Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Data
2.2. Environmental Data
2.3. Model Evaluation Methods
2.4. Methodology to Detect the Best Bioclimatic Variables to Explain the Future Geographic Distribution of Species
2.5. Methodology to Describe the Current Distribution of the Species
2.6. Methodology to Investigate the Possible Changes in the Future
2.7. Methodology to Analise the Conservation Units with the Greatest Potential for Future Species Richness
3. Results
3.1. Model Evaluation Results
3.2. The Best Bioclimatic Variables to Explain the Future Geographic Distribution of Species Results
3.3. The Current Distribution of the Species Results
3.4. Predictions About the Possible Changes in the Future
3.5. Results About the Conservation Units with the Greatest Potential for Future Species Richness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Zwiener, V.; Lira-Noriega, A.; Grady, C.J.; Padial, A.A.; Vitule, J.R.S. Climate Change as a Driver of Biotic Homogenization of Woody Plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 2018, 27, 298–309. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A. Mudanças Climáticas Globais e Seus Efeitos Sobre a Biodiversidade: Caracterização Do Clima Atual e Definição Das Alterações Climáticas Pata o Território Brasileiro Ao Longo Do Século 21; Ministério do Meio Ambiente: Brasília, Brazil, 2006.
- Bustamante, M.; Nardoto, G.; Pinto, A.; Resende, J.; Takahashi, F.; Vieira, L. Potential Impacts of Climate Change on Biogeochemical Functioning of Cerrado Ecosystems. Braz. J. Biol. 2012, 72, 655–671. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; da Rocha, R.P.; Alves, L.M.; Cuadra, S.V.; Valverde, M.C.; Torres, R.R.; Santos, D.C.; Ferraz, S.E.T. Future Change of Climate in South America in the Late Twenty-First Century: Intercomparison of Scenarios from Three Regional Climate Models. Clim. Dyn. 2010, 35, 1073–1097. [Google Scholar] [CrossRef]
- Miranda, L.S.; Imperatriz-Fonseca, V.L.; Giannini, T.C. Climate Change Impact on Ecosystem Functions Provided by Birds in Southeastern Amazonia. PLoS ONE 2019, 14, e0215229. [Google Scholar] [CrossRef] [PubMed]
- Hidasi-Neto, J.; Joner, D.C.; Resende, F.; de Macedo Monteiro, L.; Faleiro, F.V.; Loyola, R.D.; Cianciaruso, M.V. Climate Change Will Drive Mammal Species Loss and Biotic Homogenization in the Cerrado Biodiversity Hotspot. Perspect. Ecol. Conserv. 2019, 17, 57–63. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction Risk from Climate Change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Simões, S.d.S.; Zappi, D.; Costa, G.M.d.; de Oliveira, G.; Aona, L.Y.S. Spatial Niche Modelling of Five Endemic Cacti from the Brazilian Caatinga: Past, Present and Future. Austral Ecol. 2020, 45, 35–47. [Google Scholar] [CrossRef]
- Atwater, D.Z.; Barney, J.N. Climatic Niche Shifts in 815 Introduced Plant Species Affect Their Predicted Distributions. Glob. Ecol. Biogeogr. 2021, 30, 1671–1684. [Google Scholar] [CrossRef]
- Moritz, C.; Patton, J.L.; Conroy, C.J.; Parra, J.L.; White, G.C.; Beissinger, S.R. Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science 2008, 322, 261–264. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Anderson, K.M.; Demes, K.W.; Jorve, J.P.; Kordas, R.L.; Coyle, T.A.; Graham, M.H. Effects of Climate Change on Global Seaweed Communities. J. Phycol. 2012, 48, 1064–1078. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.E.; Wallenstein, M.D. Climate Change Alters Ecological Strategies of Soil Bacteria. Ecol. Lett. 2014, 17, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L. Biological Consequences of Global Warming: Is the Signal Already Apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating Extinction Risk from Climate Change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef]
- Vitorino, L.C.; Reis, M.N.O.; Bessa, L.A.; de Souza, U.J.B.; Silva, F.G. Landscape and Climate Influence the Patterns of Genetic Diversity and Inbreeding in Cerrado Plant Species. Diversity 2020, 12, 421. [Google Scholar] [CrossRef]
- Vilela, A.A.; Del-Claro, V.T.S.; Torezan-Silingardi, H.M.; Del-Claro, K. Climate Changes Affecting Biotic Interactions, Phenology, and Reproductive Success in a Savanna Community over a 10-Year Period. Arthropod-Plant Interact. 2017, 12, 215–227. [Google Scholar] [CrossRef]
- Correa-Lima, A.P.A.; Varassin, I.G.; Barve, N.; Zwiener, V.P. Spatio-Temporal Effects of Climate Change on the Geographical Distribution and FLowering Phenology of Hummingbird-Pollinated Plants. Ann. Bot. 2019, 124, 389–398. [Google Scholar] [CrossRef]
- Frei, E.R.; Ghazoul, J.; Matter, P.; Heggli, M.; Pluess, A.R. Plant Population Differentiation and Climate Change: Responses of Grassland Species along an Elevational Gradient. Glob. Change Biol. 2014, 20, 441–455. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgro, C.M. Climate Change and Evolutionary Adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Priti, H.; Aravind, N.A.; Uma Shaanker, R.; Ravikanth, G. Modeling Impacts of Future Climate on the Distribution of Myristicaceae Species in the Western Ghats, India. Ecol. Eng. 2016, 89, 14–23. [Google Scholar] [CrossRef]
- Oliveira, G.; Lima-Ribeiro, M.S.; Terribile, L.C.; Dobrovolski, R.; Telles, M.P.d.C.; Diniz-Filho, J.A.F. Conservation Biogeography of the Cerrado’s Wild Edible Plants under Climate Change: Linking Biotic Stability with Agricultural Expansion. Am. J. Bot. 2015, 102, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Atwater, D.Z.; Ervine, C.; Barney, J.N. Climatic Niche Shifts Are Common in Introduced Plants. Nat. Ecol. Evol. 2018, 2, 34–43. [Google Scholar] [CrossRef]
