The Dual Role of Urban Vegetation: Trade-Offs Between Thermal Regulation and Biogenic Volatile Organic Compound Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Urban Thermal Mitigation Analysis
2.3. Estimation of BVOC Emissions and Related Air Pollution
2.4. Spatial Autocorrelation
3. Results
3.1. The Cooling Effect of Green Spaces
3.2. BVOC Emissions and Air Pollution from Green Spaces
3.3. Spatial Relationships of Greenfield Ecosystem Services
4. Discussion
4.1. Trade-Off Mechanisms and Ecological Regulation of Vegetation Functional Traits
4.2. Spatial Coupling Patterns and Optimization Strategies of Cooling and BVOC Emissions
4.3. Research Limitations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robinson, A.; Lehmann, J.; Barriopedro, D.; Rahmstorf, S.; Coumou, D. Increasing Heat and Rainfall Extremes Now Far Outside the Historical Climate. NPJ Clim. Atmos. Sci. 2021, 4, 51. [Google Scholar] [CrossRef]
- Sharma, A.; Dutta, P.; Shah, P.; Iyer, V.; He, H.; Sapkota, A.; Gao, C.S.; Wang, Y.C. Characterizing the Effects of Extreme Heat Events on All-Cause Mortality: A Case Study in Ahmedabad City of India, 2002–2018. Urban Clim. 2024, 54, 101832. [Google Scholar] [CrossRef]
- Matthews, T.; Raymond, C.; Foster, J.; Baldwin, J.W.; Ivanovich, C.; Kong, Q.; Kinney, P.; Horton, R.M. Mortality Impacts of the Most Extreme Heat Events. Nat. Rev. Earth Environ. 2025, 6, 193–210. [Google Scholar] [CrossRef]
- Sun, L.Q.; Chen, J.; Li, Q.L.; Huang, D. Dramatic Uneven Urbanization of Large Cities Throughout the World in Recent Decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.n.; Connor, D.S.; Stuhlmacher, M.; Peng, J.; Turner II, B.L. More Urbanization, More Polarization: Evidence from Two Decades of Urban Expansion in China. NPJ Urban Sustain. 2024, 4, 33. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping Global Urban Land for the 21st Century with Data-Driven Simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef]
- Liu, Z.T.; Wu, R.; Chen, Y.X.; Fang, C.L.; Wang, S.J. Factors of Ecosystem Service Values in a Fast-Developing Region in China: Insights from the Joint Impacts of Human Activities and Natural Conditions. J. Clean. Prod. 2021, 297, 126588. [Google Scholar] [CrossRef]
- Xiao, R.; Yin, H.Y.; Liu, R.X.; Zhang, Z.H.; Chinzorig, S.; Qin, K.; Tan, W.F.; Wan, Y.; Gao, Z.; Xu, C.; et al. Exploring the Relationship Between Land Use Change Patterns and Variation in Environmental Factors Within Urban Agglomeration. Sustain. Cities Soc. 2024, 108, 105447. [Google Scholar] [CrossRef]
- Cao, W.; Wu, D.; Huang, L.; Liu, L.L. Spatial and Temporal Variations and Significance Identification of Ecosystem Services in the Sanjiangyuan National Park, China. Sci. Rep. 2020, 10, 6151. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of Agricultural Transitions and Urbanization for Ecosystem Services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Jerrett, M. Atmospheric Science the Death Toll from Air-Pollution Sources. Nature 2015, 525, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.T.; Song, Y.; Liu, M.X.; Cai, X.H.; Zhang, H.S.; Guo, J.P.; Zhu, T. Temperature Inversions in Severe Polluted Days Derived from Radiosonde Data in North China from 2011 to 2016. Sci. Total Environ. 2019, 647, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Liao, W.L.; He, G.H.; Tett, S.F.B.; Yan, Z.W.; Zhai, P.M.; Feng, J.M.; Ma, W.J.; Huang, C.R.; et al. Anthropogenic Emissions and Urbanization Increase Risk of Compound Hot Extremes in Cities. Nat. Clim. Change 2021, 11, 1084–1089. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Xu, C.; Haase, D.; Teng, Y.M.; Su, M.R.; Yang, Z.F. Heterogeneous Effects of the Availability and Spatial Configuration of Urban Green Spaces on Their Cooling Effects in China. Environ. Int. 2024, 183, 108385. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569, 527–539. [Google Scholar] [CrossRef]
