The Length of the Beach Season at Lake Balaton—An Estimation Based on Operative Temperature
Abstract
:1. Introduction
2. Data and Region
2.1. Region
2.2. Data
3. Methods
3.1. Criteria of Beach Day and Bath Day
3.2. Definition of Operative Temperature
3.3. Other Methods Used in This Study
4. Results
4.1. Relationship Between Operative Temperature and Water Temperature
4.2. Annual Number of Bath Days and Beach Days
4.3. Monthly Number of Bath Days
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
To | Operative temperature |
Tw | Water temperature |
Ta | Air temperature |
fs | Wind speed |
BD | Number of bath days |
BD2 | Number of beach days |
References
- Rutty, M.; Steiger, R.; Demiroglu, O.C.; Perkins, D.R. Tourism Climatology: Past, Present, and Future. Int. J. Biometeorol. 2021, 65, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Martín, M.B. Tourism Climatology: Past, Present, and Future. Atmosphere 2021, 12, 605. [Google Scholar] [CrossRef]
- de Freitas, C.R. Recreation Climate Assessment. Int. J. Climatol. 1990, 10, 89–103. [Google Scholar] [CrossRef]
- Matzarakis, A. Weather- and Climate-Related Information for Tourism. Tour. Hosp. Plan. Dev. 2006, 3, 99–115. [Google Scholar] [CrossRef]
- Falk, M. Impact of Weather Conditions on Tourism Demand in the Peak Summer Season over the Last 50 Years. Tour. Manag. Perspect. 2014, 9, 24–35. [Google Scholar] [CrossRef]
- Liu, T.-M. Analysis of the Economic Impact of Meteorological Disasters on Tourism: The Case of Typhoon Morakot’s Impact on the Maolin National Scenic Area in Taiwan. Tour. Econ. 2014, 20, 143–156. [Google Scholar]
- Salata, F.; Golasi, I.; Proietti, R.; de Lieto Vollaro, A. Implications of Climate and Outdoor Thermal Comfort on Tourism: The Case of Italy. Int. J. Biometeorol. 2017, 61, 2229–2244. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor Thermal Comfort in the Mediterranean Area. A Transversal Study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; ISBN 978-87-571-0341-0. [Google Scholar]
- Anđelković, G.; Pavlović, S.; Đurđić, S.; Belij, M.; Stojković, S. Tourism Climate Comfort Index (TCCI)—An Attempt to Evaluate the Climate Comfort for Tourism Purposes: The Example of Serbia. Glob. NEST J. 2016, 18, 482–493. [Google Scholar] [CrossRef]
- Gómez-Martín, M.B. Climate Potential and Tourist Demand in Catalonia (Spain) during the Summer Season. ResearchGate 2006, 32, 75–87. [Google Scholar] [CrossRef]
- Besancenot, J.; Mounier, J.; De Lavenne, F. Les Conditions Climatiques Du Tourisme Littoral: Un Méthode de Recherche Compréhensive. Norois 1978, 99, 357–382. [Google Scholar] [CrossRef]
- Błazejczyk, B.; Milica, P.; Oleh, S.; Błażejczyk, K.; Olesya, S. Weather Suitability for Outdoor Tourism in Three European Regions in First Decades of the Twenty-First Century. Int. J. Biometeorol. 2021, 65, 1339–1356. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Kunert, A. Bioclimatic principles of recreation and tourism in Poland, 2nd ed.; Institute of Geography and Spatial Organization: Warszawa, Poland, 2011; ISBN 978-83-61590-47-7. [Google Scholar]
- Croitoru, A.-E.; Banc, Ștefana; Scripcă, A. -S.; Rus, A.-V. Climatic Suitability for Outdoor Tourism in Romania’s Big Cities. Atmosphere 2024, 15, 996. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Rus, A.-V.; Man, T.-C.; Malairău, V.; Matei, A. Climate Suitability for Sustainable Economic Growth Through Tourism in the Danube Delta. In The Danube River Delta; Negm, A.M., Diaconu, D.C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 291–316. ISBN 978-3-031-03983-6. [Google Scholar]
