Observation of Horizontal Gravity Wave Activity in the Upper Stratosphere Using Monostatic Rayleigh Lidar
Abstract
1. Introduction
2. Methods
2.1. Principle
2.2. Data Processing
2.3. Influence of Illumination Aperture
3. Results and Discussion
3.1. Case Study
3.2. Seasonal Variation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GCM | General Circulation Model |
| MLT | Middle and Lower Thermosphere |
| HIRDLS | High-Resolution Dynamics Limb Sounder |
| QBO | Quasi-biennial Oscillation |
| SAO | Semi-annual Oscillation |
References
- Fritts, D.C. Gravity saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. 1984, 2, 275–308. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Becker, E. Dynamical Control of the Middle Atmosphere. Space Sci. Rev. 2012, 168, 283–314. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Eckermann, S.D.; Chun, H.-Y. An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos. Ocean 2003, 41, 65–98. [Google Scholar]
- Eckermann, S.D.; Ma, J.; Broutman, D. Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci. 2015, 72, 2330–2347. [Google Scholar] [CrossRef]
- Alexander, M.J.; Geller, M.; McLandress, C.; Polavarapu, S.; Preusse, P.; Sassi, F.; Sato, K.; Eckermann, S.; Ern, M.; Hertzog, A.; et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. R. Meteor. Soc. 2010, 136, 1103–1124. [Google Scholar] [CrossRef]
- Preusse, P.; Eckermann, S.; Ern, M. Transparency of the atmosphere to short horizontal wavelength gravity waves. J. Geophys. Res. 2008, 113, D24104. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Warner, C.D. Some experimental constraints for spectral parameters used in the Warner and McIntyre parameterization scheme. Atmos. Chem. Phys. 2006, 6, 4361–4381. [Google Scholar] [CrossRef]
- Vincent, R.A.; Hertzog, A.; Boccara, G.; Vial, F. Quasi-Lagrangian super pressure balloon measurements of gravity-wave momentum fluxes in the polar stratosphere of both hemispheres. Geophys. Res. Lett. 2007, 34, L19804. [Google Scholar] [CrossRef]
- Hamilton, K.; Wilson, R.J.; Hemler, R.S. Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci. 1999, 56, 3829–3846. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Warner, C.D. A comparison between CRISTA satellite data and Warner and McIntyre gravity wave parameterization scheme: Horizontal and vertical wavelength filtering of gravity wave momentum flux. Adv. Space Res. 2005, 35, 2017–2023. [Google Scholar] [CrossRef]
- Alexander, M.J.; Dunkerton, T.J. A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci. 1999, 56, 4167–4182. [Google Scholar] [CrossRef]
- Piani, C.; Durran, D.; Alexander, M.J.; Holton, J.R. A numerical study of three-dimensional gravity waves triggered by deep convection and their role in the dynamics of the QBO. J. Atmos. Sci. 2000, 57, 3689–3702. [Google Scholar] [CrossRef]
- Lane, T.P.; Reeder, M.J.; Clark, T.L. Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci. 2001, 58, 1249–1274. [Google Scholar] [CrossRef]
- Pfister, L.; Scott, S.; Loewenstein, M.; Bowen, S.; Legg, M. Mesoscale disturbances in the tropical stratosphere excited by convection: Observations and effects on the stratospheric momentum budget. J. Atmos. Sci. 1993, 50, 1058–1075. [Google Scholar] [CrossRef]
- Preusse, P.; Ern, M. Indication of convectively generated gravity waves observed by CLAES. Adv. Space Res. 2005, 35, 1987–1991. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Krebsbach, M.; Mlynczak, M.G.; Russell, J.M., III. Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys. 2008, 8, 845–869. [Google Scholar] [CrossRef]
- Preusse, P.; Ern, M.; Bechtold, P.; Eckermann, S.D.; Kalisch, S.; Trinh, Q.T.; Riese, M. Characteristics of gravity waves resolved by ECMWF. Atmos. Chem. Phys. 2014, 14, 10483–10508. [Google Scholar] [CrossRef]
- Alexander, M.J.; Gille, J.; Cavanaugh, C.; Coffey, M.; Craig, C.; Eden, T.; Francis, G.; Halvorson, C.; Hannigan, J.; Khosravi, R.; et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res. 2008, 113, D15S18. [Google Scholar] [CrossRef]
- Trinh, Q.T.; Kalisch, S.; Preusse, P.; Ern, M.; Chun, H.-Y.; Eckermann, S.D.; Kang, M.-J.; Riese, M. Tuning of a convective gravity wave source scheme based on HIRDLS observations. Atmos. Chem. Phys. 2016, 16, 7335–7356. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Dunkerton, T.J. The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res. 1997, 102, 26053–26076. [Google Scholar] [CrossRef]
