Causal Relationship Between Urban Air Pollution and Pulmonary Embolism: A Two-Sample Mendelian Randomization Study
Abstract
:1. Backgrounds
2. Materials and Methods
2.1. Data Sources
2.2. Study Design
2.3. MR Assumptions and Genetic Variant Selection
2.4. Statistical Methods
2.5. TSMR Analysis
2.6. Sensitivity Analysis
2.7. Analysis Software
3. Result
3.1. TSMR Analysis of Air Pollution and Pulmonary Embolism Risk
3.2. MVMR
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.; Yousefi, S.; Kahoro, E.; Karisani, P.; Liang, D.; Sarnat, J.; Agichtein, E. Detecting Elevated Air Pollution Levels by Monitoring Web Search Queries: Algorithm Development and Validation. JMIR Form. Res. 2022, 6, e23422. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, Y.; Cheng, J.; Liang, H.; Chang, Q.; Lin, F.; Li, D.; Zhou, X.; Chen, X.; Pan, P.; et al. Ambient air pollution, lifestyle, and genetic predisposition on all-cause and cause-specific mortality: A prospective cohort study. Sci. Total Environ. 2024, 933, 173120. [Google Scholar] [PubMed]
- Kloog, I.; Zanobetti, A.; Nordio, F.; Coull, B.A.; Baccarelli, A.A.; Schwartz, J. Effects of airborne fine particles (PM2.5) on deep vein thrombosis admissions in the northeastern United States. J. Thromb. Haemost. 2015, 13, 768–774. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Wang, J.; Gan, Q.; Su, X.; Zhang, S.; Ding, Y.; Yang, X.; Zhang, N.; Wu, K. Genetic evidence for the causal effects of air pollution on the risk of respiratory diseases. Ecotoxicol. Environ. Saf. 2025, 290, 117602. [Google Scholar] [CrossRef]
- Di Nisio, M.; Van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef]
- Azzouz, M.; Xu, Y.; Barregard, L.; Zöller, B.; Molnar, P.; Oudin, A.; Spanne, M.; Engström, G.; Stockfelt, L. Long-term ambient air pollution and venous thromboembolism in a population-based Swedish cohort. Environ. Pollut. 2023, 331, 121841. [Google Scholar]
- Milojevic, A.; Wilkinson, P.; Armstrong, B.; Bhaskaran, K.; Smeeth, L.; Hajat, S. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: Case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart 2014, 100, 1093–1098. [Google Scholar]
- Spiezia, L.; Campello, E.; Bon, M.; Maggiolo, S.; Pelizzaro, E.; Simioni, P. Short-term exposure to high levels of air pollution as a risk factor for acute isolated pulmonary embolism. Thromb. Res. 2014, 134, 259–263. [Google Scholar]
- Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C., Jr.; et al. Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004, 109, 2655–2671. [Google Scholar]
- Jiang, Y.; Si, J.; Wang, Y.; Zhang, H.; Zhou, F.; Lu, X.; Li, X.; Sun, D.; Wang, Z. The Relationship Between PM2.5 and Eight Common Lung Diseases: A Two-Sample Mendelian Randomization Analysis. Toxics 2024, 12, 851. [Google Scholar] [CrossRef]
- Braunwald, E. Air pollution: Challenges and opportunities for cardiology. Eur. Heart J. 2023, 44, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pan, Z.; Jing, D.; Liang, H.; Cheng, J.; Li, D.; Zhou, X.; Lin, F.; Liu, H.; Pan, P.; et al. Association of air pollution, genetic risk, and lifestyle with incident adult-onset asthma: A prospective cohort study. Ecotoxicol. Environ. Saf. 2023, 257, 114922. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Stafoggia, M.; Michelozzi, P.; Davoli, M.; Forastiere, F.; Solimini, A.G. Long-term exposure to air pollution and risk of venous thromboembolism in a large administrative cohort. Environ. Health 2022, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Timpson, N.J.; Higgins, J.P.T.; Dimou, N.; Langenberg, C.; et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five Years of GWAS Discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar]
