S36 | Fürstenfeld | AT | 47.0308 | 16.0806 | 323 | ECA&D | Cfb | rural |
S37 | Gross-Enzersdorf | AT | 48.1994 | 16.5589 | 154 | ECA&D | Cfb | suburban |
S38 | Kisinev | MD | 47.0200 | 28.8700 | 173 | GHCNd | Cfb | urban |
S39 | Přibyslav | CZ | 49.5828 | 15.7625 | 532 | GHCNd | Cfb | rural |
S40 | Brno–Tuřany | CZ | 49.1531 | 16.6889 | 241 | GHCNd | Cfb | airport |
S41 | Skopje International Airport | MK | 41.9616 | 21.6214 | 238 | GSOD | Cfb | airport |
S42 | Heraklion | GR | 35.3331 | 25.1831 | 39 | ECA&D | Csa | airport |
S43 | Methoni | GR | 36.8331 | 21.7000 | 51 | ECA&D | Csa | rural |
S44 | Brindisi | IT | 40.6331 | 17.9331 | 10 | ECA&D | Csa | urban |
S45 | Istanbul | TR | 40.9667 | 29.0831 | 33 | ECA&D | Csa | urban |
S46 | Split Marjan | HR | 43.5167 | 16.4331 | 122 | ECA&D | Csa | urban |
S47 | Dubrovnik | HR | 42.5600 | 18.2700 | 52 | ECA&D | Csa | urban |
S48 | Corfu | GR | 39.6200 | 19.9200 | 11 | GHCNd | Csa | urban |
S49 | Hellinikon | GR | 37.9000 | 23.7500 | 10 | GHCNd | Csa | urban |
S50 | Cape Palinuro | IT | 40.0251 | 15.2805 | 185 | GHCNd | Csa | rural |
S51 | Tekirdag | TR | 40.9800 | 27.5500 | 3 | GHCNd | Csa | urban |
S52 | Çanakkale | TR | 40.1400 | 26.4300 | 7 | GHCNd | Csa | airport |
S53 | Balikesir | TR | 39.6200 | 27.9300 | 104 | GHCNd | Csa | airport |
S54 | Larissa | GR | 39.6500 | 22.4500 | 73 | GHCNd | Csa | airport |
S55 | Mugla | TR | 37.2200 | 28.3700 | 646 | GHCNd | Csa | urban |
S56 | Tirana | AL | 41.3333 | 19.7833 | 38 | GHCNd | Csa | urban |
S57 | Buzau | RO | 45.1331 | 26.8500 | 97 | ECA&D | Dfb | suburban |
S58 | Poprad-Tatry | SK | 49.0667 | 20.2331 | 694 | ECA&D | Dfb | airport |
S59 | Sibiu | RO | 45.8000 | 24.1500 | 444 | ECA&D | Dfb | airport |
S60 | Bielsko-Biała | PL | 49.8069 | 19.0003 | 396 | ECA&D | Dfb | suburban |
S61 | Nowy Sącz | PL | 49.6272 | 20.6886 | 292 | ECA&D | Dfb | suburban |
S62 | Lesko | PL | 49.4664 | 22.3417 | 420 | ECA&D | Dfb | suburban |
S63 | Miercurea Ciuc | RO | 46.3667 | 25.7331 | 661 | ECA&D | Dfb | rural |
S64 | Uzhhorod | UA | 48.6331 | 22.2667 | 124 | ECA&D | Dfb | suburban |
S65 | Caransebeș | RO | 45.4200 | 22.2500 | 241 | ECA&D | Dfb | airport |
S66 | Râmnicu Vâlcea | RO | 45.1000 | 24.3700 | 239 | ECA&D | Dfb | urban |
S67 | Lviv | UA | 49.8167 | 23.9500 | 323 | ECA&D | Dfb | urban |
S68 | Košice | SK | 48.6667 | 21.2167 | 230 | ECA&D | Dfb | airport |
S69 | Vinnytsia | UA | 49.2300 | 28.6000 | 298 | GHCNd | Dfb | airport |
S70 | Chernivtsi | UA | 48.3667 | 25.9000 | 246 | GHCNd | Dfb | rural |
Station ID | Station Name | Latitude (N) | Longitude (E) | Altitude (m) | KGC | Environment |
---|---|---|---|---|---|---|
1 | Vidin | 43.9942 | 22.8525 | 31 | Cfa | suburban |
2 | Lom | 43.8307 | 23.2228 | 36 | Cfa | suburban |
3 | Varshets | 43.1972 | 23.2830 | 412 | Cfb | suburban |
4 | Vratsa | 43.2312 | 23.5292 | 311 | Cfb | suburban |
5 | Knezha | 43.5000 | 24.0831 | 116 | Cfa | rural |
6 | Pleven | 43.4073 | 24.6062 | 160 | Cfa | suburban |
7 | Sevlievo | 43.0256 | 25.1151 | 197 | Cfa | suburban |