- Pataki, D.E.; McCarthy, H.R.; Litvak, E.; Pincetl, S. Transpiration of Urban Forests in the Los Angeles Metropolitan Area. Ecol. Appl. 2011, 21, 661–677. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.D.; Qian, F. Research on Water Thermal Effect on Surrounding Environment in Summer. Energy Build. 2020, 207, 109613. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.E.; Bierwagen, B.G.; Weaver, C.P. Urban Adaptation Can Roll Back Warming of Emerging Megapolitan Regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, M.; Zhang, J.; Li, C.; Ren, Y.; Jin, X.; Chen, J. Effects of green infrastructure on the dispersion of PM2.5 and human exposure on urban roads. Environ. Res. 2023, 223, 115493. [Google Scholar] [CrossRef]
- Wang, M.; Qin, M.; Xu, P.; Huang, D.; Jin, X.; Chen, J.; Dong, D.; Ren, Y. Atmospheric particulate matter retention capacity of bark and leaves of urban tree species. Environ. Pollut. 2024, 342, 123109. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Das, A.; Momin, S. Quantifying the Cooling Effect of Urban Green Space: A Case from Urban Parks in a Tropical Mega Metropolitan Area (India). Sustain. Cities Soc. 2022, 87, 104062. [Google Scholar] [CrossRef]
- Li, Y.X.; Svenning, J.C.; Zhou, W.Q.; Zhu, K.; Abrams, J.F.; Lenton, T.M.; Ripple, W.J.; Yu, Z.W.; Teng, S.N.; Dunn, R.R.; et al. Green Spaces Provide Substantial but Unequal Urban Cooling Globally. Nat. Commun. 2024, 15, 7108. [Google Scholar] [CrossRef]
- Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A. Emissions of Biogenic Volatile Organic Compounds and Subsequent Formation of Secondary Organic Aerosols in a Larix Kaempferi Forest. Atmos. Chem. Phys. 2015, 15, 12029–12041. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.J.; Yuan, Q.Q.; Li, T.W.; Zhou, Y.; Zong, L.; Wang, M.Y.; Xie, Z.Y.; Ho, H.C.; Gao, M.; et al. Substantially Underestimated Global Health Risks of Current Ozone Pollution. Nat. Commun. 2025, 16, 102. [Google Scholar] [CrossRef]
- Agyei, T.; Juráň, S.; Edwards-Jonášová, M.; Fischer, M.; Švik, M.; Komínková, K.; Ofori-Amanfo, K.K.; Marek, M.V.; Grace, J.; Urban, O. The Influence of Ozone on Net Ecosystem Production of a Ryegrass–Clover Mixture Under Field Conditions. Atmosphere 2021, 12, 1629. [Google Scholar] [CrossRef]
- Ren, Y.; Qu, Z.L.; Du, Y.Y.; Xu, R.H.; Ma, D.P.; Yang, G.F.; Shi, Y.; Fan, X.; Tani, A.; Guo, P.P.; et al. Air Quality and Health Effects of Biogenic Volatile Organic Compounds Emissions from Urban Green Spaces and the Mitigation Strategies. Environ. Pollut. 2017, 230, 849–861. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (Megan2.1): An Extended and Updated Framework for Modeling Biogenic Emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Bao, X.X.; Zhou, W.Q.; Xu, L.L.; Zheng, Z. A Meta-Analysis on Plant Volatile Organic Compound Emissions of Different Plant Species and Responses to Environmental Stress. Environ. Pollut. 2023, 318, 120886. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Yang, W.Z.; Xie, S.D.; Wu, Y. Estimations and Uncertainty of Biogenic Volatile Organic Compound Emission Inventory in China for 2008–2018. Sci. Total Environ. 2020, 733, 139301. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Cheng, H.M.; Kang, T.F. Establishing the Emission Inventory of Biogenic Volatile Organic Compounds and Quantifying Their Contributions to O3 and PM2.5 in the Beijing-Tianjin-Hebei region. Atmos. Environ. 2024, 318, 120206. [Google Scholar] [CrossRef]