- Bowden, J.; Holmes, M.V. Meta-analysis and Mendelian randomization: A review. Res. Synth. Methods 2019, 10, 486–496. [Google Scholar] [CrossRef]
- Birney, E. Mendelian Randomization. Cold Spring Harb. Perspect. Med. 2022, 12, a041302. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G.; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef]
- Hemani, G.; Tilling, K.; Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017, 13, e1007081. [Google Scholar]
- Cao, Z.; Wu, Y.; Li, Q.; Li, Y.; Wu, J. A causal relationship between childhood obesity and risk of osteoarthritis: Results from a two-sample Mendelian randomization analysis. Ann. Med. 2022, 54, 1636–1645. [Google Scholar] [PubMed]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar]
- Sanderson, E.; Smith, G.D.; Windmeijer, F.; Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 2019, 48, 713–727. [Google Scholar]
- Carter, A.R.; Sanderson, E.; Hammerton, G.; Richmond, R.C.; Smith, G.D.; Heron, J.; Taylor, A.E.; Davies, N.M.; Howe, L.D. Mendelian randomisation for mediation analysis: Current methods and challenges for implementation. Eur. J. Epidemiol. 2021, 36, 465–478. [Google Scholar]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Smith, G.D.; Sheehan, N.A.; Thompson, J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef]
- Prüss-Ustün, A.; Wolf, J.; Bartram, J.; Clasen, T.; Cumming, O.; Freeman, M.C.; Gordon, B.; Hunter, P.R.; Medlicott, K.; Johnston, R. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 2019, 222, 765–777. [Google Scholar]
- Tang, L.; Wang, Q.-Y.; Cheng, Z.-P.; Hu, B.; Liu, J.-D.; Hu, Y. Air pollution and venous thrombosis: A meta-analysis. Sci. Rep. 2016, 6, 32794. [Google Scholar]
- Robertson, S.; Miller, M.R. Ambient air pollution and thrombosis. Part. Fibre Toxicol. 2018, 15, 1. [Google Scholar]
- Bellavia, A.; Urch, B.; Speck, M.; Brook, R.D.; Scott, J.A.; Albetti, B.; Behbod, B.; North, M.; Valeri, L.; Bertazzi, P.A.; et al. DNA Hypomethylation, Ambient Particulate Matter, and Increased Blood Pressure: Findings From Controlled Human Exposure Experiments. J. Am. Heart Assoc. 2013, 2, e000212. [Google Scholar] [PubMed]
- Li, J.; Lu, A.; Si, S.; Zhang, K.; Tang, F.; Yang, F.; Xue, F. Exposure to various ambient air pollutants increases the risk of venous thromboembolism: A cohort study in UK Biobank. Sci. Total Environ. 2022, 845, 157165. [Google Scholar] [PubMed]
- Donaldson, K.; Mills, N.; Macnee, W.; Robinson, S.; Newby, D. Role of inflammation in cardiopulmonary health effects of PM. Toxicol. Appl. Pharmacol. 2005, 207, 483–488. [Google Scholar] [PubMed]
- Kelly, F.J. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003, 60, 612–616. [Google Scholar]
- Wing, S.E.; Bandoli, G.; Telesca, D.; Su, J.G.; Ritz, B. Chronic exposure to inhaled, traffic-related nitrogen dioxide and a blunted cortisol response in adolescents. Environ. Res. 2018, 163, 201–207. [Google Scholar]
GWAS ID | Trait | Consortium | Sample Size | Publication Year | Category |
---|---|---|---|---|---|
ukb-b-10817 | Particulate matter air pollution (PM2.5); 2010 | MRC-IEU | 423,796 | 2018 | Continuous |
ukb-b-12963 | Particulate matter air pollution 2.5–10 µm; 2010 | MRC-IEU | 423,796 | 2018 | Continuous |
ukb-b-18469 | Particulate matter air pollution (PM10); 2010 | MRC-IEU | 423,796 | 2018 | Continuous |
ukb-b-9942 | Nitrogen dioxide air pollution; 2010 | MRC-IEU | 456,380 | 2018 | Continuous |
ukb-b-12417 | Nitrogen oxides air pollution; 2010 | MRC-IEU | 456,380 | 2018 | Continuous |
ebi-a-GCST90038614 | Pulmonary embolism with or without deep venous thrombosis | UK Biobank | 484,598 | 2021 | PMID:33959723 |
ukb-b-18366 | Diagnoses—main ICD10: I26.9 Pulmonary embolism without mention of acute cor pulmonale | MRC-IEU | 463,010 | 2018 | Binary |