- Eckermann, S.O.; Preusse, P. Global measurements of stratospheric mountain waves from space. Science 1999, 286, 1534–1537. [Google Scholar] [CrossRef]
- Kruse, C.G.; Alexander, M.J.; Hoffmann, L.; Niekerk, A.V.; Polichtchouk, I.; Bacmeister, J.; Holt, L.A.; Plougonven, R.; Sacha, P.; Wright, C.; et al. Observed and modeled mountain waves from the surface to the mesosphere near the drake passage. J. Atmos. Sci. 2022, 79, 909–932. [Google Scholar] [CrossRef]
- Geldenhuys, M.; Preusse, P.; Krisch, I.; Zülicke, C.; Ungermann, J.; Ern, M.; Friedl-Vallon, F.; Riese, M. Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event. Atmos. Chem. Phys. 2021, 21, 10393–10412. [Google Scholar] [CrossRef]
- Lund, T.S.; Fritts, D.C. Numerical simulation of gravity wave breaking in the lower thermosphere. J. Geophys. Res. Atmos. 2012, 21, D21105. [Google Scholar] [CrossRef]
- Vadas, S.L.; Zhao, J.; Chu, X.; Becker, E. The excitation of secondary gravity waves from local body forces: Theory and observation. J. Geophys. Res. Atmos. 2018, 123, 9296–9325. [Google Scholar] [CrossRef]
- Becker, E.; Goncharenko, L.; Harvey, V.L.; Vadas, S.L. Multi-step vertical coupling during the January2017 sudden stratospheric warming. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030866. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Kshevetskii, S.P.; Koval, A.V.; Kurdyaeva, Y. Tunneling of acoustic-gravity waves through critical levels to the upper atmosphere. Adv. Space Res. 2025, 75, 3661–3670. [Google Scholar] [CrossRef]
- Vadas, S.L.; Becker, E.; Bossert, K.; Hozumi, Y.; Stober, G.; Harvey, V.L.; Baumgarten, G.; Hoffmann, L. The role of the polar vortex jet for secondary and higher-order gravity waves in the northern mesosphere and thermosphere during 11–14 January 2016. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032521. [Google Scholar] [CrossRef]
- Daubechies, I. Orthonormal bases of compactly supported wavelets III. Better frequency Resolution. SIAM J. Math. Anal. 1993, 24, 520–527. [Google Scholar] [CrossRef]
- Vadas, S.L.; Fritts, D.C.; Alexander, M.J. Mechanism for the Generation of Secondary Waves in Wave Breaking Regions. J. Atmos. Sci. 2003, 60, 194–214. [Google Scholar] [CrossRef]
- Zheng, X.; Li, X.; Chang, Q. The estimation of the horizontal parameters of gravity waves by the monostatic Rayleigh Lidar. Sci. Rep. 2024, 14, 28451. [Google Scholar] [CrossRef] [PubMed]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 1981, 86, 9707–9714. [Google Scholar] [CrossRef]
- Vadas, S.L.; Becker, E. Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves During Wintertime at McMurdo Station in the Antarctic. J. Geophys. Res. Atmos. 2018, 123, 9326–9369. [Google Scholar] [CrossRef]
- Heale, C.J.; Bossert, K.; Vadas, S.L.; Hoffmann, L.; Dörnbrack, A.; Stober, G.; Snively, J.B.; Jacobi, C. Secondary Gravity Waves Generated by Breaking Mountain Waves Over Europe. J. Geophys. Res. Atmos. 2020, 125, e2019JD031662. [Google Scholar] [CrossRef]
- Fritts, D.C.; Lund, A.C.; Lund, T.S.; Yudin, V. Impacts of Limited Model Resolution on the Representation of Mountain Wave and Secondary Gravity Wave Dynamics in Local and Global Models. Part I: Mountain Waves in the Stratosphere and Mesosphere. J. Geophys. Res. Atmos. 2022, 127, e2021JD035990. [Google Scholar] [CrossRef]






| Period (hour)/ Frequency (Hz) | Relatival Amplitude (%) | Wavelength (m) | Phase Velocity (m/s) |
|---|---|---|---|
| 1.99/1.39 × 10−4 | 3.85 | 1274 | 0.17 |
| 1.33/2.08 × 10−4 | 1.18 | 851 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zheng, X.; Gong, S.; Chang, Q. Observation of Horizontal Gravity Wave Activity in the Upper Stratosphere Using Monostatic Rayleigh Lidar. Atmosphere 2025, 16, 1376. https://doi.org/10.3390/atmos16121376
Li X, Zheng X, Gong S, Chang Q. Observation of Horizontal Gravity Wave Activity in the Upper Stratosphere Using Monostatic Rayleigh Lidar. Atmosphere. 2025; 16(12):1376. https://doi.org/10.3390/atmos16121376
Chicago/Turabian StyleLi, Xueming, Xuanyu Zheng, Shaohua Gong, and Qihai Chang. 2025. "Observation of Horizontal Gravity Wave Activity in the Upper Stratosphere Using Monostatic Rayleigh Lidar" Atmosphere 16, no. 12: 1376. https://doi.org/10.3390/atmos16121376
APA StyleLi, X., Zheng, X., Gong, S., & Chang, Q. (2025). Observation of Horizontal Gravity Wave Activity in the Upper Stratosphere Using Monostatic Rayleigh Lidar. Atmosphere, 16(12), 1376. https://doi.org/10.3390/atmos16121376