- Jump, A.S.; Penuelas, J. Running to Stand Still: Adaptation and the Response of Plants to Rapid Climate Change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef]
- de Siqueira, M.F.; Peterson, A.T. Consequences of Global Climate Change for Geographic Distributions of Cerrado Tree Species. Biota Neotrop. 2003, 3, 1–14. [Google Scholar] [CrossRef]
- Costa, M.H.; Pires, G.F. Effects of Amazon and Central Brazil Deforestation Scenarios on the Duration of the Dry Season in the Arc of Deforestation. Int. J. Clim. 2010, 30, 1970–1979. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian Cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Trigueiro, W.R.; Nabout, J.C.; Tessarolo, G. Uncovering the Spatial Variability of Recent Deforestation Drivers in the Brazilian Cerrado. J. Environ. Manag. 2020, 275, 111243. [Google Scholar] [CrossRef]
- Mistry, J. Fire in the Cerrado (Savannas) of Brazil: An Ecological Review. Prog. Phys. Geogr. 1998, 22, 425–448. [Google Scholar] [CrossRef]
- Filho, I.A.M.; das Neves, A.J.; Silva, G.E.; Vieira, A.d.S. Áreas de Proteção Ambiental e a Preservação Do Bioma Cerrado. Rev. Bras. Estud. Segur. Pública 2019, 12, 10–19. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.; Lamas, I.; Kasecker, T. O Papel Das Unidades de Conservação. Sci. Am. Bras. 2010, 39, 18–23. [Google Scholar]
- Hutchinson, G.E. Concluding Remarks: Animal Ecology and Demography. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Peterson, A.T.; Cobos, M.E.; Jiménez-García, D. Major Challenges for Correlational Ecological Niche Model Projections to Future Climate Conditions. Ann. N. Y. Acad. Sci. 2018, 1429, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.K.; Rangel, T.F. Hutchinson’s Duality: The Once and Future Niche. Proc. Natl. Acad. Sci. USA 2009, 106, 19651–19658. [Google Scholar] [CrossRef]
- Guisan, A.; Mod, H.K.; Scherrer, D.; Münkemüller, T.; Pottier, J.; Alexander, J.M.; D’Amen, M. Scaling the Linkage between Environmental Niches and Functional Traits for Improved Spatial Predictions of Biological Communities. Glob. Ecol. Biogeogr. 2019, 28, 1384–1392. [Google Scholar] [CrossRef]
- Broennimann, O.; Thuiller, W.; Hughes, G.; Midgley, G.F.; Alkemade, J.M.R.; Guisan, A. Do Geographic Distribution, Niche Property and Life Form Explain Plants’ Vulnerability to Global Change? Glob. Change Biol. 2006, 12, 1079–1093. [Google Scholar] [CrossRef]
- Mendoza-González, G.; Mart\’\inez, M.L.; Rojas-Soto, O.R.; Vázquez, G.; Gallego-Fernández, J.B. Ecological Niche Modeling of Coastal Dune Plants and Future Potential Distribution in Response to Climate Change and Sea Level Rise. Glob. Change Biol. 2013, 19, 2524–2535. [Google Scholar] [CrossRef]
- You, J.; Qin, X.; Ranjitkar, S.; Lougheed, S.C.; Wang, M.; Zhou, W.; Ouyang, D.; Zhou, Y.; Xu, J.; Zhang, W.; et al. Response to Climate Change of Montane Herbaceous Plants in the Genus Rhodiola Predicted by Ecological Niche Modelling. Sci. Rep. 2018, 8, 5879. [Google Scholar] [CrossRef]
- Lopes, T.M.; Bailly, D.; Almeida, B.A.; Santos, N.C.L.; Gimenez, B.C.G.; Landgraf, G.O.; Sales, P.C.L.; Lima-Ribeiro, M.S.; Cassemiro, F.A.S.; Rangel, T.F.; et al. Two Sides of a Coin: Effects of Climate Change on the Native and Non-Native Distribution of Colossoma Macropomum in South America. PLoS ONE 2017, 12, e0179684. [Google Scholar] [CrossRef]
- Sen, S.; Gode, A.; Ramanujam, S.; Ravikanth, G.; Aravind, N.A. Modeling the Impact of Climate Change on Wild Piper Nigrum (Black Pepper) in Western Ghats, India Using Ecological Niche Models. J. Plant Res. 2016, 129, 1033–1040. [Google Scholar] [CrossRef]
- Reflora. Available online: https://floradobrasil.jbrj.gov.br/reflora/PrincipalUC/PrincipalUC.do;jsessionid=476FB5B3B850AA61B3CBEA61556C5CF2 (accessed on 17 January 2023).
- Pilon, N.A.L.; Udulutsch, R.G.; Durigan, G. Padrões Fenológicos de 111 Espécies de Cerrado Em Condições de Cultivo. Hoehnea 2015, 42, 425–443. [Google Scholar] [CrossRef]
- Gottsberger, G.; Silberbauer-Gottsberger, I. Dispersal and Distribution in the Cerrado Vegetation of Brazil. Sonderbd. Naturwiss. Ver. Hambg. 1983, 7, 315–352. [Google Scholar]
- Lira, F.D.A.; Amado, T.F.; Moura, T.A.; Riul, P. Vulnerable Areas to Accidents with Scorpions in Brazil. Trop. Med. Int. Health 2021, 26, 591–601. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martinez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of Species–Climate Impact Models under Climate Change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM Eval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s Parameter Configuration and Small Samples: Are We Paying Attention to Recommendations? A Systematic Review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander Jr, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Shcheglovitova, M.; Anderson, R.P. Estimating Optimal Complexity for Ecological Niche Models: A Jackknife Approach for Species with Small Sample Sizes. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The Main Progress from CMIP5 to CMIP6. Geosci. Model. Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and Basic Evaluation of Simulated Mean State, Internal Variability, and Climate Sensitivity in MIROC6. Geosci. Model. Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; et al. Package ‘raster’. 2021. Available online: https://cran.r-project.org/web/packages/raster/raster.pdf (accessed on 17 January 2023).