ukb-b-16048 | Non-cancer illness code, self-reported: pulmonary embolism +/− dvt | MRC-IEU | 462,933 | 2018 | Binary |
ebi-a-GCST90013887 | Pulmonary embolism (Firth correction) | UK Biobank | 407,746 | 2021 | PMID: 34017140 |
ebi-a-GCST90013937 | Pulmonary embolism (SPA correction) | UK Biobank | 407,746 | 2021 | PMID: 34017140 |
ukb-b-19953 | Body mass index (BMI) | MRC-IEU | 461,460 | 2018 | Continuous |
ieu-b-142 | Cigarettes smoked per day | GSCAN | 249,752 | 2019 | PMID: 30643251 |
ebi-a-GCST90013474 | Biological sex (age-adjusted) | NA | 452,302 | 2021 | PMID: 33888908 |
Outcome | Exposure | MVMR_IVW | MVMR_PRESSO | Fisher’s Combined Probability Test | ||||
---|---|---|---|---|---|---|---|---|
Beta | SE | Pval | Beta | SE | Pval | Pval | ||
ebi-a-GCST90038614 | PM2.5 | 0.004 | 0.003 | 0.131 | 0.00382 | 0.00243 | 0.119 | 0.00193 |
ukb-b-18366 | PM 2.5 | 0.002 | 0.002 | 0.312 | 0.00239 | 0.00227 | 0.296 | |
ukb-b-16048 | PM 2.5 | 0.006 | 0.003 | 0.029 | 0.00647 | 0.00282 | 0.0237 | |
ebi-a-GCST90013887 | PM 2.5 | 0.726 | 0.347 | 0.036 | 0.726 | 0.339 | 0.0345 | |
ebi-a-GCST90013937 | PM 2.5 | 0.726 | 0.347 | 0.036 | 0.726 | 0.340 | 0.0349 | |
ebi-a-GCST90038614 | PM 10 | 0.005 | 0.004 | 0.136 | 0.00525 | 0.00338 | 0.123 | 0.0260 |
ukb-b-18366 | PM 10 | 0.002 | 0.004 | 0.558 | 0.00218 | 0.00360 | 0.548 | |
ukb-b-16048 | PM 10 | 0.008 | 0.005 | 0.114 | 0.00786 | 0.00471 | 0.099 | |
ebi-a-GCST90013887 | PM 10 | 0.762 | 0.465 | 0.101 | 0.762 | 0.443 | 0.088 | |
ebi-a-GCST90013937 | PM 10 | 0.754 | 0.465 | 0.105 | 0.754 | 0.444 | 0.0922 | |
ebi-a-GCST90038614 | NO2 | 0.001 | 0.002 | 0.530 | 0.00137 | 0.00215 | 0.524 | 0.301 |
ukb-b-18366 | NO2 | <0.001 | 0.002 | 0.910 | 0.000241 | 0.00209 | 0.908 | |
ukb-b-16048 | NO2 | 0.001 | 0.003 | 0.667 | 0.001123 | 0.00255 | 0.660 | |
ebi-a-GCST90013887 | NO2 | 0.424 | 0.299 | 0.156 | 0.424 | 0.288 | 0.143 | |
ebi-a-GCST90013937 | NO2 | 0.425 | 0.299 | 0.156 | 0.425 | 0.289 | 0.143 | |
ebi-a-GCST90038614 | NOx | 0.002 | 0.002 | 0.317 | 0.00229 | 0.00229 | 0.319 | 0.032 |
ukb-b-18366 | NOx | 0.003 | 0.002 | 0.174 | 0.00293 | 0.00216 | 0.178 | |
ukb-b-16048 | NOx | 0.004 | 0.003 | 0.095 | 0.00444 | 0.00264 | 0.0955 | |
ebi-a-GCST90013887 | NOx | 0.56 | 0.323 | 0.083 | 0.560 | 0.323 | 0.0856 | |
ebi-a-GCST90013937 | NOx | 0.552 | 0.324 | 0.089 | 0.552 | 0.3243 | 0.0912 | |
ebi-a-GCST90038614 | PM2.5–10 | 0.002 | 0.003 | 0.633 | 0.0016 | 0.003320 | 0.630 | 0.427 |
ukb-b-18366 | PM2.5–10 | −0.007 | 0.004 | 0.110 | −0.00688 | 0.00412 | 0.01 | |
ukb-b-16048 | PM2.5–10 | 0.006 | 0.005 | 0.221 | 0.00567 | 0.00446 | 0.207 | |
ebi-a-GCST90013887 | PM2.5–10 | −0.459 | 0.500 | 0.359 | −0.459 | 0.474 | 0.336 | |
ebi-a-GCST90013937 | PM2.5–10 | −0.465 | 0.499 | 0.352 | −0.465 | 0.475 | 0.330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, X.; Jiang, Y.; Wang, Z.; Zhao, X. Causal Relationship Between Urban Air Pollution and Pulmonary Embolism: A Two-Sample Mendelian Randomization Study. Atmosphere 2025, 16, 384. https://doi.org/10.3390/atmos16040384
Pei X, Jiang Y, Wang Z, Zhao X. Causal Relationship Between Urban Air Pollution and Pulmonary Embolism: A Two-Sample Mendelian Randomization Study. Atmosphere. 2025; 16(4):384. https://doi.org/10.3390/atmos16040384
Chicago/Turabian StylePei, Xiang, Yuhang Jiang, Zheng Wang, and Xiaoyun Zhao. 2025. "Causal Relationship Between Urban Air Pollution and Pulmonary Embolism: A Two-Sample Mendelian Randomization Study" Atmosphere 16, no. 4: 384. https://doi.org/10.3390/atmos16040384
APA StylePei, X., Jiang, Y., Wang, Z., & Zhao, X. (2025). Causal Relationship Between Urban Air Pollution and Pulmonary Embolism: A Two-Sample Mendelian Randomization Study. Atmosphere, 16(4), 384. https://doi.org/10.3390/atmos16040384