8 | Pavlikeni | 43.2341 | 25.3252 | 140 | Cfa | rural |
9 | Ruse | 43.8401 | 25.9450 | 46 | Cfa | urban |
10 | Obraztsov Chiflik | 43.8000 | 26.0331 | 156 | Cfa | suburban |
11 | Suvorovo | 43.3166 | 27.5833 | 173 | Cfb | rural |
12 | Shumen | 43.2796 | 26.9440 | 217 | Cfb | suburban |
13 | Goren Chiflik | 43.0094 | 27.6297 | 29 | Cfa | suburban |
14 | Burgas | 42.4977 | 27.4827 | 22 | Cfa | suburban |
15 | Karnobat | 42.6558 | 26.9848 | 190 | Cfb | suburban |
16 | Yambol | 42.4751 | 26.5315 | 132 | Cfa | suburban |
17 | Sliven | 42.6776 | 26.3398 | 259 | Cfb | urban |
18 | Chirpan | 42.2146 | 25.2824 | 162 | Cfa | rural |
19 | Kazanlak | 42.6358 | 25.3878 | 397 | Cfb | rural |
20 | Hisarya | 42.4857 | 24.7179 | 320 | Cfa | suburban |
21 | Velingrad | 42.0120 | 23.9888 | 734 | Cfb | suburban |
22 | Sadovo | 42.1500 | 24.9500 | 155 | Cfa | rural |
23 | Haskovo | 41.9279 | 25.5414 | 237 | Cfa | urban |
24 | Kardzhali | 41.6500 | 25.3700 | 331 | Cfa | suburban |
25 | Dzhebel | 41.4978 | 25.2958 | 324 | Csb | suburban |
26 | Ivaylovgrad | 41.5286 | 26.1211 | 202 | Csa | suburban |
27 | Raykovo | 41.5739 | 24.7135 | 906 | Cfb | urban |
28 | Sandanski | 41.5200 | 23.2700 | 206 | Cfa | suburban |
29 | Blagoevgrad | 42.0019 | 23.0981 | 424 | Cfa | suburban |
30 | Kyustendil | 42.2819 | 22.7231 | 520 | Cfb | suburban |
31 | Rila | 42.1253 | 23.1308 | 528 | Cfb | suburban |
32 | Ihtiman | 42.4381 | 23.8196 | 637 | Cfb | urban |
33 | Tran | 42.8331 | 22.6578 | 747 | Dfb | suburban |
34 | Samokov | 42.3392 | 23.5653 | 946 | Dfb | suburban |
35 | Iskrets | 42.9817 | 23.2758 | 565 | Cfb | rural |
36 | Bozhurishte | 42.7619 | 23.2069 | 562 | Cfb | suburban |
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Diffenbaugh, N.S.; Field, C.B. Changes in ecologically critical terrestrial climate conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels in Context of Strengthening the Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Randalls, S. History of the 2 °C climate target. WIREs Clim. Change 2010, 1, 598–605. [Google Scholar] [CrossRef]
- Armstrong McKay, D.I.; Staal, A.; Abrams, J.F.; Winkelmann, R.; Sakschewski, B.; Loriani, S.; Fetzer, I.; Cornell, S.E.; Rockström, J.; Lenton, T.M. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 2022, 377, eabn7950. [Google Scholar] [CrossRef] [PubMed]
- WMO. State of the Global Climate 2023; WMO-No. 1347; World Meteorological Organization: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Barnes, E.A. Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proc. Natl. Acad. Sci. USA 2023, 120, e2207183120. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.; Russo, S.; Formetta, G.; Ibarreta, D.; Forzieri, G.; Girardello, M.; Feyen, L. Global Warming and Human Impacts of Heat and Cold Extremes in the EU. JRC PESETA IV Project—Task 11; European Commission, Joint Research Centre, Publications Office: Brussels, Belgium, 2020. Available online: https://data.europa.eu/doi/10.2760/47878 (accessed on 5 March 2025).