- Freeman, E.A.; Moisen, G.G. A Comparison of the Performance of Threshold Criteria for Binary Classification in Terms of Predicted Prevalence and Kappa. Ecol. Model. 2008, 217, 48–58. [Google Scholar] [CrossRef]
- Jacobsen, C.D.; Brown, D.J.; Flint, W.D.; Pauley, T.K.; Buhlmann, K.A.; Mitchell, J.C. Vulnerability of High-Elevation Endemic Salamanders to Climate Change: A Case Study with the Cow Knob Salamander (Plethodon punctatus). Glob. Ecol. Conserv. 2020, 21, e00883. [Google Scholar] [CrossRef]
- Brambilla, M.; Ficetola, G.F. Species Distribution Models as a Tool to Estimate Reproductive Parameters: A Case Study with a Passerine Bird Species. J. Anim. Ecol. 2012, 81, 781–787. [Google Scholar] [CrossRef]
- Hernández-Lambraño, R.E.; González-Moreno, P.; Sánchez-Agudo, J.Á. Towards the Top: Niche Expansion of Taraxacum officinale and Ulex europaeus in Mountain Regions of South America. Austral Ecol. 2017, 42, 577–589. [Google Scholar] [CrossRef]
- Brito, J.C.; Acosta, A.L.; Álvares, F.; Cuzin, F. Biogeography and Conservation of Taxa from Remote Regions: An Application of Ecological-Niche Based Models and GIS to North-African Canids. Biol. Conserv. 2009, 142, 3020–3029. [Google Scholar] [CrossRef]
- Sutton, W.B.; Barrett, K.; Moody, A.T.; Loftin, C.S.; DeMaynadier, P.G.; Nanjappa, P. Predicted Changes in Climatic Niche and Climate Refugia of Conservation Priority Salamander Species in the Northeastern United States. Forests 2015, 6, 1–26. [Google Scholar] [CrossRef]
- Bosso, L.; Rebelo, H.; Garonna, A.P.; Russo, D. Modelling Geographic Distribution and Detecting Conservation Gaps in Italy for the Threatened Beetle Rosalia Alpina. J. Nat. Conserv. 2013, 21, 72–80. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-Term Forest Degradation Surpasses Deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Silvério, D.V.; Brando, P.M.; Macedo, M.N.; Beck, P.S.A.; Bustamante, M.; Coe, M.T. Agricultural Expansion Dominates Climate Changes in Southeastern Amazonia: The Overlooked Non-GHG Forcing. Environ. Res. Lett. 2015, 10, 104015. [Google Scholar] [CrossRef]
- Rodrigues, M.I.; de Souza, Á.N.; Joaquim, M.S.; Lustosa Junior, I.M.; Pereira, R.S. Concessão Florestal Na Amazônia Brasileira. Ciênc. Florest. 2020, 30, 1299–1308. [Google Scholar] [CrossRef]
- Carvalho, R.L.; Resende, A.F.; Barlow, J.; França, F.M.; Moura, M.R.; Maciel, R.; Alves-Martins, F.; Shutt, J.; Nunes, C.A.; Elias, F.; et al. Pervasive Gaps in Amazonian Ecological Research. Curr. Biol. 2023, 33, 3495–3504.e4. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Parreira, M.R.; Nabout, J.C. The Impact of Global Climate Change on the Number and Replacement of Provisioning Ecosystem Services of Brazilian Cerrado Plants. Environ. Monit. Assess. 2021, 193, 731. [Google Scholar] [CrossRef]
- Somero, G.N. Comparative Physiology: A “Crystal Ball” for Predicting Consequences of Global Change. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011, 301, R1–R14. [Google Scholar] [CrossRef]
- Morin, P.J. Community Ecology, 2nd ed.; Wiley-Brackwell: Oxford, UK, 2011. [Google Scholar]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef]
- Buzatti, R.S.d.O.; Lemos-Filho, J.P.; Bueno, M.L.; Lovato, M.B. Multiple Pleistocene Refugia in the Brazilian Cerrado: Evidence from Phylogeography and Climatic Nichemodelling of Two Qualea Species (Vochysiaceae). Bot. J. Linn. Soc. 2017, 185, 307–320. [Google Scholar] [CrossRef]
- Novaes, L.R.; Calixto, E.S.; Oliveira, M.L.; Alves-de-Lima, L.; Almeida, O.; Torezan-Silingardi, H.M. Environmental Variables Drive Phenological Events of Anemocoric Plants and Enhance Diaspore Dispersal Potential: A New Wind-Based Approach. Sci. Total Environ. 2020, 730, 139039. [Google Scholar] [CrossRef] [PubMed]
