Next Article in Journal
Long-Term Temperature and Precipitation Trends Across South America, Urban Centers, and Brazilian Biomes
Previous Article in Journal
Sensitivity of Atmospheric Energetics to Optically Thin Ice Clouds During the Arctic Polar Night
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Discovery of Regular Daily Ionospheric Scintillation

Institute of Geodesy and Geoinformatics, Faculty of Science and Technology, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
*
Author to whom correspondence should be addressed.
Atmosphere 2025, 16(12), 1330; https://doi.org/10.3390/atmos16121330
Submission received: 9 October 2025 / Revised: 11 November 2025 / Accepted: 13 November 2025 / Published: 25 November 2025

Abstract

The aim of this study was to find out whether, just like in March 2015, daily regular GPS positioning disturbances caused by ionospheric scintillations occurred in other months of the solar activity cycle 24. The GPS positioning 90-s kinematic solutions of selected 46 months covering 11 years were used to search for regular daily scintillation events. The hypothesis on predictable regular daily ionospheric scintillation was tested. Scintillation waves were discovered as a result of space weather impact with the sidereal day regularity. It leads to the conclusion that the radiation originates from the interplanetary medium. The enhancement of radiation waves by solar activity is similar to Pc1 waves. The regular daily ionospheric scintillation waves are recorded at any time of the day. In the years with low solar activity in 2010 and 2012, regular scintillation waves were not found. It cannot be claimed that the comparison of daily regular ionospheric scintillation cases over time with the mentioned Pc1 wave cases indicates any interrelation.

Graphical Abstract

1. Introduction

Global Navigation Satellite Systems (GNSSs) have become so widely used that it is hard to imagine an industry in the national economy that does not use them. However, GNSS users and service providers that require high-precision positioning, navigation, and timing (PNT) understand that achieving high precision requires accounting for various nuances, including the impact of space weather. The aim of this study was to determine whether, as in March 2015, daily regular GPS positioning disturbances caused by ionospheric scintillations also occurred in other months of the solar activity cycle.
In this article, we discuss several topics related to GNSS positioning and navigation in the Introduction, and then delve into the daily ionospheric scintillation waves of interplanetary origin that cause positioning accuracy errors.
In [1], space weather was defined, and the primary phenomena that produce potential space weather impacting on GNSS applications in particular were described: the introduction of large gradients in the ionospheric total electron content (TEC), rapid variation in a signal’s amplitude and/or phase (scintillation), and/or a sudden increase in background noise.
Scintillation is caused by random density fluctuations of electrons and protons in the Earth’s ionosphere, the solar wind, or the interstellar medium [2]. Ionospheric scintillation, caused by irregularities in the ionosphere, can lead to rapid changes in signal amplitude and phase, particularly affecting GPS signals at high latitudes and during space weather events [3,4,5,6,7,8,9,10]. The presence of moderate to strong scintillation can double positioning errors and induce clustering effects on positioning solutions, complicating navigation tasks [4]. The positioning performance of GNSS is especially affected during severe geomagnetic storms, with studies indicating that the accuracy of precise point positioning (PPP) can be significantly reduced due to frequent cycle slips [5]. The experimental results show that the positioning accuracy of some stations in high-latitude areas decreases significantly when using the conventional Geometry-Free (GF) cycle slip detection threshold during geomagnetic storms, indicating that GF is no longer applicable to high-precision services [11]. The correlation between geomagnetic storm indices and GNSS signal loss underscores the need for effective monitoring and forecasting to mitigate the impacts of space weather on navigation and positioning systems—a continuous concern for many users [6,12,13,14].
In combination with other instrumentation, scintillation monitoring is a powerful tool for investigating the formation and evolution of ionospheric structures such as spread-F and equatorial plasma bubbles [15]. Vasylyev et al. [2] described the history of research on the impacts of scintillation on various important services and remote sensing data products, with the theoretical modeling and computer simulation of these phenomena having attracted the attention of researchers for more than seventy years. Theoretical methods for modeling ionospheric scintillation phenomena have reached maturity over the last several decades. This progress is linked to the development of sophisticated numerical techniques based on the formalism of phase screens [2]. There are many models of ionospheric scintillation [16], which are used for scientific purposes as well as in services for scintillation prediction, determination of time periods and geographic areas with strong scintillation, and warning systems [2]. There are several scintillation models for GNSS applications, such as the Cornel model [17] and the multi-frequency GNSS scintillation model [18]. Given its practical importance, scintillation forecasting remains a key driver of modeling. Climatological models, such as WBMOD or GISM, can roughly predict scintillation levels [2]. Short-term prediction can be achieved by observing the time series of the model input, such as the F10:7 solar flux, and predicting future values, e.g., using exponential smoothing methods [19] and the BATS and TBATS models [20], to name a few. Machine learning and artificial neural networks also help to meet these demands [21,22]. Each year, more and more data are accumulated, enabling better insights into ionospheric conditions over solar cycles. The number of satellites and ground stations scanning the Earth’s ionosphere is also steadily increasing. The combination of data from multiple remote sensing sources, such as GNSS, SAR, and geostationary satellites, enhances understanding of the volumetric spatial variability of the ionosphere [2]. The development and deployment of high-resolution electron density monitoring instruments, such as EISCAT3D, global ultraviolet imagers (GUVIs), and special sensor ultraviolet spectrographic imagers (SSUSIs), are attractive for analyzing ionospheric irregularities with improved spatial and temporal resolution [2]. This, in turn, would facilitate a better understanding of the influence of ionospheric irregularities on radio-wave propagation in the disturbed ionosphere [2].
The approach for regional ionosphere modeling, based on undifferenced multi-GNSS carrier-phase data for TEC estimation and thin-plate splines for TEC interpolation, is described in [23].
Sun X. et al. [24] evaluated the International GNSS Service (IGS) 10-day continuous observations with eight combinations of BeiDou (BDS-3) and Galileo frequencies. The dual-frequency ionospheric-free (DFIF) Precise Point Positioning (PPP) in static and kinematic modes was implemented using the open-source Nett_Diff software v1.17 developed by the GNSS Analysis Center of the Shanghai Astronomical Observatory [24]. The best results were achieved with equal accuracy for BDS-3 only, B1C/B3I, and Galileo only, E1/E5 [24].
Space weather events such as the May 2024 Mother’s Day Superstorm induce hazardous perturbations in the thermosphere–ionosphere–magnetosphere system [25,26]. Filjar et al. [27] demonstrated that, in the case of a short-term fast-developing geomagnetic storm, a machine learning-based environment-aware GNSS ionospheric correction model for sub-equatorial regions may provide a substantial improvement over a global model.
Analyzing unique events such as the May 2024 Mother’s Day Superstorm offers valuable insight into the evolution of extreme geospace dynamics [5,25,26,28]. Several authors have studied the ionospheric response and the impact on GPS positioning accuracy during tropical cyclones [29,30] and volcanic eruptions [31].
An extended dataset of Loss-of-Lock (LoL) events recorded by the Swarm constellation from December 2013 to December 2020—the longest ever used—includes the corresponding occurrence as a function of latitude, local time, season, and solar activity [32]. In addition, the analysis aims to find a relationship between LoL occurrence and the defined values of the following two ionospheric indices: the rate of change in the electron density index (RODI) and the rate of change in the total electron content (TEC) index (ROTI). This research was performed both to characterize the background conditions of the ionosphere for such events and to aid in understanding whether these events can be forecasted, which would be crucial for mitigating space weather effects [32].
During the course of this study, it was revealed that disturbances caused by daily regular scintillations recur at intervals close to the length of a sidereal day. Given this, it can be concluded that the radiation causing scintillations originates in the interplanetary medium. The scientific literature also indicates that the origin of Pc1 wave radiation is in the interplanetary medium.
Fransia et al.’s [33] results show that there is a correspondence between Pc1 pulsation activity and the occurrence of ionospheric irregularities, as clearly shown in the analysis of ROT fluctuations; second, signatures of EMIC waves, driven by increased solar wind pressure, can also be observed at polar latitudes in both hemispheres simultaneously due to their propagation in the ionospheric waveguide. Such waves, generated just inside the magnetopause, propagate through the magnetosphere and transmit as Alfven waves along geomagnetic field lines up to the auroral ionosphere. They can precipitate magnetospheric energetic electrons into the atmosphere, causing electron/ion density variations as measured by TEC fluctuations. Fransia et al. [33] believe that the results of their work, although very interesting, should be substantiated by further investigations based on multiple events and additional data (satellite and/or riometer data). Third, these waves propagate along geomagnetic field lines and can reach the Earth’s ionosphere, where they influence ionospheric conductivity and electron density. Pc1 waves can modulate ionospheric total electron content (TEC), leading to irregularities and affecting radio signals [33]. Geomagnetic measurements from ground and space represent the main ingredient in modeling and understanding the Earth’s magnetic field [34].
Space weather issues related to PNT are relevant worldwide [28,35]. The Global Positioning System (GPS) plays an important role in navigation and positioning services. When GPS signals propagate through a complex space environment, they are susceptible to ionospheric scintillation interference. As one of the largest interference sources in GPS navigation and positioning, ionospheric scintillation causes signal intensity decline and carrier phase fluctuations, making signal acquisition for the GPS receiver challenging [36].
The potential establishment of real-time alert systems for ionospheric disturbances could significantly benefit civilian applications, enhancing the operational efficiency of technologies reliant on accurate ionospheric information [37]. The significant research centers for geomagnetism, space physics, and space weather in Europe are the ESA space weather network and the GFZ Helmholtz Centre for Geosciences in Potsdam, Germany. Studies have also been conducted in Latvia on the impact of space weather on GNSS measurements [38]. The second section of this study provides a brief overview of the study’s raw data, focusing on March 2015 data that clearly illustrate the presence of regular daily ionospheric scintillation waves. Further analysis of datasets and their reduction formulas is presented. The third section presents the results of the data analysis and reflects the characteristics of the obtained results. The fourth section discusses the results obtained and compares them with geomagnetic measurements of the Pc1 waves mentioned in the literature. Additional information about the example, including a summary of six searches of daily regular scintillation waves for June 2014, is provided in Appendix A, and a list of daily regular ionospheric scintillation events is provided in Supplementary Materials.