- Kovács, A.; Király, A. Assessment of Climate Change Exposure of Tourism in Hungary Using Observations and Regional Climate Model Data. Hung. Geogr. Bull. 2021, 70, 215–231. [Google Scholar] [CrossRef]
- Csete, M.; Pálvölgyi, T.; Szendrő, G. Assessment of Climate Change Vulnerability of Tourism in Hungary. Reg. Env. Change 2013, 13, 1043–1057. [Google Scholar] [CrossRef]
- Kovács, A.; Unger, J.; Gál, C.V.; Kántor, N. Adjustment of the Thermal Component of Two Tourism Climatological Assessment Tools Using Thermal Perception and Preference Surveys from Hungary. Theor. Appl. Clim. 2016, 125, 113–130. [Google Scholar] [CrossRef]
- Kovács, A.; Németh, Á.; Unger, J.; Kántor, N. Tourism Climatic Conditions of Hungary—Present Situation and Assessment of Future Changes. Q. J. Hung. Meteorol. Serv. 2017, 121, 79–99. [Google Scholar]
- Moreno, A.; Amelung, B. Climate Change and Tourist Comfort on Europe’s Beaches in Summer: A Reassessment. Coast. Manag. 2009, 37, 550–568. [Google Scholar] [CrossRef]
- Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Hontou, V.; Gakis, N.; Lalas, D.P. Climatic Preferences for Beach Tourism: An Empirical Study on Greek Islands. Theor. Appl. Clim. 2019, 137, 667–691. [Google Scholar] [CrossRef]
- Morgan, R.; Gatell, E.; Junyent, R.; Micallef, A.; Özhan, E.; Williams, A.T. An Improved User-Based Beach Climate Index. J. Coast. Conserv. 2000, 6, 41–50. [Google Scholar] [CrossRef]
- Németh, Á. Estimation of Tourism Climate in the Lake Balaton Region, Hungary. J. Environ. Geogr. 2013, 6, 49–55. [Google Scholar] [CrossRef]
- Németh, Á.; Matzarakis, A.; Schlanger, V.; Katona, Á. Variations of Thermal Bioclimate and Its Influence to the Tourism in the Lake Balaton Tourism Region (Hungary). ICB2008 Tour. Oral. 2010. Available online: https://www.researchgate.net/publication/238116324_Variations_of_thermal_bioclimate_and_its_influence_to_the_tourism_in_the_Lake_Balaton_Tourism_Region_Hungary (accessed on 27 March 2025).
- Lőrincz, K.; Banász, Z.; Csapó, J. Customer Involvement in Sustainable Tourism Planning at Lake Balaton, Hungary—Analysis of the Consumer Preferences of the Active Cycling Tourists. Sustainability 2020, 12, 5174. [Google Scholar] [CrossRef]
- Gálicz, I.V.; Bujdosó, Z.; Szabó, L.; Dávid, L.D. Examination of the Position of Cruise Shipping in the Post-Season Period at Lake Balaton. J. Infrastruct. Policy Dev. 2024, 8, 3266. [Google Scholar] [CrossRef]
- Mieczkowski, Z. The Tourism Climatic Index: A Method of Evaluating World Climates for Tourism. Can. Geogr./Géographies Can. 1985, 29, 220–233. [Google Scholar] [CrossRef]
- Matzarakis, A. Assessment Method for Climate and Tourism Based on Daily Data. In Developments in Tourism Climatology; Scott, D., Ed.; ISB CCTR: Freiburg, Germany, 2007; pp. 52–58. [Google Scholar]
- Zaninović, K.; Matzarakis, A. The Bioclimatological Leaflet as a Means Conveying Climatological Information to Tourists and the Tourism Industry. Int. J. Biometeorol. 2009, 53, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Mayer, H.; Höppe, P. Thermal Comfort of Man in Different Urban Environments. Theor. Appl. Clim. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Höppe, P.; Mayer, H. Planungsrelevante Bewertung Der Thermischen Komponente Des Stadtklimas. Landsch. Stadt. 1987, 19, 22–29. [Google Scholar]
- Campbell, G.S.; Norman, J. An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1997; ISBN 978-0-387-94937-6. [Google Scholar]
- Köppen, W. Die Wärmezonen Der Erde, Nach Der Dauer Der Heissen, Gemässigten, Und Kalten Zeitund Nach Der Wirkung Der Wärme Auf Die Organische Welt Betrachtet. Meteorol. Z. 1884, 1, 215–226. [Google Scholar]
- Feddema, J.J. A Revised Thornthwaite-Type Global Climate Classification. Phys. Geogr. 2005, 26, 442–466. [Google Scholar] [CrossRef]