- Del-Claro, K.; Torezan-Silingardi, H.M. Ecologia Das Interações Plantas-Animais: Uma Abordagem Ecológico-Evolutiva; Technical Books Editora: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Johansson, V.; Lönnell, N.; Rannik, Ü.; Sundberg, S.; Hylander, K. Air Humidity Thresholds Trigger Active Moss Spore Release to Extend Dispersal in Space and Time. Funct. Ecol. 2016, 30, 1196–1204. [Google Scholar] [CrossRef]
- Jacobi, C.M.; do Carmo, F.F.; Vincent, R.C.; Stehmann, J.R. Plant Communities on Ironstone Outcrops: A Diverse and Endangered Brazilian Ecosystem. Biodivers. Conserv. 2007, 16, 2185–2200. [Google Scholar] [CrossRef]
Species | Family | Lifestyle | Fruit Type | Endemic to Brazil |
---|---|---|---|---|
Aspidosperma tomentosum | Apocynaceae Juss. | Tree | Dry follicle | No |
Kielmeyera coriacea | Calophyllaceae J. Agardh | Shrub, Tree | Septicidal capsule | No |
Peixotoa tomentosa | Malpighiaceae Juss. | Shrub | Samaroid | Yes |
Qualea multiflora | Vochysiaceae A. St.-Hil | Shrub, Tree | Loculicidal capsule | No |
Senna velutina | Fabaceae Lindl. | Shrub | Samaroid | No |
WorldClim Code | Bioclimatic Variables |
---|---|
BIO1 | Annual mean temperature |
BIO2 | Mean diurnal range [mean of monthly (max temp − min temp)] |
BIO3 | Isothermality |
BIO4 | Temperature seasonality (standard deviation × 100) |
BIO12 | Annual precipitation |
BIO14 | Precipitation of driest month |
BIO15 | Precipitation seasonality (coefficient of variation) |
BIO18 | Precipitation of warmest quarter |
BIO19 | Precipitation of coldest quarter |
Conservation Units | States | Biome | Size (ha) |
---|---|---|---|
Parque Nacional Cavernas do Peruaçu | MG | Cerrado | 56,449,004 |
Parque Nacional da Chapada da Diamantina | BA | Caatinga | 152,143,914 |
Parque Nacional da Chapada das Mesas | MA | Cerrado | 159,953,781 |
Parque Nacional da Chapada dos Guimarães | MT | Cerrado | 32,646,832 |
Parque Nacional da Chapada dos Veadeiros | GO | Cerrado | 240,586,563 |
Parque Nacional da Serra da Bocaina | RJ/SP | Atlantic Forest | 106,566,425 |
Parque Nacional da Serra da Bodoquena | MS | Cerrado | 76,973,530 |
Parque Nacional da Serra da Canastra | MG | Cerrado | 197,971,961 |
Parque Nacional da Serra da Capivara | PI | Caatinga | 100,764,194 |
Parque Nacional da Serra das Confusões | PI | Cerrado | 823,854,539 |
Parque Nacional da Serra do Cipó | MG | Cerrado | 31,639,535 |
Parque Nacional da Serra do Gandarela | MG | Atlantic Forest | 31,270,826 |
Parque Nacional da Serra do Pardo | PA | Amazonic Forest | 445,413,447 |
Parque Nacional da Serra dos Orgãos | RJ | Atlantic Forest | 20,020,746 |
Parque Nacional das Emas | MS/GO | Cerrado | 132,787,860 |
Parque Nacional das Nascentes do Rio Parnaíba | MA/PI/BA | Cerrado | 749,774,175 |
Parque Nacional das Sempre-Vivas | MG | Cerrado | 124,155,899 |
Parque Nacional de Boa Nova | BA | Atlantic Forest | 12,065,470 |
Parque Nacional de Brasília | DF | Cerrado | 42,355,542 |
Parque Nacional de Caparaó | ES/MG | Atlantic Forest | 31,763,291 |
Parque Nacional de Itatiaia | MG/RJ | Atlantic Forest | 28,086,350 |
Parque Nacional do Acari | AM | Amazônia | 896,410,954 |
Parque Nacional do Araguaia | TO | Cerrado | 555,524,438 |
Parque Nacional do Boqueirão Da Onça | BA | Caatinga | 346,908,103 |
Parque Nacional do Jamanxim | PA | Amazonic Forest | 862,895,273 |
Parque Nacional do Juruena | AM/MT | Amazonic Forest | 1,958,014,417 |
Parque Nacional do Pantanal Mato-Grossense | MS/MT | Pantanal | 135,922,646 |
Parque Nacional do Rio Novo | PA | Amazonic Forest | 538,157,147 |
Parque Nacional dos Campos Ferruginosos | PA | Amazonic Forest | 79,086,038 |
Parque Nacional Grande Sertão Veredas | BA/MG | Cerrado | 230,856,143 |
Species | N | Feature | Rm | AUC | TSS | Logistic Threshold | |||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||||