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Ryti, N.R.; Guo, Y.; Jaakkola, J.J. Global Association of Cold Spells and Adverse Health Effects: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2016, 124, 12–22. [Google Scholar] [CrossRef]
- Deryugina, T.; Hsiang, S. Does the Environment Still Matter? Daily Temperature and Income in the United States; Technical Report w20750; National Bureau of Economic Research: Cambridge, MA, USA, 2014; Available online: http://www.nber.org/papers/w20750 (accessed on 5 March 2025).
- García-León, D.; Casanueva, A.; Standardi, G.; Burgstall, A.; Flouris, A.D.; Nybo, L. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 2021, 12, 5807. [Google Scholar] [CrossRef]
- Añel, J.A.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; De la Torre, L. Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef]
- Vajda, A.; Tuomenvirta, H.; Jokinen, P.; Luomaranta, A.; Makkonen, L.; Tikanmäki, M.; Groenemeijer, P.; Saarikivi , P.; Michaelides, S.; Papadakis, M.; et al. Probabilities of Adverse Weather Affecting Transport in Europe: Climatology and Scenarios up to the 2050s; Reports Vol. 2011, No. 9; Finnish Meteorological Institute: Helsinki, Finland, 2011; Available online: https://helda.helsinki.fi/items/c262eb80-c199-44a1-bcde-ebbb1e1ef61a (accessed on 28 January 2025).
- Teixeira, E.; Fischer, G.; van Velthuizen, H.T.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Grotjahn, R. Weather Extremes That Affect Various Agricultural Commodities. In Extreme Events and Climate Change, 1st ed.; Castillo, F., Wehner, M., Stone, D.A., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 21–48. [Google Scholar] [CrossRef]
- Ma, Q.; Huang, J.G.; Hänninen, H.; Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Chang Biol. 2019, 25, 351–360. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Mitchell-Larson, E.; Vecchi, G.A.; De Vries, H.; Vautard, R.; Otto, F. Cold waves are getting milder in the northern midlatitudes. Environ. Res. Lett. 2019, 14, 114004. [Google Scholar] [CrossRef]
- Vries, H.; Haarsma, R.J.; Hazeleger, W. Western European cold spells in current and future climate. Geophys. Res. Lett. 2012, 39, L04706. [Google Scholar] [CrossRef]
- Forzieri, G.; Cescatti, A.; de Silva, F.B.; Feyen, L. Increasing risk over time of weather-related hazards to the European population: A data-driven prognostic study. Lancet Planet. Health 2017, 1, e200–e208. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.; Stott, P. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 2015, 5, 46–50. [Google Scholar] [CrossRef]
- WMO. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2021); WMO-No. 1267; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332. [Google Scholar] [CrossRef] [PubMed]
- Donat, M.G.; Alexander, L.V. The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett. 2012, 39, L14707. [Google Scholar] [CrossRef]
- Blackport, R.; Fyfe, J.C. Amplified warming of North American cold extremes linked to human-induced changes in temperature variability. Nat. Commun. 2024, 15, 5864. [Google Scholar] [CrossRef]
- Cattiaux, J.; Vautard, R.; Cassou, C.; Yiou, P.; Masson-Delmotte, V.; Codron, F. Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett. 2010, 37, L20704. [Google Scholar] [CrossRef]
- Planchon, O.; Quénol, H.; Irimia, L.; Patriche, C. European cold wave during February 2012 and impacts in wine growing regions of Moldavia (Romania). Theor. Appl. Clim. 2015, 120, 469–478. [Google Scholar] [CrossRef]
- Demirtaş, M. The anomalously cold January 2017 in the southeastern Europe in a warming climate. Int. J. Climatol. 2022, 42, 6018–6026. [Google Scholar] [CrossRef]