2. Data and Methods

In this study, the hypothesis regarding the possible regular daily ionospheric scintillation disturbances affecting GPS positioning observations was tested in 46 selected months of the 24th solar activity cycle (2007–2017).
GPS observation data from Latvian Continuously Operating GPS Station (CORS) networks were used for double-difference (DD) post-processing in the Bernese GNSS Software v5.2, with an elevation cut-off angle of 15˚ for 90-s (30 s sampling data) intervals of kinematic post-processing to identify disturbed results. Information on ionospheric TEC levels was obtained from publicly available datasets. The programs RNXSMT (Clean RINEX Data, Smooth Code Observations) and MAUPRP (automatic phase pre-processing, cycle slip detection and correction, outlier detection, and Ambiguity List update) in the Bernese GNSS Software 5.2 were used for cycle slip detection. The MAUPRP program was also used to repair cycle slips. The outputs from both programs were used to find detected cycle slips for each station and baseline. The FES2004 ocean tidal model was used, along with the correction of the solid Earth tide effect. The Dry Global Mapping Function (DRY-GMF) was used for tropospheric delay modeling. The maximum size of accepted cycle slip corrections was 10. The solutions were achieved in subgroups of 4–5 Latvian CORS, using the same IGS/EPN reference stations. The resulting post-processed kinematic solution data were used for further analysis with the authors’ software programs [39].

2.1. Ionospheric Scintillation Waves

Regular daily disturbances were observed at Latvian CORSs in March 2015 [39]. A graphical image of the information subset of the ionospheric scintillation wave is depicted in Figure 1.
The first row presents information on the number of scintillation events, the date and time, and a list of Latvian CORS DOMEs where ionospheric scintillation causing a 3D positioning discrepancy ≥ 10 cm occurred simultaneously. The second row represents information on the next event, which occurred within the next 90 s. The various subsets of stations represent the area of the station network impacted by different sizes of electron clouds. Therefore, the information subset of each row is called a cloud, and the whole sequence of uninterrupted 90 sec events of ionospheric scintillation is called a wave (evil wave [28]). Over the course of a day, wave counts may vary depending on solar activity.
A subset of any wave w k is described in Formula (1) as a union of subsets of scintillation clouds with their date and time and GPS position discrepancy data.
w k : = { k i , D k , t k i , s k i j , d k i j , r k i j , w k : j D k , t k i , n k i D k , t k i , 1 i n k , 1 j | S k i | }
where k i is the number of recorded scintillation waves on date D k   and k i   r e p r e s e n t s cloud’s time t k i ; s k i j is a subset of station DOME names in each row’s subsets S k i with cardinality | S k i | , where simultaneously fixed scintillations occur. S k i subsets are called clouds, similarly to electron clouds, in the impacted area of the station subset of cardinality j. The 3D positioning discrepancy subset is represented by d k i j , and a subset of the Rate of the Total Electron Content Index (ROTI) is denoted by r k i j . Later in this article, the tuple w k of Modified Julian Days (MJD) denoted by Formula (2), where day and time are converted to MJD, is described. The cardinality of subset w k is n k , and the count of CORSs in each k i —cloud is | S k i | . The number of waves per day varies, and the number of clouds in each wave also varies. Therefore, based on a data-driven approach, the actual spatiotemporally matched structure of the electron cloud can be inferred from these patterns on the ground [40].

2.2. Graphical Representation of the Registered Ionospheric Wave Sets over the Month

The occurrence of monthly ionospheric scintillation waves in March 2015 is depicted in Figure 2. There are visible types (in the form of peaks) of waves depicted in Figure 1, which clearly repeat daily. The largest peak occurred on 17 March 2015, during the geomagnetic storm on St Patrick’s Day.
More complicated scintillation events in August 2007 are depicted in Figure 3. There are several scintillation waves in some days and no scintillation in some other days.
Figure 4 depicts scintillation events in July 2016. On the surface, it is hard to say whether scintillation waves recurred daily during the month.
The total number of waves is 6718, and the number of clouds is 84,827, as listed in Table 1.
It is necessary to select an algorithm to detect the presence of regular waves in these monthly data subsets. Based on the example of March 2015, daily regular waves are repeated with a 4.5-min lag on a time scale graduated in 1.5-min increments. For better transparency, the count of clouds and waves is depicted in Figure 5.