- Oderbolz, D.C.; Aksoyoglu, S.; Keller, J.; Barmpadimos, I.; Steinbrecher, R.; Skjoth, C.A.; Plass-Dülmer, C.; Prévôt, A.S.H. A Comprehensive Emission Inventory of Biogenic Volatile Organic Compounds in Europe: Improved Seasonality and Land-Cover. Atmos. Chem. Phys. 2013, 13, 1689–1712. [Google Scholar] [CrossRef]
- Gu, S.; Guenther, A.; Faiola, C. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environ. Sci. Technol. 2021, 55, 12191–12201. [Google Scholar] [CrossRef]
- Venter, Z.S.; Hassani, A.; Stange, E.; Schneider, P.; Castell, N. Reassessing the Role of Urban Green Space in Air Pollution Control. Proc. Natl. Acad. Sci. USA 2024, 121, e2306200121. [Google Scholar] [CrossRef]
- Zardo, L.; Geneletti, D.; Pérez-Soba, M.; Van Eupen, M. Estimating the Cooling Capacity of Green Infrastructures to Support Urban Planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Mcdonald, R.; Kroeger, T.; Boucher, T.; Longzhu, W.; Salem, R. Planting Healthy Air: A Global Analysis of the Role of Urban Trees in Addressing Particulate Matter Pollution and Extreme Heat. Environ. Sci. 2016, 128, 136. Available online: https://api.semanticscholar.org/CorpusID:197562156 (accessed on 20 February 2025).
- Kunapo, J.; Fletcher, T.D.; Ladson, A.R.; Cunningham, L.; Burns, M.J. A spatially Explicit Framework for Climate Adaptation. Urban Water J. 2018, 15, 159–166. [Google Scholar] [CrossRef]
- Guenther, A.; Baugh, B.; Brasseur, G.; Greenberg, J.; Harley, P.; Klinger, L.; Serca, D.; Vierling, L. Isoprene Emission Estimates and Uncertainties for the Central African Expresso Study Domain. J. Geophys. Res. Atmos. 1999, 104, 30625–30639. [Google Scholar] [CrossRef]
- Staudt, M.; Bertin, N.; Frenzel, B.; Seufert, G. Seasonal Variation in Amount and Composition of Monoterpenes Emitted by Young Pinus pinea Trees—Implications for Emission Modeling. J. Atmos. Chem. 2000, 35, 77–99. [Google Scholar] [CrossRef]
- Heald, C.L.; Wilkinson, M.J.; Monson, R.K.; Alo, C.A.; Wang, G.; Guenther, A. Response of Isoprene Emission to Ambient CO2 Changes and Implications for Global Budgets. Glob. Change Biol. 2010, 15, 1127–1140. [Google Scholar] [CrossRef]
- Paul, K.I.; Roxburgh, S.H.; England, J.R.; Ritson, P.I.; Hobbs, T.J.; Brooksbank, K.; Raison, R.J.; Larmour, J.S.; Murphy, S.; Norris, J.; et al. Development and Testing of Allometric Equations for Estimating Above-Ground Biomass of Mixed-Species Environmental Plantings. For. Ecol. Manag. 2013, 310, 483–494. [Google Scholar] [CrossRef]
- Meier, F.; Scherer, D. Spatial and Temporal Variability of Urban Tree Canopy Temperature During Summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 2012, 110, 373–384. [Google Scholar] [CrossRef]
- Mentel, T.F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; et al. Secondary Aerosol Formation from Stress-Induced Biogenic Emissions and Possible Climate Feedbacks. Atmos. Chem. Phys. 2013, 13, 8755–8770. [Google Scholar] [CrossRef]
- Ghirardo, A.; Xie, J.F.; Zheng, X.H.; Wang, Y.S.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; et al. Urban Stress-Induced Biogenic VOC Emissions and SOA-Forming Potentials in Beijing. Atmos. Chem. Phys. 2016, 16, 2901–2920. [Google Scholar] [CrossRef]