- de’Donato, F.K.; Leone, M.; Noce, D.; Davoli, M.; Michelozzi, P. The impact of the February 2012 cold spell on health in Italy using surveillance data. PLoS ONE 2013, 8, e61720. [Google Scholar] [CrossRef] [PubMed]
- Sippel, S.; Barnes, C.; Cadiou, C.; Fischer, E.; Kew, S.; Kretschmer, M.; Philip, S.; Shepherd, T.G.; Singh, J.; Vautard, R.; et al. Could an extremely cold central European winter such as 1963 happen again despite climate change? Weather Clim. Dynam. 2024, 5, 943–957. [Google Scholar] [CrossRef]
- Díaz, J.; López-Bueno, J.A.; Sáez, M.; Mirón, I.J.; Luna, M.Y.; Sanchez-Martinez, G.; Carmona, R.; Barceló, M.A.; Linares, C. Will there be cold-related mortality in Spain over the 2021–2050 and 2051–2100 time horizons despite the increase in temperatures as a consequence of climate change? Environ. Res. 2019, 176, 108557. [Google Scholar] [CrossRef] [PubMed]
- Vicedo-Cabrera, A.M.; Sera, F.; Guo, Y.; Chung, Y.; Arbuthnott, K.; Tong, S.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho , M.; Saldiva, P.H.N.; et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int. 2018, 111, 239–246. [Google Scholar] [CrossRef]
- Petkova, E.P.; Vink, J.K.; Horton, R.M.; Gasparrini, A.; Bader, D.A.; Francis, J.D.; Kinney, P.L. Towards more comprehensive projections of urban heat-related mortality: Estimates for New York City under multiple population, adaptation, and climate scenarios. Environ. Health Perspect. 2017, 125, 47–55. [Google Scholar] [CrossRef]
- Pintor, M.P. The future of the temperature-mortality relationship. Lancet Public Health 2024, 9, e636–e637. [Google Scholar] [CrossRef]
- Bueno, J.A.L.; Diaz, J.; Follos, F.; Vellón, J.M.; Navas, M.A.; Culqui, D.; Luna, M.Y.; Sanchez Martinez, G.; Linares, C. Evolution of the threshold temperature definition of a heat wave vs. Evolution of the minimum mortality temperature: A case study in Spain during the 1983–2018 period. Environ. Sci. Eur. 2021, 33, 101. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat waves: A hot topic in climate change research. Theor. Appl. Climatol. 2021, 146, 781–800. [Google Scholar] [CrossRef]
- WMO. Guidelines on the Definition and Characterization of Extreme Weather and Climate Events; WMO-No. 1310; World Meteorological Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164, 242–267. [Google Scholar] [CrossRef]
- Horton, R.M.; Mankin, J.S.; Lesk, C.; Coffel, E.; Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef]
- McGregor, G.R.; Bessemoulin, P.; Ebi, K.L.; Menne, B. Heatwaves and Health: Guidance on Warning-System Development; World Meteorological Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Casanueva, A.; Burgstall, A.; Kotlarski, S.; Messeri, A.; Morabito, M.; Flouris, A.D.; Nybo, L.; Spirig, C.; Schwierz, C. Overview of Existing Heat-Health Warning Systems in Europe. Int. J. Environ. Res. Public Health 2019, 16, 2657. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Perkins, S.; Alexander, L. On the measurement of heat waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing all Community and Business Sectors in Australia; CAWCR Technical Report, No. 060; CSIRO and Australian Bureau of Meteorology: Canberra, Australia, 2013. [Google Scholar]
- Robinson, P.J. On the Definition of a Heat Wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Becker, F.N.; Fink, A.H.; Bissolli, P.; Pinto, J.G. Towards a more comprehensive assessment of the intensity of historical European heat waves (1979–2019). Atmos. Sci. Lett. 2022, 23, e1120. [Google Scholar] [CrossRef]
- Matzarakis, A.; Laschewski, G.; Muthers, S. The Heat Health Warning System in Germany—Application and Warnings for 2005 to 2019. Atmosphere 2020, 11, 170. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere 2017, 8, 115. [Google Scholar] [CrossRef]