2.3. The Classification of the Characteristic Elements of the Waves of Ionospheric Scintillation Clouds

Figure 6 once again shows a scintillation k–wave and sketches its details, which are used in the subsequent analysis.
Additionally, for the elements of each wave with index k, the information subset of the tuples of Modified Julian Days (MJD) is introduced, where MJD for the peak cloud is denoted by p k , beginning cloud is denoted by b k , end cloud is denoted by e k , middle cloud is denoted by g k , wavelength is denoted by l k , and station count in peak cloud is denoted by | S k i | . k is the No. of waves in month, c 1 is the recorded No. of the first wave’s cloud, and n k   i s   count of clouds in a wave. Initially, it was planned to use the differences between the element values of adjacent waves (denoted by o); however, in practice, this turned out to be insignificant.
W : = k = 1 | W | { ( k , c 1 , b k , e k , p k , g k , l k , o k b , o k e o k p , o k g , n k , m a x | S k i | ) w k , n k i       w k , 1 i n k }
An example from such a subset of tuples is shown in Table 2 for 11–13 March 2015.

2.4. Characteristics of Regular Daily Wave Elements in March 2015

The duration of the wave is called the length of the wave in this article. The length of waves varies in size depending on the annual season and solar activity level. In March 2015, the regularity of waves is clearly visible (Figure 2). However, regular daily waves are unclear in Figure 3 or in Figure 4.
With a 4.5-min lag in adjacent days of March 2015, each of the 1.5-min (90 s) clouds shifts. However, the time lag for each of these proper clouds (peak, med, and others) varies with changes in the daily wave configuration. Importantly, the times of regular daily repetition are variable. Table 3 shows how the parameters of daily waves are changing. The shift time is provided in minutes for the peak cloud. Uncertainties (dpeak) in time minutes (min) are obtained as a result of the linear approximation of daily peak times. Similarly, linear approximation is performed for the median (dmed) and beginning (dbeg). The length of the wave in minutes means the duration of the GPS positioning discrepancies. Time differences for the peak minus beginning (peak − beg), median minus peak (med − peak), and end–peak (end − peak) characterize the changing shape of the waves.
The root mean square error (RMS) of linear approximation is 1.12 min for the time of occurrence of the peak cloud (peak), 7.75 min for the cloud in the middle of the time sequence (further median—med), and 6.15 min for the time sequence beginning of the wave (further beginning—beg). The linear approximation errors of the daily time are depicted in Figure 7. The peak’s daily repetition is most regular. The monthly mean value of the length of wave (Length) is 30.0 min, and the mean value without outliers is 24.4 min (Figure 7). The mean time difference from the beginning to the peak is 9.05 min, that from the peak to the middle of the wave is 5.95 min, and that from the peak to the end of the wave is 20.95 min. This means that, on average, the peak of the ionospheric wave is closer to the beginning, but the section from the peak to the end is 2 times as stretched. Daily regular waves repeated with a –4.11 min lag for the peak, –3.76 min for the wave median, and –3.78 min for the beginning of the wave.
Variation in the length of regular waves is depicted in Figure 8. It is later shown in this study that the wavelength changes with solar activity. This is also shown in Figure 8, where the longest wavelength occurs on the day of the geomagnetic storm, March 17. The geomagnetic storm appears in the Latvian CORS observations from 14:27 UT to 18:18 UT, while the regular daily scintillation wave is from 21:43:30 UT to 23:58:30 UT.
Since the time lag of the peak indicates the most stable regularity, it is helpful to conduct a search for the next regular daily wave in relation to the forecast of the next day of the peak time. In order to search for the peak on the next day, it was necessary to consider both the fluctuation of the lag time and the discrepancy between the gradation of the measurement time, 1.5 min (see Figure 1), and the regular predicted daily time lag, –4.11 min.
When the study began, it was thought that there might also be regular waves of GPS interference in a few other months. However, the example from March 2015 sparked interest in exploring the regularity of positioning disorders in other months.

2.5. Search for Regular Daily Waves

The monthly set of regular daily scintillation waves is
W : = w k : p k p k a b s ( p k p k ) c , p k , p k w k , 1 k 31
p k = p k 1 + const
where c is a threshold indicating uncertainty in the constant for the daily regularity of the peak cloud p k occurrence time. For the initial search test, sets of CORS GPS measurement errors for the months of October and December 2014 were selected. A cloud of the largest cardinality of the first wave of the first day of the month was chosen as the starting point. The search process confirmed the daily variation in the timing of the wave beginnings, peaks, and midpoints. The results of the experimentation will be reflected in the next section of the article.
The final test was based on the assumption that the predicted regular wave of the next day partially overlaps the regular wave of the current day in terms of time in minutes and seconds, unless one of the regular wavelengths of the comparable adjacent days is less than a certain time limit.
W t e s t e d : = { ( w i , w j ) : ( ( t j 1 < t i l ) ( t j l > t i 1 ) ) , t i 1 , t i l D i , w j , t j 1 , t j l D i + 1 , 1 i | w i | , 1 j | w j | }
t j = t i + const
where t i 1 indicates the time of the first cloud of the wave; t i l indicates that of the last cloud of the wave; | w i | indicates cardinality, representing the number of clouds in the current day; and t j 1   and t j l indicate the wave found for the next day, correspondingly. Const indicates a daily lag in time changes in the regular waves that occurred in adjacent days. The value of Const is discussed in the Discussion section (Section 4).

2.6. ROTI@ground and Positioning Errors

In conclusion to this analysis, for a few months, the average values of ROTI@ground and the affected CORS average positioning errors were calculated to gain insight into what impact these regular daily scintillation waves had on positioning accuracy.
The sample of discrepancies in GPS positioning for all the stations of one cloud (Northing—dN, Easting—dE, height—dh, 3D error, azimuth—Az, and rate of change in total electron content index—ROTI, with a time resolution of 8 min) is shown in Table 4. Both the results of ROTI@ground and the average positioning error were computed for each daily regular wave. The results will be discussed in the following sections, and the input data sample for each station at a fixed time is shown in Table 4.

3. Results

By analogy with March 2015, the search for regular waves in other months began with the first wave of the first day of the month. The results were disappointing. Then, the search began with the largest wave of the first day, and then with the highest peak of the first day. The number of waves on the first day of a few months was unexpectedly large, and it was necessary to change the initial search parameters in the software program. Several search parameters were improved step by step and, as a result, the search was conducted six times with both different and matching results.
Doubts and disbelief about the regularity of scintillation led to its existence being repeatedly tested. The search conditions were not fundamentally different. The differences were only the change in the choice of the starting point cloud or in the choice of the regular daily repetition time shift constant (Const). By changing the Const value, the number of identified waves per month changed. In the search process with a different Const value, a peak cloud was always the starting point. However, in search of the subsequent day’s wave, a different cloud of the same wave was used instead of the peak cloud because of its fluctuating time. In months with shorter wavelengths, the search process collapsed, as the accepted time Const shifted beyond the limits of the next wave. In Figure 9, the fluctuation in the time of peak cloud and the subsequent variation in Const value are depicted. The dashed line shows the mean Const that is close to the length of the sidereal day.
The results of the experiments were summarized and are shown in Figure 10 and Table A1. A sample of summarized search results in the month of November 2011 is shown in Table 5. The column “Stations” represents the number of stations in the cloud, and “Stations/Cloud” in six columns indicates the search results in six experiments. For control purposes, numbers for “Stations/Cloud” indicate the number of stations recording a cloud that coincide with data in column “Stations”. The column “Adj. Days’ Time Lag (min)” shows the difference in minutes (min) between the identified cloud of regular waves in adjacent days (current minus previous). Information on lines 31–33 represents clouds in one wave, lines 50–54 indicate another regular wave, lines 114–115 indicate another very small wave, and lines 127–130 indicate one more wave. Complete information for this data subset for the month of June 2014 is presented in Table A1, where the summarized search results of the selected month are shown.
November 2011, during the 24th solar activity cycle, was a month of low solar activity. This study demonstrates that the wavelength of regular ionospheric scintillation waves is dependent on solar activity. In the example shown in Table 5, the regular waves are very short. According to Formula (5), the predicted regular wave of the next day partially overlaps the regular wave of the current day in terms of time in minutes and seconds, unless one of the regular wavelengths of the comparable adjacent day is less than a certain time limit. For example, in Table 5, on NOV 2 and NOV 3, the time 1:42:00 < 1:49:30 and 1:51:00 > 1:46:29, but the wave of NOV 6 does not cover the adjacent day NOV 7 in the sense of minutes and seconds.