Aspidosperma tomentosum | 497 | LQ | 1 | 0.857 | 0.001 | 0.538 | 0.020 | 0.361 | 0.018 |
Kielmeyera coriácea | 549 | LQ | 1 | 0.864 | 0.002 | 0.501 | 0.012 | 0.329 | 0.022 |
Peixotoa tomentosa | 108 | LQ | 1 | 0.906 | 0.004 | 0.471 | 0.069 | 0.071 | 0.023 |
Qualea multiflora | 606 | LQH | 1 | 0.883 | 0.001 | 0.568 | 0.009 | 0.295 | 0.021 |
Senna velutina | 301 | LQ | 1 | 0.805 | 0.006 | 0.442 | 0.018 | 0.375 | 0.021 |
Species | Code | Bioclimatic Variables | Contribution (%) | |
---|---|---|---|---|
Mean | SD | |||
Aspidosperma tomentosum | Bio19 | Precipitation of coldest quarter | 41.46 | 0.167 |
Bio18 | Precipitation of warmest quarter | 16.16 | 0.140 | |
Bio12 | Annual precipitation | 11.85 | 0.290 | |
Bio4 | Temperature seasonality | 11.23 | 0.069 | |
Bio1 | Annual mean temperature | 7.23 | 0.117 | |
Bio2 | Mean diurnal range | 6.90 | 0.084 | |
Bio3 | Isothermality | 4.87 | 0.120 | |
Bio15 | Precipitation seasonality | 0.23 | 0.021 | |
Bio14 | Precipitation of driest month | 0.07 | 0.007 | |
Kielmeyera coriacea | Bio19 | Precipitation of coldest quarter | 26.87 | 0.390 |
Bio18 | Precipitation of warmest quarter | 19.04 | 0.127 | |
Bio12 | Annual precipitation | 16.15 | 0.254 | |
Bio4 | Temperature seasonality | 12.95 | 0.183 | |
Bio1 | Annual mean temperature | 9.56 | 0.267 | |
Bio3 | Isothermality | 6.45 | 0.135 | |
Bio2 | Mean diurnal range | 5.75 | 0.129 | |
Bio15 | Precipitation seasonality | 3.13 | 0.125 | |
Bio14 | Precipitation of driest month | 0.1 | 0.004 | |
Peixotoa tomentosa | Bio1 | Annual mean temperature | 61.78 | 0.284 |
Bio18 | Precipitation of warmest quarter | 10.23 | 0.267 | |
Bio15 | Precipitation seasonality | 7.94 | 0.428 | |
Bio14 | Precipitation of driest month | 6.78 | 0.230 | |
Bio19 | Precipitation of coldest quarter | 5.61 | 0.089 | |
Bio3 | Isothermality | 2.46 | 0.087 | |
Bio4 | Temperature seasonality | 2.78 | 0.112 | |
Bio12 | Annual precipitation | 1.88 | 0.091 | |
Bio2 | Mean diurnal range | 0.49 | 0.060 | |
Qualea multuflora | Bio18 | Precipitation of warmest quarter | 31.00 | 5.880 |
Bio12 | Annual precipitation | 20.00 | 0.248 | |
Bio1 | Annual mean temperature | 17.78 | 0.305 | |
Bio4 | Temperature seasonality | 8.56 | 0.224 | |
Bio3 | Isothermality | 7.12 | 0.339 | |
Bio19 | Precipitation of coldest quarter | 5.86 | 0.397 | |
Bio14 | Precipitation of driest month | 5.82 | 0.269 | |
Bio15 | Precipitation seasonality | 1.95 | 0.100 | |
Bio2 | Mean diurnal range | 1.91 | 0.059 | |
Senna velutina | Bio19 | Precipitation of coldest quarter | 47.91 | 0.547 |
Bio4 | Temperature seasonality | 17.30 | 0.205 | |
Bio18 | Precipitation of warmest quarter | 12.86 | 0.399 | |
Bio12 | Annual precipitation | 7.46 | 0.272 | |
Bio14 | Precipitation of driest month | 7.03 | 0.265 | |
Bio3 | Isothermality | 4.37 | 0.212 | |
Bio2 | Mean diurnal range | 1.93 | 0.264 | |
Bio15 | Precipitation seasonality | 1.01 | 0.064 | |
Bio1 | Annual mean temperature | 0.12 | 0.032 |
Species | Projection | Area in the Presente (ha) | Area in the Future (ha) | Loss (ha) | Gain (ha) | Area Maintained in the Furute (ha) | Lost + Kept (ha) | Maintained (%) | Loss (%) | Gain (%) |
---|---|---|---|---|---|---|---|---|---|---|
Aspidosperma tomentosum | BCC CSM2 MR RCP2.6 | 3,288,314 | 2,506,820 | 863,865 | 82,371 | 2,424,449 | 3,288,314 | 73.729 | 26.271 | 2.505 |
BCC CSM2 MR RCP4.5 | 3,288,314 | 1,742,697 | 1,583,900 | 38,283 | 1,704,414 | 3,288,314 | 51.832 | 48.168 | 1.164 | |
BCC CSM2 MR RCP6.0 | 3,288,314 | 1,031,593 | 2,277,418 | 20,697 | 1,010,896 | 3,288,314 | 30.742 | 69.258 | 0.629 | |
BCC CSM2 MR RCP8.5 | 3,288,314 | 1,116,782 | 2,188,524 | 16,992 | 1,099,790 | 3,288,314 | 33.445 | 66.555 | 0.517 | |
CNRM ESM2 1 RCP2.6 | 3,288,314 | 2,112,920 | 1,183,160 | 7766 | 2,105,154 | 3,288,314 | 64.019 | 35.981 | 0.236 | |