- Xoplaki, E.; Trigo, R.; García-Herrera, R.; Barriopedro, D.; D’andrea, F.; Fischer, E.M.; Gimeno, L.; Gouveia, C.; Hernández, E.; Kuglitsch, F.G.; et al. Chapter 6: Large-scale atmospheric circulation driving extreme climate events in the Mediterranean and related impacts. In The Climate of the Mediterranean Region; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 347–417. [Google Scholar]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 2007, 34, L11706. [Google Scholar] [CrossRef]
- Tringa, E.; Tolika, K.; Anagnostopoulou, C.; Kostopoulou, E. A Climatological and Synoptic Analysis of Winter Cold Spells over the Balkan Peninsula. Atmosphere 2022, 13, 1851. [Google Scholar] [CrossRef]
- Kostopoulou, E. Analysis of the January 2017 Cold Spell in Greece and Its Implications on Human Health. Environ. Sci. Proc. 2023, 26, 195. [Google Scholar] [CrossRef]
- Faranda, D.; Bourdin, S.; Ginesta, M.; Krouma, M.; Noyelle, R.; Pons, F.; Yiou, P.; Messori, G. A climate-change attribution retrospective of some impactful weather extremes of 2021. Weather Clim. Dynam. 2022, 3, 1311–1340. [Google Scholar] [CrossRef]
- Kysely, J.; Pokorna, L.; Kyncl, J.; Krizl, B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health 2009, 9, 19. [Google Scholar] [CrossRef]
- Díaz-Poso, A.; Lorenzo, N.; Martí, A.; Royé, D. Cold wave intensity on the Iberian Peninsula: Future climate projections. Atmos. Res. 2023, 295, 107011. [Google Scholar] [CrossRef]
- Piticar, A.; Croitoru, A.-E.; Ciupertea, F.-A.; Harpa, G.-V. Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania. Int. J. Climatol. 2018, 38, 1777–1793. [Google Scholar] [CrossRef]
- Malcheva, K.; Bocheva, L.; Chervenkov, H. Spatio-Temporal Variation of Extreme Heat Events in Southeastern Europe. Atmosphere 2022, 13, 1186. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Marini, K. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future; MedECC: First Mediterranean Assessment Report; UNEP/MAP: Marseille, France, 2020. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Congedi, L.; Dulac, F.; Gacic, M.; Gomis, D.; Goodess, C.; Hoff, H.; Kutiel, H.; Luterbacher, J.; et al. Introduction: Mediterranean Climate—Background Information. In The Climate of the Mediterranean Region; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. xxxv–xc. [Google Scholar]
- Klein Tank, A.M.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.R.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Sparks, A.H.; Hengl, T.; Nelson, A. GSODR: Global Summary Daily Weather Data in R. J. Open Source Softw 2017, 2. [Google Scholar] [CrossRef]
- Sippel, S.; Fischer, E.M.; Scherrer, S.C.; Meinshausen, N.; Knutti, R. Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environ. Res. Lett. 2019, 15, 094056. [Google Scholar] [CrossRef]
- Alexandrov, V.; Schneider, M.; Koleva, E.; Moisselin, J.-M. Climate variability and change in Bulgaria during the 20th century. Theor. Appl. Climatol. 2004, 79, 133–149. [Google Scholar] [CrossRef]
- Hamdi, Y.; Duluc, C.-M.; Rebour, V. Temperature Extremes: Estimation of Non-Stationary Return Levels and Associated Uncertainties. Atmosphere 2018, 9, 129. [Google Scholar] [CrossRef]
- Malcheva, K. Cold waves on the territory of Bulgaria in the period 1952–2011. Bul. J. Meteorol. Hydrol. 2017, 22, 16–31. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods. J. Inst. Actuar. 1949, 75, 140–141. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pohlert, T. Package “Trend”: Non-Parametric Trend Tests and Change-Point Detection; R Package: Madison, WI, USA, 2016; Volume 26, Available online: https://cran.r-project.org/web/packages/trend/trend.pdf (accessed on 28 January 2025).