3.1. Linear Approximation

Because it was not possible to detect regular ionospheric scintillation waves on all days in some months, a linear approximation of the time series of detected waves was performed for peak clouds, median clouds, and initial (beginning) clouds. The approximation for initial clouds showed the most significant errors, rendering its use for forecasts invalid. The number of input data for peak and median clouds is shown in Figure 10.
In the linear approximation algorithm, approximation precision criteria were incorporated. For example, the criterion for the precision of peak time series approximation was 3 min. To achieve this precision, times with the largest discrepancy were discarded during each iteration, while keeping the number of remaining times no fewer than 4 in the solution. For the median, there were two solutions: one with the same conditions as for peak cloud times, but the other with different precision conditions—a precision of 17 min and a minimum of 6 time counts.
Based on the linear approximation results, it was checked whether such scintillation waves were present in the CORS dataset. The search results are shown in Figure 11.
As a result of linear approximation, the peak cloud times of the unidentified waves were also predicted. The search results are shown in Table 6. The information in columns is presented as follows: “Pred” indicates the predicted wave’s peak time; “Not” indicates the number of waves that are not found in search procedures; “Found” indicates the number of waves found in final search procedures based on linear approximation results; “Wlen” indicates the mean wavelength (min); “For-mean” indicates the number of waves without outliers of length; “Mean” indicates the mean wavelength (min) without outliers; “Outliers” indicates the number of outliers; “Thr” indicates the threshold for outliers 60 (min).
The results in Table 6 and Figure 11 confirm that the method of predicting waves via linear transformation is not applicable during months of low solar activity, when the scintillation wavelength is less than 10 min. On the other hand, it can be successfully used in months of elevated solar activity.

3.2. Solar Activity and Length of Regular Ionospheric Scintillation Waves

The overview of the percentage distribution of the wavelength of the identified regular waves is shown in Table 7 for various months and years of the 24th solar cycle in the mid-latitude country of Latvia.
The period was selected from the first to the last MJD day, during which regular disturbance was identified over the course of a month. For better visibility, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17 show the distributions of wavelengths mentioned in Table 7 for each year. These graphs illustrate the dependence of the wavelength distribution on solar geomagnetic activity. Solar activity decreased in 2007 and 2008 (Figure 12), but it was still relatively high.
In a period of low solar activity, in November 2011, up to 80% of wavelengths are very short ([0; 5) minutes) (Table 7, Figure 13). However, 20% of waves last more than 1 h.
During the period of high solar activity, in June 2014, the wavelength was [15; 20) minutes long in 36.8% of occurrences; in October 2014, the wavelength was [20; 25) minutes long in 45.1% of occurrences; and in December 2014, the wavelength was [20; 25) minutes long in 67.7% of occurrences, and in 22.6% of occurrences, the wavelength was more than 1 h long (Figure 14).
Figure 15 shows how wavelengths change with changes in solar activity. In March, May, and June 2015, solar activity is very high, while in October and December, it is significantly lower. In March, there is a very uniform distribution starting at 15 min (42% [20; 25)). The wavelength does not exceed 5 min in 50% of cases in October and in 67% of cases in December.
Figure 16 shows the wavelength distribution in 2016, when solar activity was low.
Solar geomagnetic activity began to increase in April 2017 and sharply decreased in October 2017. However, in September 2017, a very strong geomagnetic storm was observed in the USA and Canada, but it did not appear in Latvia. This is also reflected in the wavelength distribution shown in Figure 17.

3.3. Pearson’s Correlation

Table 8 summarizes the analysis of the Pearson’s coefficients’ results in both versions—a complete set of input data (row 1) and input data without Loss-of-Lock situations (row 2). The results for each of the four data types are summarized in four columns: Pearson’s correlation coefficient is in the following bounds: [0; 0.4), indicating a very weak correlation, in bounds of [0.4; 0.7), indicating a moderate correlation, in bounds of [0.7; 1], indicating a strong correlation, and in bounds of (0; –1], indicating a negative correlation. In both versions 1 and 2, the results are very similar—a weak correlation and a negative correlation between TEC and the number of cycle slips, TEC and the number of faulty solutions, TEC and cycle slips in faulty solutions, and between cycle slips and faulty solutions. Only in two cases is there a very strong correlation between cycle slips and the number of incorrect solutions, one of which is in March 2015.
Unfortunately, the ROTI values are only available starting in 2010 [41].
Similar to Table 8, Table 9 summarizes the analysis of Pearson’s coefficients for each of the four data types, with results presented in four columns. A correlation summary of the ROTI is provided in Table 9.
Figure 18 shows the monthly mean values for the following:
  • TEC-max over the territory of Latvia;
  • The mean value of cycle slip counts found with Bernese GNSS software v5.2 for all volumes of reduced solutions, including faulty solutions (CSLP);
  • The mean count of faulty solutions (F.sol.);
  • The mean count of cycle slips discovered using the Bernese GNSS software v5.2 for faulty solutions.
As the number of cycle slips is greater than the number of faulty solutions, the Bernese GNSS software v5.2 identified most of the affected positions; however, there are still many faulty solutions that the Bernese GNSS software v5.2 did not recognize.
In Figure 19, the variations in Pearson’s correlation coefficient in three cases are depicted: between TEC and the number of cycle slips, TEC and the number of faulty solutions (f. s.), and TEC and faulty solutions with removed Loss-of-Lock sequences (No LoL). The conclusion is that in most situations, TEC max, which is defined as a smooth value over a territory of Latvia, is not comparable to the sporadic nature of the real-time instantaneous spatial distribution of TEC [42].

3.4. The Impact of Daily Regular Ionospheric Waves on Positioning Accuracy

To assess the impact of regular scintillation wave on positioning accuracy, error data and ROTI data were randomly selected from the Latvian CORS dataset defined in Formula (1). An example of ROTI@ground and mean positioning 3D discrepancies for all clouds of regular waves on 23 March 2015 is shown in Table 10. In the Stations column, the number of stations in the cloud is indicated.
The ROTI@ground and mean discrepancies for individual clouds in the situation when solar activity was low are depicted in Table 11.
In March 2015, the solar activity increased. Table 12 shows the impact of regular wave, ROTI@ground, and the average positioning error of each day. It does not include individual clouds like in Table 10 and Table 11. The mean values of the impact of daily regular scintillation waves are computed. Data in Table 12 show that daily regular scintillation waves cause serious positioning errors.