CNRM ESM2 1 RCP4.5 | 3,288,314 | 1,846,504 | 1,451,224 | 9413 | 1,837,090 | 3,288,314 | 55.867 | 44.133 | 0.286 | |
CNRM ESM2 1 RCP6.0 | 3,288,314 | 1,027,361 | 2,277,739 | 16,786 | 1,010,575 | 3,288,314 | 30.732 | 69.268 | 0.510 | |
CNRM ESM2 1 RCP8.5 | 3,288,314 | 0 | 3,288,314 | 0 | 0 | 3,288,314 | 0.000 | 100.000 | 0.000 | |
MIROC6 RCP2.6 | 3,288,314 | 2,101,960 | 1,204,046 | 17,692 | 2,084,268 | 3,288,314 | 63.384 | 36.616 | 0.538 | |
MIROC6 RCP4.5 | 3,288,314 | 1,698,958 | 1,595,593 | 6237 | 1,692,721 | 3,288314 | 51.477 | 48.523 | 0.190 | |
MIROC6 RCP6.0 | 3,288,314 | 1,333,248 | 1,962,025 | 6959 | 1,326,289 | 3,288314 | 40.333 | 59.667 | 0.212 | |
MIROC6 RCP8.5 | 3,288,314 | 939,040 | 2,364,790 | 15,516 | 923,524 | 3,288314 | 28.085 | 71.915 | 0.472 | |
Kielmeyera coriacea | BCC CSM2 MR RCP2.6 | 3,421,897 | 2,163,349 | 1,313,797 | 55,249 | 2,108,100 | 3,421,897 | 61.606 | 38.394 | 1.615 |
BCC CSM2 MR RCP4.5 | 3,421,897 | 1,223,386 | 2,251,572 | 53,061 | 1,170,325 | 3,421,897 | 34.201 | 65.799 | 1.551 | |
BCC CSM2 MR RCP6.0 | 3,421,897 | 621,012 | 2,839,651 | 38,766 | 582,247 | 3,421,897 | 17.015 | 82.985 | 1.133 | |
BCC CSM2 MR RCP8.5 | 3,421,897 | 604,809 | 2,862,591 | 45,502 | 559,307 | 3,421,897 | 16.345 | 83.655 | 1.330 | |
CNRM ESM2 1 RCP2.6 | 3,421,897 | 1,642,657 | 1,797,446 | 18,206 | 1,624,451 | 3,421,897 | 47.472 | 52.528 | 0.532 | |
CNRM ESM2 1 RCP4.5 | 3,421,897 | 895,851 | 2,548,427 | 22,380 | 873,470 | 3,421,897 | 25.526 | 74.474 | 0.654 | |
CNRM ESM2 1 RCP6.0 | 3,421,897 | 292,278 | 3,154,460 | 24,841 | 267,437 | 3,421,897 | 7.815 | 92.185 | 0.726 | |
CNRM ESM2 1 RCP8.5 | 3,421,897 | 0 | 3,421,897 | 0 | 0 | 3,421,897 | 0.000 | 100.000 | 0.000 | |
MIROC6 RCP2.6 | 3,421,897 | 2,108,752 | 1,327,686 | 14,540 | 2,094,212 | 3,421,897 | 61.200 | 38.800 | 0.425 | |
MIROC6 RCP4.5 | 3,421,897 | 1,409,019 | 2,029,363 | 16,484 | 1,392,535 | 3,421,897 | 40.695 | 59.305 | 0.482 | |
MIROC6 RCP6.0 | 3,421,897 | 974,481 | 2,468,157 | 20,741 | 953,740 | 3,421,897 | 27.872 | 72.128 | 0.606 | |
MIROC6 RCP8.5 | 3,421,897 | 648,324 | 2,806,411 | 32,837 | 615,486 | 3,421,897 | 17.987 | 82.013 | 0.960 | |
Peixotoa tomentosa | BCC CSM2 MR RCP2.6 | 1,621,865 | 807,214 | 816,244 | 1593 | 805,622 | 1,621,865 | 49.673 | 50.327 | 0.098 |
BCC CSM2 MR RCP4.5 | 1,621,865 | 526,793 | 1,097,800 | 2728 | 524,066 | 1,621,865 | 32.313 | 67.687 | 0.168 | |
BCC CSM2 MR RCP6.0 | 1,621,865 | 350,516 | 1,271,349 | 0 | 350,516 | 1,621,865 | 21.612 | 78.388 | 0.000 | |
BCC CSM2 MR RCP8.5 | 1,621,865 | 254,036 | 1,367,915 | 85 | 253,951 | 1,621,865 | 15.658 | 84.342 | 0.005 | |
CNRM ESM2 1 RCP2.6 | 1,621,865 | 604,088 | 1,017,777 | 0 | 604,088 | 1,621,865 | 37.246 | 62.754 | 0.000 | |
CNRM ESM2 1 RCP4.5 | 1,621,865 | 381,130 | 1,240,735 | 0 | 381,130 | 1,621,865 | 23.500 | 76.500 | 0.000 | |
CNRM ESM2 1 RCP6.0 | 1,621,865 | 166,831 | 1,455,034 | 0 | 166,831 | 1,621,865 | 10.286 | 89.714 | 0.000 | |
CNRM ESM2 1 RCP8.5 | 1,621,865 | 54,152 | 1,567,713 | 0 | 54,152 | 1,621,865 | 3.339 | 96.661 | 0.000 | |
MIROC6 RCP2.6 | 1,621,865 | 966,140 | 656,216 | 491 | 965,649 | 1,621,865 | 59.539 | 40.461 | 0.030 | |
MIROC6 RCP4.5 | 1,621,865 | 590,859 | 1,031,006 | 0 | 590,859 | 1,621,865 | 36.431 | 63.569 | 0.000 | |
MIROC6 RCP6.0 | 1,621,865 | 357,494 | 1,264,371 | 0 | 357,494 | 1,621,865 | 22.042 | 77.958 | 0.000 | |
MIROC6 RCP8.5 | 1,621,865 | 287,042 | 1,334,823 | 0 | 287,042 | 1,621,865 | 17.698 | 82.302 | 0.000 | |
Qualea multiflora | BCC CSM2 MR RCP2.6 | 2,933,077 | 3,297,260 | 739,984 | 1,104,166 | 2,193,093 | 2,933,077 | 74.771 | 25.229 | 37.645 |
BCC CSM2 MR RCP4.5 | 2,933,077 | 4,093,110 | 698,692 | 1,858,725 | 2,234,385 | 2,933,077 | 76.179 | 23.821 | 63.371 | |