- Oliveira, A.; Lopes, A.; Soares, A. Excess heat factor climatology, trends, and exposure across European functional urban areas. Weather Clim. Extrem. 2022, 36, 100455. [Google Scholar] [CrossRef]
- Scalley, B.D.; Spicer, T.; Jian, L.; Xiao, J.; Nairn, J.; Robertson, A.; Weeramanthri, T. Responding to heatwave intensity: Excess Heat Factor is a superior predictor of health service utilisation and a trigger for heatwave plans. Aust. N. Z. J. Public Health 2015, 39, 582–587. [Google Scholar] [CrossRef]
- Díaz-Poso, A.; Lorenzo, N.; Royé, D. Spatio-temporal evolution of heat waves severity and expansion across the Iberian Peninsula and Balearic islands. Environ. Res. 2023, 217, 114864. [Google Scholar] [CrossRef]
- Galanaki, E.; Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Papavasileiou, G. Spatio-Temporal Analysis of Heatwaves Characteristics in Greece from 1950 to 2020. Climate 2023, 11, 5. [Google Scholar] [CrossRef]
- Wang, B.-J.; Sun, Y.; Hu, T.; Dong, S.-Y. Changes of extreme cold events in China over the last century based on reanalysis data. Clim. Change Res. 2023, 19, 403–417. [Google Scholar]
- Espín-Sánchez, D.; Conesa-García, C. Spatio-temporal changes in the heatwaves and coldwaves in Spain (1950–2018): Influence of the East Atlantic pattern. Geogr. Pannonica 2021, 25, 168–183. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Zanobetti, A.; Schwartz, J.D. Estimating and projecting the effect of cold waves on mortality in 209 US cities. Environ. Int. 2016, 94, 141–149. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Lee, C.C. Temporal trends in absolute and relative extreme temperature events across North America. J. Geophys. Res. Atmos. 2018, 123, 11889–11898. [Google Scholar] [CrossRef]
- Nairn, J.; Ostendorf, B.; Bi, P. Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index. Int. J. Environ. Res. Public Health 2018, 15, 2494. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; Technical Report; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 28 January 2025).
- RStudio Team. RStudio: Integrated Development for R; Technical Report; RStudio, Inc.: Boston, MA, USA, 2024; Available online: http://www.rstudio.com/ (accessed on 28 January 2025).
- QGIS Development Team. QGIS Geographic Information System; Technical Report; Open Source Geospatial Foundation Project: Beaverton, OR, USA, 2023; Available online: http://www.qgis.org/ (accessed on 28 January 2025).
- Twardosz, R.; Walanus, A.; Guzik, I. Warming in Europe: Recent Trends in Annual and Seasonal temperatures. Pure Appl. Geophys. 2021, 178, 4021–4032. [Google Scholar] [CrossRef]
- Lubkov, A.S.; Voskresenskaya, E.N.; Marchukova, O.V.; Evstigneev, V.P. European temperature anomalies in the cold period associated with ENSO events. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012031. [Google Scholar] [CrossRef]
- WMO. The Global Climate 2001–2010: A Decade of Climate Extremes, Summary Report; World Meteorological Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Cohen, J.; Agel, L.; Barlow, M.; Entekhabi, D. No detectable trend in mid-latitude cold extremes during the recent period of Arctic amplification. Commun. Earth Environ. 2023, 4, 341. [Google Scholar] [CrossRef]
- Buric, D.; Doderovic, M. Trend of Percentile Climate Indices in Montenegro in the Period 1961–2020. Sustainability 2022, 14, 12519. [Google Scholar] [CrossRef]
- Fan, J.F.; Xiao, Y.C.; Feng, Y.F.; Niu, L.Y.; Tan, X.; Sun, J.C.; Leng, Y.Q.; Li, W.Y.; Wang, W.Z.; Wang, Y.K. A systematic review and meta-analysis of cold exposure and cardiovascular disease outcomes. Front. Cardiovasc. Med. 2023, 10, 1084611. [Google Scholar] [CrossRef]
- Luo, Q. Temperature thresholds and crop production: A review. Clim. Change 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Añel, J.A.; Pérez-Souto, C.; Bayo-Besteiro, S.; Prieto-Godino, L.; Bloomfield, H.; Troccoli, A.; Torre, L. Extreme Weather Events and the Energy Sector in 2021. Weather Clim. Soc. 2024, 16, 353–368. [Google Scholar] [CrossRef]
- Malcheva, K.; Pophristov, V.; Marinova, T.; Trifonova, L. Complex approach for classification of winter severity in Bulgaria. AIP Conf. Proc. 2019, 2075, 120011. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Chromá, K.; Dobrovolný, P.; Dolák, L.; Řehoř, J.; Zahradník, P. Severity of winters in the Czech Republic during the 1961–2021 period and related environmental impacts and responses. Int. J. Climatol. 2023, 43, 2820–2842. [Google Scholar] [CrossRef]
- ISO 3166-1; Codes for the Representation of Names of Countries and Their Subdivisions—Part 1: Country Codes. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/iso-3166-country-codes.html (accessed on 5 March 2025).