3.5. Time Lag of Daily Regular Ionospheric Scintillation Waves

The period analyzed included the first to last MJD day in which a regular disturbance was identified over the course of a year. The average daily time lag for regular ionospheric scintillations was calculated (Table 13). The value of the daily time lag is close to the length of the sidereal day. This confirms the hypothesis that the initial source of the radiation causing the scintillation is not the Sun: while it is enhanced by solar activity, its origin is interplanetary, similar to Pc1 pulsation waves.
Researchers have concluded [43] that Pc1 waves appear at midnight just before dawn. Our studies demonstrate the likelihood of daily scintillation waves occurring at any time of day (Table S1), if they are indeed the scintillation waves referred to as Pc1 waves.
Pc1 waves are enhanced by solar activity [43,44,45]. Figure 12, Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17 show that the wavelength of regular waves is dependent on solar activity enhancement.
The regular wave repetition shift is 0.997156 days (or −4.1 min), which is an approximate sidereal day difference from the solar UT day. Consequently, the waves are assumed to originate from interplanetary media.

4. Discussion

The regularity of daily disturbances is time-shifted and close to the length of a sidereal day. Moreover, the duration (length) of daily scintillation waves is influenced by solar activity. This daily regular ionospheric scintillation wave phenomenon is similar to the Pc1 interplanetary wave phenomenon; however, unlike Pc1 observations, it is recorded at any time of the day (Table S1). Only during periods of low solar activity do the regular scintillation waves not appear. Table 14 provides the dates of the observed Pc1 waves [43] and a comparison of the length of these waves with the number and length of waves observed by GPS in Latvia on those dates. The Pc1 dates were published in a preprint [43], but were unfortunately lacking an indication of the observation time.
In two other studies, the dates and times of Pc1 wave magnetometric measurements were highlighted.
Theoretical predictions with observational results from conjugate high-latitude stations in Antarctica and Greenland were made by Pilipenko et al. [44] during the summer (7 June 2014) and winter (7 January 2014) periods. A disturbance is a sudden commencement (SC) pulse caused by the impact of an interplanetary shock (IS) on the magnetosphere. At high latitude, the duration of the local field line eigenperiod TA is ~5–10 min, which can exceed an SC impulse with 1–2 min [44]. According to the SuperDARNTEC maps, the 7 June 2014 event (16:50–16:55 UT) occurred in the Southern Hemisphere. In Figure 20, a daily regular scintillation event recorded by the Latvian CORS on 7 June 2014, is shown.
Francia et al. [33] studied the correspondence between Pc1 activity and ionospheric irregularities at polar latitudes. They performed magnetometric observations on 22 February 2007, at the MST station in Antarctica, between 02:00 and 14:00 UT.
Latvian CORS GPS observations confirmed that February 2007 had low solar activity. However, on February 22, two cases of ionospheric scintillation were recorded (Figure 21).
It is still a challenge to determine the apparent relationship between ionospheric conditions and Pc1 wave occurrence [43].
It cannot be claimed that the comparison of daily regular ionospheric scintillation events over time with the mentioned Pc1 wave cases indicates interrelation. However, the observed periodic day-to-day shift suggests that the scintillation recurrence impulse may originate in the interplanetary environment through a mutual relationship.
In Table S1 (Supplementary Materials) the fixed epoch of the peak cloud of regular daily scintillation wave is shown on the left side but on the right side the location of the regular daily scintillation wave in interval 0–24 h, marking for the 24-h scale graduations at hours (0, 6, 12, 18, 24) is shown. This very large list of daily regular ionospheric scintillation events cannot be placed horizontally in the manuscript, so it is presented vertically due to its large size. However, it clearly shows how the peak cloud epoch of the regular daily scintillation wave moves along the time scale. It is likely that this Table S1 would be useful to researchers who wish to check the existence of the daily scin-tillation phenomenon in their observation data.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/atmos16121330/s1, Table S1: Movement of the epoch of peak cloud along the time scale. @—location of the epoch of the regular daily scintillation wave in interval 0–24 h; . —marking for the 24-h scale graduations at hours (0, 6, 12, 18, 24).

Author Contributions

Conceptualization: J.B., M.N. and I.M.; methodology: J.B.; software: J.B.; validation: J.B., M.N. and I.M.; formal analysis: J.B.; investigation: J.B.; resources: J.B. and M.N.; data curation: J.B.; writing—original draft preparation: J.B.; writing—review and editing: J.B. and M.N.; visualization: J.B.; supervision: J.B. and I.M.; project administration: J.B. and I.M.; funding acquisition: J.B. and I.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the University of Latvia: Contract No. ZDA 2022/24. The data included in the analysis was obtained during the Programme for European Cooperating States (PECS), European Space Agency Contract No: 4000128661/19/NL/SC, project “Ionospheric characterization by statistical analysis of Latvian GBAS 11-year selective daily observations”. The views expressed in this publication can in no way be taken to reflect the official opinion of the European Space Agency. The APC was funded by the University of Latvia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Some of the data presented in this study are available in a Microsoft Office 365 OneDrive account provided by the LU GGI.