- Ács, F.; Breuer, H.; Skarbit, N. Climate of Hungary in the Twentieth Century According to Feddema. Theor. Appl. Clim. 2015, 119, 161–169. [Google Scholar] [CrossRef]
- Ács, F.; Kristóf, E.; Zsákai, A.; Kelemen, B.; Szabó, Z.; Marques Vieira, L.A. Weather in the Hungarian Lowland from the Point of View of Humans. Atmosphere 2021, 12, 84. [Google Scholar] [CrossRef]
- Carter, J.E.L.; Heath, B.H. Somatotyping: Development and Applications; Cambridge Studies in Biological and Evolutionary Anthropology; Cambridge University Press: Cambridge, UK, 1990; ISBN 978-0-521-35117-1. [Google Scholar]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szalkai, Z. Milyen a legmegfelelőbb ember a klímaosztályozási célokra alkalmazandó humán termikus klíma vizsgálatokban? In V. Orvosmeteorológiai Konferencia jegyzőkönyve; Dunkel, Z., Ed.; Magyar Meteorológiai Társaság: Budapest, Hungary, 2022; pp. 13–17. ISBN 978-963-8481-15-3. [Google Scholar]
- Leatherman, S.P. Beach Rating: A Methodological Approach. J. Coast. Res. 1997, 13, 253–258. [Google Scholar]
- Bihari, Z.; Babolcsai, G.; Bartholy, J.; Ferenczi, Z.; Gerhátné Kerényi, J.; Haszpra, L.; Homokiné Ujváry, K.; Kovács, T.; Lakatos, M.; Németh, Á.; et al. Éghajlat. In Természeti környezet; Kocsis, K., Horváth, G., Keresztesi, Z., Nemerkényi, Z., Eds.; Magyarország nemzeti atlasza; Magyar Tudományos Akadémia, Csillagászati és Földtudományi Kutatóközpont, Földrajztudományi Intézet: Budapest, Hungary, 2018; Volume 2, pp. 58–69. ISBN 978-963-9545-56-4. [Google Scholar]
- Ács, F.; Kristóf, E.; Zsákai, A. New Clothing Resistance Scheme for Estimating Outdoor Environmental Thermal Load. Geogr. Pannonica 2019, 23, 245–255. [Google Scholar] [CrossRef]
- Ács, F.; Kristóf, E.; Szabó, A.I.; Breuer, H.; Szalkai, Z.; Zsákai, A. New Air Temperature- and Wind Speed-Based Clothing Thermal Resistance Scheme—Estimations for the Carpathian Region. Climate 2022, 10, 131. [Google Scholar] [CrossRef]
- Pitman, E.J.G. Significance Tests Which May Be Applied to Samples from Any Populations. Suppl. J. R. Stat. Soc. 1937, 4, 119–130. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Core Team: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 12 October 2024).
- Van Rossum, G.; Drake, F.L., Jr. The Python Language Reference Manual; Network Theory Ltd.: Godalming, UK, 2011; ISBN 978-1-906966-14-0. [Google Scholar]
- Becker, S. Beach Comfort Index—A New Approach to Evaluate the Thermal Conditions of Beach Holiday Resorts Using a South African Example. Geo J. 1998, 44, 297–307. [Google Scholar] [CrossRef]
Name | Criteria | Activity |
---|---|---|
Beach day | To > 25 °C, fs < 5 ms−1 | sunbathing |
Bath day | To > 25 °C, fs < 5 ms−1, Tw > 20 °C | swimming and sunbathing |
Month | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|
Correlation | 0.58 | 0.39 | 0.39 | 0.22 | 0.47 | 0.84 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalkai, Z.; Ács, F. The Length of the Beach Season at Lake Balaton—An Estimation Based on Operative Temperature. Atmosphere 2025, 16, 387. https://doi.org/10.3390/atmos16040387
Szalkai Z, Ács F. The Length of the Beach Season at Lake Balaton—An Estimation Based on Operative Temperature. Atmosphere. 2025; 16(4):387. https://doi.org/10.3390/atmos16040387
Chicago/Turabian StyleSzalkai, Zsófia, and Ferenc Ács. 2025. "The Length of the Beach Season at Lake Balaton—An Estimation Based on Operative Temperature" Atmosphere 16, no. 4: 387. https://doi.org/10.3390/atmos16040387
APA StyleSzalkai, Z., & Ács, F. (2025). The Length of the Beach Season at Lake Balaton—An Estimation Based on Operative Temperature. Atmosphere, 16(4), 387. https://doi.org/10.3390/atmos16040387