Cfa | Cfb | Csa | Dfb | |||||
---|---|---|---|---|---|---|---|---|
Ta | +0.29/+0.43 (S1) | 100% | +0.39/+0.55 (S18) | 100% | +0.24/+0.37 (S45) | 100% | +0.34/+0.44 (S60) | 100% |
Tmn | +0.26/+0.46 (S1) | 82% | +0.34/+0.58 (S18) | 100% | +0.23/+0.47 (S45) | 87% | +0.32/+0.41 (S60) | 93% |
Tn | +0.54/+0.54 (S7) | 6% | +0.76/+1.09 (S37) | 50% | +0.28/+0.28 (S48) | 7% | +0.79/+1.00 (S60) | 36% |
Cfa | Cfb | Csa | Dfb | ||||
---|---|---|---|---|---|---|---|
ncd-5 | −1.5/−2.3 (S5) | 18% | −3.1/−4.5 (S34 and S36) | 88% | −3.1/−4.1 (S60 and S70) | 86% | |
ccd-5 | −0.4/−0.7 (S1) | 18% | −1.0/−1.3 (S34 and S40) | 67% | −0.8/−0.9 (S67 and S68) | 43% | |
csd-5 | −1.7/−3.6 (S31 and S39) | 71% | −2.7/−4.0 (S67) | 79% | |||
csd-10 | −0.3/−0.7 (S34) | 21% | −1.3/−1.8 (S67 and S69) | 43% | |||
csd-12 | −0.8/−1.6 (S69) | 36% | |||||
csd-14 | −0.3/−0.8 (S69) | 21% | |||||
csd-16 | −0.2/−0.3 (S69) | 14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malcheva, K.; Neykov, N.; Bocheva, L.; Stoycheva, A.; Neykova, N. Evaluation of the Spatio-Temporal Variation of Extreme Cold Events in Southeastern Europe Using an Intensity–Duration Model and Excess Cold Factor Severity Index. Atmosphere 2025, 16, 313. https://doi.org/10.3390/atmos16030313
Malcheva K, Neykov N, Bocheva L, Stoycheva A, Neykova N. Evaluation of the Spatio-Temporal Variation of Extreme Cold Events in Southeastern Europe Using an Intensity–Duration Model and Excess Cold Factor Severity Index. Atmosphere. 2025; 16(3):313. https://doi.org/10.3390/atmos16030313
Chicago/Turabian StyleMalcheva, Krastina, Neyko Neykov, Lilia Bocheva, Anastasiya Stoycheva, and Nadya Neykova. 2025. "Evaluation of the Spatio-Temporal Variation of Extreme Cold Events in Southeastern Europe Using an Intensity–Duration Model and Excess Cold Factor Severity Index" Atmosphere 16, no. 3: 313. https://doi.org/10.3390/atmos16030313
APA StyleMalcheva, K., Neykov, N., Bocheva, L., Stoycheva, A., & Neykova, N. (2025). Evaluation of the Spatio-Temporal Variation of Extreme Cold Events in Southeastern Europe Using an Intensity–Duration Model and Excess Cold Factor Severity Index. Atmosphere, 16(3), 313. https://doi.org/10.3390/atmos16030313