Acknowledgments

The authors would like to express gratitude to Inese Vārna and to Diana Haritonova for their support and assistance in the GPS data processing with the Bernese GNSS Software v5.2.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. Summary of six searches of daily regular scintillation waves for June 2014. For example, the regular cloud on 2 June 2014 was identified in columns 1, 3, 4, and 5. There were 26 stations in a cloud.
Table A1. Summary of six searches of daily regular scintillation waves for June 2014. For example, the regular cloud on 2 June 2014 was identified in columns 1, 3, 4, and 5. There were 26 stations in a cloud.
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
13556,809.7510422014 JUN118:1:3060000000.00.00.00.00.00.0
13656,809.7520832014 JUN118:3:090000000.00.00.00.00.00.0
13756,809.7531252014 JUN118:4:30110000000.00.00.00.00.00.0
13856,809.7541672014 JUN118:6:0120000000.00.00.00.00.00.0
13956,809.7552082014 JUN118:7:29180000000.00.00.00.00.00.0
14056,809.7562502014 JUN118:9:0100000000.00.00.00.00.00.0
14156,809.7572922014 JUN118:10:30220000000.00.00.00.00.00.0
14256,809.7583332014 JUN118:12:0230000000.00.00.00.00.00.0
14356,809.8447922014 JUN120:16:3010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time lag
13556,809.7510422014 JUN218:1:30 0.00.00.00.00.00.0
24156,810.7437502014 JUN217:51:020000000.00.00.00.00.00.0
24256,810.7447922014 JUN217:52:3020000000.00.00.00.00.00.0
24356,810.7458332014 JUN217:54:030000000.00.00.00.00.00.0
24456,810.7468752014 JUN217:55:2920000000.00.00.00.00.00.0
24556,810.7479172014 JUN217:57:060000000.00.00.00.00.00.0
24656,810.7489582014 JUN217:58:29120000000.00.00.00.00.00.0
24756,810.7500002014 JUN218:0:0160000000.00.00.00.00.00.0
24856,810.7510422014 JUN218:1:30150000000.00.00.00.00.00.0
24956,810.7520832014 JUN218:3:0190000000.00.00.00.00.00.0
25056,810.7531252014 JUN218:4:30230000000.00.00.00.00.00.0
25156,810.7541672014 JUN218:6:0200000000.00.00.00.00.00.0
25256,810.7552082014 JUN218:7:29262602626260−4.50.0−4.50.2−4.50.0
25356,810.7562502014 JUN218:9:0260000000.00.00.00.00.00.0
25456,810.7572922014 JUN218:10:3010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
56556,811.7406252014 JUN317:46:292 0.00.00.00.00.00.0
56656,811.7416672014 JUN317:48:020000000.00.00.00.00.00.0
56756,811.7437502014 JUN317:51:030000000.00.00.00.00.00.0
56856,811.7447922014 JUN317:52:3040000000.00.00.00.00.00.0
56956,811.7458332014 JUN317:54:050000000.00.00.00.00.00.0
57056,811.7468752014 JUN317:55:29130000000.00.00.00.00.00.0
57156,811.7479172014 JUN317:57:0150000000.00.00.00.00.00.0
57256,811.7489582014 JUN317:58:29130000000.00.00.00.00.00.0
57356,811.7500002014 JUN318:0:0140000000.00.00.00.00.00.0
57456,811.7510422014 JUN318:1:30150000000.00.00.00.00.00.0
57556,811.7520832014 JUN318:3:011110110110−4.50.0−4.50.0−4.50.0
57656,811.7531252014 JUN318:4:302200022000.00.00.01.30.00.0
57756,811.7541672014 JUN318:6:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
72556,812.7406252014 JUN417:46:2940000000.00.00.00.00.00.0
72656,812.7416672014 JUN417:48:030000000.00.00.00.00.00.0
72756,812.7427082014 JUN417:49:2980000000.00.00.00.00.00.0
72856,812.7437502014 JUN417:51:0110000000.00.00.00.00.00.0
72956,812.7447922014 JUN417:52:30130000000.00.00.00.00.00.0
73056,812.7458332014 JUN417:54:0160000000.00.00.00.00.00.0
73156,812.7468752014 JUN417:55:29160000000.00.00.00.00.00.0
73256,812.7479172014 JUN417:57:0170000000.00.00.00.00.00.0
73356,812.7489582014 JUN417:58:29181801818180−4.50.0−4.5−1.7−4.50.0
73456,812.750002014 JUN418:0:0110000000.00.00.00.00.00.0
73556,812.7510422014 JUN418:1:3030000000.00.00.00.00.00.0
73656,812.7520832014 JUN418:3:020000000.00.00.00.00.00.0
73756,812.7531252014 JUN418:4:3020000000.00.00.00.00.00.0
73856,812.7562502014 JUN418:9:030000000.00.00.00.00.00.0
73956,812.7572922014 JUN418:10:3020000000.00.00.00.00.00.0
74056,812.7583332014 JUN418:12:030000000.00.00.00.00.00.0
74156,812.7739582014 JUN418:34:2910000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
91756,813.7343752014 JUN517:37:3040000000.00.00.00.00.00.0
91856,813.7354172014 JUN517:39:040000000.00.00.00.00.00.0
91956,813.7364582014 JUN517:40:2940000000.00.00.00.00.00.0
92056,813.7375002014 JUN517:42:030000000.00.00.00.00.00.0
92156,813.7385422014 JUN517:43:3040000000.00.00.00.00.00.0
92256,813.7395832014 JUN517:45:030000000.00.00.00.00.00.0
92356,813.7395832014 JUN517:46:29120000000.00.00.00.00.00.0
92456,813.7416672014 JUN517:48:0140000000.00.00.00.00.00.0
92556,813.7427082014 JUN517:49:29180000000.00.00.00.00.00.0
92656,813.7437502014 JUN517:51:0190000000.00.00.00.00.00.0
92756,813.7447922014 JUN517:52:30210000000.00.00.00.00.00.0
92856,813.7458332014 JUN517:54:016160160160−4.50.0−4.50.0−4.50.0
92956,813.7468752014 JUN517:55:29220000000.00.00.00.00.00.0
93056,813.7479172014 JUN517:58:292700027000.00.00.02.80.00.0
93156,813.7489582014 JUN517:58:2970000000.00.00.00.00.00.0
93256,813.7500002014 JUN518:0:070000000.00.00.00.00.00.0
93356,813.7510422014 JUN518:1:3070000000.00.00.00.00.00.0
93456,813.7520832014 JUN518:3:060000000.00.00.00.00.00.0
93556,813.7531252014 JUN518:4:3020000000.00.00.00.00.00.0
93656,813.7541672014 JUN518:6:020000000.00.00.00.00.00.0
93756,813.7552082014 JUN518:7:2920000000.00.00.00.00.00.0
93856,813.7562502014 JUN518:9:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
115156,814.7333332014 JUN617:36:020000000.00.00.00.00.00.0
115256,814.7343752014 JUN617:37:3020000000.00.00.00.00.00.0
115356,814.7354172014 JUN617:39:030000000.00.00.00.00.00.0
115456,814.7364582014 JUN617:40:2970000000.00.00.00.00.00.0
115556,814.7375002014 JUN617:42:070000000.00.00.00.00.00.0
115656,814.7385422014 JUN617:43:30120000000.00.00.00.00.00.0
115756,814.7395832014 JUN617:45:0130000000.00.00.00.00.00.0
115856,814.7406252014 JUN617:46:29160000000.00.00.00.00.00.0
115956,814.7416672014 JUN617:48:0170000000.00.00.00.00.00.0
116056,814.7427082014 JUN617:49:2916160160160−4.50.0−4.50.0−4.50.0
116156,814.7437502014 JUN617:51:0150000000.00.00.00.00.00.0
116256,814.7447922014 JUN617:52:302400024000.00.00.0−0.20.00.0
116356,814.7489582014 JUN617:58:2920000000.00.00.00.00.00.0
116456,814.7500002014 JUN618:0:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
120356,815.7343752014 JUN717:37:3070000000.00.00.00.00.00.0
120456,815.7354172014 JUN717:39:060000000.00.00.00.00.00.0
120556,815.7364582014 JUN717:40:2980000000.00.00.00.00.00.0