BCC CSM2 MR RCP6.0 | 2,933,077 | 4,140,277 | 400,596 | 1,607,795 | 2,532,481 | 2,933,077 | 86.342 | 13.658 | 54.816 | |
BCC CSM2 MR RCP8.5 | 2,933,077 | 4,580,950 | 215,300 | 1,863,173 | 2,717,777 | 2,933,077 | 92.660 | 7.340 | 63.523 | |
CNRM ESM2 1 RCP2.6 | 2,933,077 | 4,108,590 | 712,233 | 1,887,746 | 2,220,844 | 2,933,077 | 75.717 | 24.283 | 64.361 | |
CNRM ESM2 1 RCP4.5 | 2,933,077 | 4,968,018 | 491,779 | 2,526,720 | 2,441,298 | 2,933,077 | 83.233 | 16.767 | 86.146 | |
CNRM ESM2 1 RCP6.0 | 2,933,077 | 5,276,745 | 361,075 | 2,704,743 | 2,572,002 | 2,933,077 | 87.690 | 12.310 | 92.215 | |
CNRM ESM2 1 RCP8.5 | 2,933,077 | 0 | 2,933,077 | 0 | 0 | 2,933,077 | 0.000 | 100.000 | 0.000 | |
MIROC6 RCP2.6 | 2,933,077 | 3,336,496 | 769,348 | 1,172,767 | 2,163,729 | 2,933,077 | 73.770 | 26.230 | 39.984 | |
MIROC6 RCP4.5 | 2,933,077 | 4,028,839 | 729,924 | 1,825,686 | 2,203,153 | 2,933,077 | 75.114 | 24.886 | 62.245 | |
MIROC6 RCP6.0 | 2,933,077 | 4,695,596 | 640,547 | 2,403,066 | 2,292,531 | 2,933,077 | 78.161 | 21.839 | 81.930 | |
MIROC6 RCP8.5 | 2,933,077 | 4,821,525 | 531,004 | 2,419,452 | 2,402,073 | 2,933,077 | 81.896 | 18.104 | 82.489 | |
Senna velutina | BCC CSM2 MR RCP2.6 | 3,281,471 | 3,355,999 | 180,081 | 254,609 | 3,101,390 | 3,281,471 | 94.512 | 5.488 | 7.759 |
BCC CSM2 MR RCP4.5 | 3,281,471 | 3,351,891 | 264,772 | 335,191 | 3,016,699 | 3,281,471 | 91.931 | 8.069 | 10.215 | |
BCC CSM2 MR RCP6.0 | 3,281,471 | 3,378,962 | 377,371 | 474,861 | 2,904,100 | 3,281,471 | 88.500 | 11.500 | 14.471 | |
BCC CSM2 MR RCP8.5 | 3,281,471 | 3,688,871 | 317,028 | 724,429 | 2,964,443 | 3,281,471 | 90.339 | 9.661 | 22.076 | |
CNRM ESM2 1 RCP2.6 | 3,281,471 | 3,120,622 | 249,387 | 88,538 | 3,032,085 | 3,281,471 | 92.400 | 7.600 | 2.698 | |
CNRM ESM2 1 RCP4.5 | 3,281,471 | 2,981,696 | 417,034 | 117,258 | 2,864,438 | 3,281,471 | 87.291 | 12.709 | 3.573 | |
CNRM ESM2 1 RCP6.0 | 3,281,471 | 2,506,217 | 892,436 | 117,181 | 2,389,036 | 3,281,471 | 72.804 | 27.196 | 3.571 | |
CNRM ESM2 1 RCP8.5 | 3,281,471 | 82 | 3,281,389 | 0 | 82 | 3,281,471 | 0.003 | 99.997 | 0.000 | |
MIROC6 RCP2.6 | 3,281,471 | 3,321,539 | 148,366 | 188,433 | 3,133,106 | 3,281,471 | 95.479 | 4.521 | 5.742 | |
MIROC6 RCP4.5 | 3,281,471 | 2,809,890 | 517,827 | 46,245 | 2,763,644 | 3,281,471 | 84.220 | 15.780 | 1.409 | |
MIROC6 RCP6.0 | 3,281,471 | 2,702,376 | 637,161 | 58,066 | 2,644,310 | 3,281,471 | 80.583 | 19.417 | 1.770 | |
MIROC6 RCP8.5 | 3,281,471 | 2,329,345 | 967,572 | 15,445 | 2,313,900 | 3,281,471 | 70.514 | 29.486 | 0.471 |
Conservation Units | Present | BCC-CSM2 RCP2.6 | BCC-CSM2 RCP4.5 | BCC-CSM2 RCP6.0 | BCC-CSM2 RCP8.5 | CNRM-ESM2-1 RCP2.6 | CNRM-ESM2-1 RCP4.5 | CNRM-ESM2-1 RCP6.0 | CNRM-ESM2-1 RCP8.5 | MIROC6 RCP2.6 | MIROC6 RCP4.5 | MIROC6 RCP6.0 | MIROC6 RCP8.5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PN Cavernas do Peruaçu | 3.714 | 2.857 | 2.714 | 0.857 | 1.857 | 2.714 | 2.286 | 1.286 | 0.000 | 3.000 | 2.857 | 2.286 | 1.857 |
PN da Chapada da Diamantina | 4.421 | 3.895 | 3.316 | 1.526 | 1.316 | 3.526 | 2.368 | 0.842 | 0.000 | 4.842 | 3.789 | 2.105 | 2.474 |
PN da Chapada das Mesas | 1.190 | 0.000 | 0.857 | 0.238 | 0.190 | 0.762 | 1.143 | 1.000 | 0.000 | 0.571 | 1.048 | 0.810 | 0.952 |
PN da Chapada dos Guimarães | 4.800 | 4.000 | 2.600 | 2.000 | 2.000 | 4.000 | 3.400 | 2.400 | 0.000 | 4.400 | 3.400 | 1.600 | 2.000 |
PN da Chapada dos Veadeiros | 5.000 | 4.733 | 4.267 | 3.567 | 3.467 | 4.467 | 4.000 | 3.267 | 0.000 | 4.900 | 4.300 | 4.000 | 3.800 |
PN da Serra da Bocaina | 4.083 | 4.333 | 4.333 | 4.167 | 4.250 | 3.833 | 3.333 | 3.083 | 0.667 | 4.167 | 3.500 | 3.333 | 3.000 |
PN da Serra da Bodoquena | 2.889 | 2.667 | 0.889 | 1.222 | 2.000 | 0.111 | 0.000 | 0.444 | 0.000 | 1.000 | 0.000 | 0.000 | 0.111 |