- Jesri, N.; Saghafipour, A.; Koohpaei, A.; Farzinnia, B.; Jooshin, M.K.; Abolkheirian, S.; Sarvi, M. Mapping and Spatial Pattern Analysis of COVID-19 in Central Iran Using the Local Indicators of Spatial Association (LISA). Bmc Public Health 2021, 21, 2227. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Machado, R.B.; Aguiar, L.M.S.; Jones, G.J.F. Do Acoustic Indices Reflect the Characteristics of Bird Communities in the Savannas of Central Brazil. Landsc. Urban Plan. 2017, 162, 36–43. [Google Scholar]
- Jerrett, M.; Su, J.G.; MacLeod, K.E.; Hanning, C.; Houston, D.; Wolch, J. Safe Routes to Play? Pedestrian and Bicyclist Crashes Near Parks in Los Angeles. Environ. Res. 2016, 151, 742–755. [Google Scholar] [PubMed]
- Zhang, L.; Wu, S.; Chang, X.; Wang, X.; Zhao, Y.; Xia, Y.; Trigiano, R.N.; Jiao, Y.; Chen, F. The Ancient Wave of Polyploidization Events in Flowering Plants and Their Facilitated Adaptation to Environmental Stress. Plant Cell Environ. 2020, 48, 2847–2856. [Google Scholar] [CrossRef]
- Klinger, L.F.; Li, Q.J.; Guenther, A.B.; Greenberg, J.P.; Baker, B.; Bai, J.H. Assessment of Volatile Organic Compound Emissions from Ecosystems of China. J. Geophys. Res. Atmos. 2002, 107, ACH 16-1–ACH 16-21. [Google Scholar] [CrossRef]
- Ren, Y.; Ge, Y.; Gu, B.J.; Min, Y.; Tani, A.; Chang, J. Role of Management Strategies and Environmental Factors in Determining the Emissions of Biogenic Volatile Organic Compounds from Urban Greenspaces. Environ. Sci. Technol. 2014, 48, 6237–6246. [Google Scholar] [CrossRef]
- Shao, Y.C.; Zhang, J.C.; Sun, Y.T.; Li, J.; Zhuang, J.Y.; Li, E.; Xue, X. Comparison of Summer Transpiration Characteristics and Cooling and Humidifying Functions of Major Greening Tree Species in Shanghai. Soil Water Conserv. Sci. China 2015, 13, 83–90. [Google Scholar] [CrossRef]
- Huang, J.B.; Hartmann, H.; Hellén, H.; Wisthaler, A.; Perreca, E.; Weinhold, A.; Rücker, A.; van Dam, N.M.; Gershenzon, J.; Trumbore, S.; et al. New Perspectives on CO2, Temperature, and Light Effects on Bvoc Emissions Using Online Measurements by Ptr-Ms and Cavity Ring Down Spectroscopy. Environ. Sci. Technol. 2018, 52, 13811–13823. [Google Scholar] [CrossRef]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) Emitted by Urban Trees on Ozone Concentration in Cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Ma, D.; Lin, S.; Ye, S.; Wang, S.; Shen, L.; Chen, D.; Qiu, Y.; Yang, B.; Cheng, T.; et al. The Dual Role of Urban Vegetation: Trade-Offs Between Thermal Regulation and Biogenic Volatile Organic Compound Emissions. Atmosphere 2025, 16, 385. https://doi.org/10.3390/atmos16040385
Dong W, Ma D, Lin S, Ye S, Wang S, Shen L, Chen D, Qiu Y, Yang B, Cheng T, et al. The Dual Role of Urban Vegetation: Trade-Offs Between Thermal Regulation and Biogenic Volatile Organic Compound Emissions. Atmosphere. 2025; 16(4):385. https://doi.org/10.3390/atmos16040385
Chicago/Turabian StyleDong, Wen, Danping Ma, Song Lin, Shen Ye, Suwen Wang, Li Shen, Dan Chen, Yingying Qiu, Bo Yang, Tianliang Cheng, and et al. 2025. "The Dual Role of Urban Vegetation: Trade-Offs Between Thermal Regulation and Biogenic Volatile Organic Compound Emissions" Atmosphere 16, no. 4: 385. https://doi.org/10.3390/atmos16040385
APA StyleDong, W., Ma, D., Lin, S., Ye, S., Wang, S., Shen, L., Chen, D., Qiu, Y., Yang, B., Cheng, T., Zhang, J., Chen, J., & Ren, Y. (2025). The Dual Role of Urban Vegetation: Trade-Offs Between Thermal Regulation and Biogenic Volatile Organic Compound Emissions. Atmosphere, 16(4), 385. https://doi.org/10.3390/atmos16040385