120656,815.7375002014 JUN717:42:0100000000.00.00.00.00.00.0
120756,815.7385422014 JUN717:43:30170000000.00.00.00.00.00.0
120856,815.7395832014 JUN717:45:012120120120−4.50.0−4.50.0−4.50.0
120956,815.7406252014 JUN717:46:29190000000.00.00.00.00.00.0
121056,815.7416672014 JUN717:48:02600026000.00.00.0−0.20.00.0
121156,815.7427082014 JUN717:49:2910000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
129756,816.7291672014 JUN817:30:030000000.00.00.00.00.00.0
129856,816.7302082014 JUN817:31:2940000000.00.00.00.00.00.0
129956,816.7312502014 JUN817:33:040000000.00.00.00.00.00.0
130056,816.7322922014 JUN817:34:3080000000.00.00.00.00.00.0
130156,816.7333332014 JUN817:36:070000000.00.00.00.00.00.0
130256,816.7343752014 JUN817:37:30130000000.00.00.00.00.00.0
130356,816.7354172014 JUN817:39:0180000000.00.00.00.00.00.0
130456,816.7364582014 JUN817:40:2918180180180−4.50.0−4.50.0−4.50.0
130556,816.7375002014 JUN817:42:0190000000.00.00.00.00.00.0
130656,816.7385422014 JUN817:43:302000020000.00.00.0−0.20.00.0
130756,816.7687502014 JUN818:27:020000000.00.00.00.00.00.0
130856,816.7697922014 JUN818:28:3010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
138256,817.7000002014 JUN916:48:020000000.00.00.00.00.00.0
138356,817.7010422014 JUN916:49:3030000000.00.00.00.00.00.0
138456,817.7020832014 JUN916:51:030000000.00.00.00.00.00.0
138556,817.7031252014 JUN916:52:3040000000.00.00.00.00.00.0
138656,817.7041672014 JUN916:54:030000000.00.00.00.00.00.0
138756,817.7052082014 JUN916:55:2950000000.00.00.00.00.00.0
138856,817.7062502014 JUN916:57:050000000.00.00.00.00.00.0
138956,817.7072922014 JUN916:58:3090000000.00.00.00.00.00.0
139056,817.7083332014 JUN917:60: 0100000000.00.00.00.00.00.0
139156,817.7093752014 JUN917:1:29100000000.00.00.00.00.00.0
139256,817.7104172014 JUN917:3:090000000.00.00.00.00.00.0
139356,817.7114582014 JUN917:4:29160000000.00.00.00.00.00.0
139456,817.7125002014 JUN917:6:0120000000.00.00.00.00.00.0
139556,817.7135422014 JUN917:7:30110000000.00.00.00.00.00.0
139656,817.7145832014 JUN917:9:0140000000.00.00.00.00.00.0
139756,817.7156252014 JUN917:10:29130000000.00.00.00.00.00.0
139856,817.7166672014 JUN917:12:0120000000.00.00.00.00.00.0
139956,817.7177082014 JUN917:13:29100000000.00.00.00.00.00.0
140056,817.7187502014 JUN917:15:0150000000.00.00.00.00.00.0
140156,817.7197922014 JUN917:16:3090000000.00.00.00.00.00.0
140256,817.7208332014 JUN917:18:0100000000.00.00.00.00.00.0
140356,817.7218752014 JUN917:19:30100000000.00.00.00.00.00.0
140456,817.7229172014 JUN917:21:0130000000.00.00.00.00.00.0
140556,817.7239582014 JUN917:22:2950000000.00.00.00.00.00.0
140656,817.7250002014 JUN917:24:030000000.00.00.00.00.00.0
140756,817.7260422014 JUN917:25:3060000000.00.00.00.00.00.0
140856,817.7270832014 JUN917:27:0100000000.00.00.00.00.00.0
140956,817.7281252014 JUN917:28:30130000000.00.00.00.00.00.0
141056,817.7291672014 JUN917:30:0140000000.00.00.00.00.00.0
141156,817.7302082014 JUN917:31:29150000000.00.00.00.00.00.0
141256,817.7312502014 JUN917:33:0210000000.00.00.00.00.00.0
141356,817.7322922014 JUN917:34:30210000000.00.00.00.00.00.0
141456,817.7333332014 JUN917:36:023230230230−4.50.0−4.50.0−4.50.0
141556,817.7343752014 JUN917:37:30240000000.00.00.00.00.00.0
141656,817.7354172014 JUN917:39:0270000000.00.00.00.00.00.0
141756,817.7364582014 JUN917:40:292900029000.00.00.01.30.00.0
141856,817.7437502014 JUN917:51:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
152056,818.7239582014 JUN1017:22:2930000000.00.00.00.00.00.0
152156,818.7250002014 JUN1017:24:040000000.00.00.00.00.00.0
152256,818.7260422014 JUN1017:25:3090000000.00.00.00.00.00.0
152356,818.7270832014 JUN1017:27:0160000000.00.00.00.00.00.0
152456,818.7281252014 JUN1017:28:30160000000.00.00.00.00.00.0
152556,818.7291672014 JUN1017:30:0150000000.00.00.00.00.00.0
152656,818.7302082014 JUN1017:31:2918180180180−4.50.0−4.50.0−4.50.0
152756,818.7312502014 JUN1017:33:0180000000.00.00.00.00.00.0
152856,818.7322922014 JUN1017:34:30200000000.00.00.00.00.00.0
152956,818.7333332014 JUN1017:36:02400024000.00.00.0−0.20.00.0
153056,818.7343752014 JUN1017:37:3030000000.00.00.00.00.00.0
153156,818.7354172014 JUN1017:39:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
157856,819.7208332014 JUN1117:18:030000000.00.00.00.00.00.0
157956,819.7218752014 JUN1117:19:3040000000.00.00.00.00.00.0
158056,819.7229172014 JUN1117:21:060000000.00.00.00.00.00.0
158156,819.7239582014 JUN1117:22:2980000000.00.00.00.00.00.0
158256,819.7250002014 JUN1117:24:0150000000.00.00.00.00.00.0
158356,819.7260422014 JUN1117:25:30200000000.00.00.00.00.00.0
158456,819.7270832014 JUN1117:27:019190190190−4.50.0−4.50.0−4.50.0
158556,819.7281252014 JUN1117:28:30120000000.00.00.00.00.00.0
158656,819.7291672014 JUN1117:30:0160000000.00.00.00.00.00.0
158756,819.7302082014 JUN1117:31:292200022000.00.00.0−0.20.00.0
158856,819.7375002014 JUN1117:42:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
204956,820.7187502014 JUN1217:15:050000000.00.00.00.00.00.0
205056,820.7197922014 JUN1217:16:30100000000.00.00.00.00.00.0
205156,820.7208332014 JUN1217:18:090000000.00.00.00.00.00.0
205256,820.7218752014 JUN1217:19:30120000000.00.00.00.00.00.0
205356,820.7229172014 JUN1217:21:0170000000.00.00.00.00.00.0
205456,820.7239582014 JUN1217:22:2914140140140−4.50.0−4.50.0−4.50.0
205556,820.7250002014 JUN1217:24:0190000000.00.00.00.00.00.0
205656,820.7260422014 JUN1217:25:30250000000.00.00.00.00.00.0
205756,820.7270832014 JUN1217:27:0240000000.00.00.00.00.00.0
205856,820.7281252014 JUN1217:28:302600026000.00.00.01.30.00.0
205956,820.7291672014 JUN1217:30:040000000.00.00.00.00.00.0
206056,820.7302082014 JUN1217:31:2940000000.00.00.00.00.00.0
206156,820.7322922014 JUN1217:34:3040000000.00.00.00.00.00.0
206256,820.7343752014 JUN1217:37:3010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
219656,821.7072922014 JUN1316:58:3040000000.00.00.00.00.00.0
219756,821.7083332014 JUN1317:60: 040000000.00.00.00.00.00.0
219856,821.7093752014 JUN1317:1:2950000000.00.00.00.00.00.0
219956,821.7104172014 JUN1317:3:020000000.00.00.00.00.00.0
220056,821.7114582014 JUN1317:4:2940000000.00.00.00.00.00.0
220156,821.7125002014 JUN1317:6:040000000.00.00.00.00.00.0
220256,821.7135422014 JUN1317:7:3040000000.00.00.00.00.00.0
220356,821.7145832014 JUN1317:9:050000000.00.00.00.00.00.0
220456,821.7156252014 JUN1317:10:29100000000.00.00.00.00.00.0