PN da Serra da Canastra | 5.000 | 5.000 | 5.000 | 4.522 | 4.565 | 5.000 | 4.913 | 4.783 | 0.000 | 5.000 | 5.000 | 5.000 | 5.000 |
PN da Serra da Capivara | 0.583 | 0.500 | 0.250 | 0.000 | 0.000 | 0.917 | 0.917 | 0.250 | 0.000 | 1.000 | 0.500 | 0.167 | 0.000 |
PN da Serra das Confusões | 1.421 | 1.000 | 0.832 | 0.221 | 0.158 | 1.000 | 0.937 | 0.347 | 0.000 | 0.842 | 0.274 | 0.011 | 0.021 |
PN da Serra do Cipó | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 0.667 | 5.000 | 5.000 | 5.000 | 5.000 |
PN da Serra do Gandarela | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 1.000 | 5.000 | 5.000 | 5.000 | 5.000 |
PN da Serra do Pardo | 0.000 | 0.000 | 0.519 | 0.000 | 0.308 | 0.019 | 1.000 | 1.000 | 0.000 | 0.000 | 0.942 | 1.000 | 1.000 |
PN da Serra dos Orgãos | 4.000 | 5.000 | 5.000 | 5.000 | 5.000 | 4.000 | 4.000 | 3.500 | 0.500 | 4.000 | 4.000 | 4.000 | 4.000 |
PN das Emas | 5.000 | 4.000 | 4.000 | 1.000 | 1.313 | 4.000 | 4.000 | 2.000 | 0.000 | 5.000 | 4.000 | 3.938 | 1.000 |
PN das Nascentes do Rio Parnaíba | 3.211 | 2.622 | 1.244 | 1.233 | 1.189 | 2.678 | 1.667 | 1.133 | 0.000 | 2.522 | 1.700 | 1.556 | 1.689 |
PN das Sempre-Vivas | 5.000 | 5.000 | 5.000 | 4.824 | 4.824 | 5.000 | 5.000 | 4.353 | 0.000 | 5.000 | 5.000 | 4.647 | 4.824 |
PN de Boa Nova | 3.000 | 3.000 | 1.818 | 0.727 | 0.909 | 2.000 | 2.000 | 0.273 | 0.000 | 2.818 | 1.909 | 0.727 | 0.455 |
PN de Brasília | 5.000 | 5.000 | 4.400 | 4.000 | 4.000 | 4.800 | 4.000 | 4.000 | 0.000 | 5.000 | 4.600 | 4.000 | 4.000 |
PN de Caparaó | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 4.333 | 1.000 | 5.000 | 5.000 | 4.000 | 4.000 |
PN de Itatiaia | 5.000 | 5.000 | 5.000 | 4.333 | 5.000 | 5.000 | 4.333 | 4.000 | 1.000 | 4.333 | 4.000 | 4.000 | 3.333 |
PN do Acari | 0.000 | 0.500 | 1.000 | 0.049 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
PN do Araguaia | 3.217 | 2.000 | 2.000 | 2.000 | 2.000 | 1.971 | 2.000 | 1.812 | 0.000 | 2.101 | 1.464 | 1.000 | 1.000 |
PN do Boqueirão da Onça | 0.467 | 0.244 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 |
PN do Jamanxim | 0.000 | 0.420 | 0.950 | 0.510 | 0.000 | 0.970 | 1.000 | 1.000 | 0.000 | 0.700 | 1.000 | 1.000 | 1.000 |
PN do Juruena | 0.196 | 1.000 | 1.000 | 2.000 | 2.000 | 1.000 | 1.000 | 1.061 | 0.000 | 0.987 | 1.000 | 1.000 | 1.000 |
PN do Pantanal Mato-Grossense | 2.063 | 2.875 | 2.000 | 2.000 | 2.000 | 2.000 | 3.000 | 1.000 | 0.000 | 2.000 | 2.000 | 2.250 | 1.375 |
PN do Rio Novo | 0.000 | 0.985 | 1.000 | 2.000 | 2.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.815 | 1.000 | 1.000 | 1.000 |
PN dos Campos Ferruginosos | 0.000 | 0.000 | 0.000 | 0.250 | 0.125 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.125 | 1.000 | 1.000 |
PN Grande Sertão Veredas | 5.000 | 5.000 | 4.000 | 1.586 | 2.207 | 4.552 | 3.655 | 3.000 | 0.000 | 4.724 | 3.931 | 2.862 | 1.862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves-de-Lima, L.; Alves, D.F.R.; Anjos, D.V.; Valdivia, F.A.; Torezan-Silingardi, H.M. Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas. Atmosphere 2025, 16, 453. https://doi.org/10.3390/atmos16040453
Alves-de-Lima L, Alves DFR, Anjos DV, Valdivia FA, Torezan-Silingardi HM. Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas. Atmosphere. 2025; 16(4):453. https://doi.org/10.3390/atmos16040453
Chicago/Turabian StyleAlves-de-Lima, Larissa, Douglas Fernandes Rodrigues Alves, Diego Vinicius Anjos, Fernando Anco Valdivia, and Helena Maura Torezan-Silingardi. 2025. "Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas" Atmosphere 16, no. 4: 453. https://doi.org/10.3390/atmos16040453
APA StyleAlves-de-Lima, L., Alves, D. F. R., Anjos, D. V., Valdivia, F. A., & Torezan-Silingardi, H. M. (2025). Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas. Atmosphere, 16(4), 453. https://doi.org/10.3390/atmos16040453