220556,821.7166672014 JUN1317:12:0120000000.00.00.00.00.00.0
220656,821.7177082014 JUN1317:13:29100000000.00.00.00.00.00.0
220756,821.7187502014 JUN1317:15:0130000000.00.00.00.00.00.0
220856,821.7197922014 JUN1317:16:30160000000.00.00.00.00.00.0
220956,821.7208332014 JUN1317:18:020200200200−4.50.0−4.50.0−4.50.0
221056,821.7218752014 JUN1317:19:30160000000.00.00.00.00.00.0
221156,821.7229172014 JUN1317:21:0170000000.00.00.00.00.00.0
221256,821.7239582014 JUN1317:22:29250000000.00.00.00.00.00.0
221356,821.7250002014 JUN1317:24:02600026000.00.00.0−0.20.00.0
221456,821.7270832014 JUN1317:27:020000000.00.00.00.00.00.0
221556,821.7531252014 JUN1318:4:3020000000.00.00.00.00.00.0
221656,821.7541672014 JUN1318:6:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
239056,822.6947922014 JUN1416:40:3020000000.00.00.00.00.00.0
239156,822.6958332014 JUN1416:42:030000000.00.00.00.00.00.0
239256,822.6968752014 JUN1416:43:3030000000.00.00.00.00.00.0
239356,822.6979172014 JUN1416:45:030000000.00.00.00.00.00.0
239456,822.6989582014 JUN1416:46:2940000000.00.00.00.00.00.0
239556,822.7000002014 JUN1416:48:040000000.00.00.00.00.00.0
239656,822.7010422014 JUN1416:49:3040000000.00.00.00.00.00.0
239756,822.7020832014 JUN1416:51:040000000.00.00.00.00.00.0
239856,822.7031252014 JUN1416:52:3040000000.00.00.00.00.00.0
239956,822.7041672014 JUN1416:54:050000000.00.00.00.00.00.0
240056,822.7052082014 JUN1416:55:2950000000.00.00.00.00.00.0
240156,822.7062502014 JUN1416:57:060000000.00.00.00.00.00.0
240256,822.7072922014 JUN1416:58:3060000000.00.00.00.00.00.0
240356,822.7083332014 JUN1417:60: 070000000.00.00.00.00.00.0
240456,822.7093752014 JUN1417:1:2960000000.00.00.00.00.00.0
240556,822.7104172014 JUN1417:3:080000000.00.00.00.00.00.0
240656,822.7114582014 JUN1417:4:2980000000.00.00.00.00.00.0
240756,822.7125002014 JUN1417:6:080000000.00.00.00.00.00.0
240856,822.7135422014 JUN1417:7:30100000000.00.00.00.00.00.0
240956,822.7145832014 JUN1417:9:0110000000.00.00.00.00.00.0
241056,822.7156252014 JUN1417:10:29110000000.00.00.00.00.00.0
241156,822.7166672014 JUN1417:12:0130000000.00.00.00.00.00.0
241256,822.7177082014 JUN1417:13:2915150150150−4.50.0−4.50.0−4.50.0
241356,822.7187502014 JUN1417:15:0180000000.00.00.00.00.00.0
241456,822.7197922014 JUN1417:16:30170000000.00.00.00.00.00.0
241556,822.7208332014 JUN1417:18:0220000000.00.00.00.00.00.0
241656,822.7218752014 JUN1417:19:302300023000.00.00.0−0.20.00.0
241756,822.7229172014 JUN1417:21:050000000.00.00.00.00.00.0
241856,822.7239582014 JUN1417:22:2940000000.00.00.00.00.00.0
241956,822.7250002014 JUN1417:24:050000000.00.00.00.00.00.0
242056,822.7260422014 JUN1417:25:3020000000.00.00.00.00.00.0
242156,822.7270832014 JUN1417:27:020000000.00.00.00.00.00.0
242256,822.7281252014 JUN1417:28:3020000000.00.00.00.00.00.0
242356,822.7479172014 JUN1417:57:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
243856,823.7093752014 JUN1517:1:2920000000.00.00.00.00.00.0
243956,823.7104172014 JUN1517:3:0120000000.00.00.00.00.00.0
244056,823.7114582014 JUN1517:4:2960000000.00.00.00.00.00.0
244156,823.7125002014 JUN1517:6:040000000.00.00.00.00.00.0
244256,823.7135422014 JUN1517:7:3080000000.00.00.00.00.00.0
244356,823.7145832014 JUN1517:9:012120120120−4.50.0−4.50.0−4.50.0
244456,823.7156252014 JUN1517:10:29140000000.00.00.00.00.00.0
244556,823.7166672014 JUN1517:12:080000000.00.00.00.00.00.0
244656,823.7177082014 JUN1517:13:29110000000.00.00.00.00.00.0
244756,823.7187502014 JUN1517:15:01500015000.00.00.0−0.20.00.0
244856,823.7468752014 JUN1517:55:2910000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
249456,824.7062502014 JUN1616:57:030000000.00.00.00.00.00.0
249556,824.7072922014 JUN1616:58:3060000000.00.00.00.00.00.0
249656,824.7083332014 JUN1617:60: 090000000.00.00.00.00.00.0
249756,824.7093752014 JUN1617:1:2980000000.00.00.00.00.00.0
249856,824.7104172014 JUN1617:3:090000000.00.00.00.00.00.0
249956,824.7114582014 JUN1617:4:2917170170170−4.50.0−4.50.0−4.50.0
250056,824.7125002014 JUN1617:6:0200000000.00.00.00.00.00.0
250156,824.7135422014 JUN1617:7:30210000000.00.00.00.00.00.0
250256,824.7145832014 JUN1617:9:0200000000.00.00.00.00.00.0
250356,824.7156252014 JUN1617:10:29190000000.00.00.00.00.00.0
250456,824.7166672014 JUN1617:12:02200022000.00.00.01.30.00.0
250556,824.7177082014 JUN1617:13:2970000000.00.00.00.00.00.0
250656,824.7187502014 JUN1617:15:050000000.00.00.00.00.00.0
250756,824.7197922014 JUN1617:16:3050000000.00.00.00.00.00.0
250856,824.7218752014 JUN1617:19:3010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
255656,825.7031252014 JUN1716:52:3030000000.00.00.00.00.00.0
255756,825.7041672014 JUN1716:54:020000000.00.00.00.00.00.0
255856,825.7052082014 JUN1716:55:2930000000.00.00.00.00.00.0
255956,825.7062502014 JUN1716:57:050000000.00.00.00.00.00.0
256056,825.7072922014 JUN1716:58:3090000000.00.00.00.00.00.0
256156,825.7083332014 JUN1717:60: 011110110110−4.50.0−4.50.0−4.50.0
256256,825.7093752014 JUN1717:1:29150000000.00.00.00.00.00.0
256356,825.7104172014 JUN1717:3:0120000000.00.00.00.00.00.0
256456,825.7114582014 JUN1717:4:29150000000.00.00.00.00.00.0
256556,825.7125002014 JUN1717:6:0150000000.00.00.00.00.00.0
256656,825.7135422014 JUN1717:7:30180000000.00.00.00.00.00.0
256756,825.7145832014 JUN1717:9:030000000.00.00.00.00.00.0
256856,825.7156252014 JUN1717:10:2930000000.00.00.00.00.00.0
256956,825.7166672014 JUN1717:12:020000000.00.00.00.00.00.0
257056,825.7177082014 JUN1717:13:2910000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
260756,826.7041672014 JUN1816:54:050000000.00.00.00.00.00.0
260856,826.7052082014 JUN1816:55:296606060−4.50.0−4.50.0−4.50.0
260956,826.7062502014 JUN1816:57:0110000000.00.00.00.00.00.0
261056,826.7072922014 JUN1816:58:30130000000.00.00.00.00.00.0
261156,826.7083332014 JUN1817:60: 0120000000.00.00.00.00.00.0
261256,826.7093752014 JUN1817:1:29180000000.00.00.00.00.00.0
261356,826.7104172014 JUN1817:3:0210000000.00.00.00.00.00.0
261456,826.7125002014 JUN1817:6:060000000.00.00.00.00.00.0
261556,826.7395832014 JUN1817:45:040000000.00.00.00.00.00.0
261656,826.7406252014 JUN1817:46:29100015000.00.00.0−0.20.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
274156,827.6968752014 JUN1916:43:3030000000.00.00.00.00.00.0
274256,827.6979172014 JUN1916:45:020000000.00.00.00.00.00.0
274356,827.6989582014 JUN1916:46:2930000000.00.00.00.00.00.0
274456,827.7000002014 JUN1916:48:070000000.00.00.00.00.00.0
274556,827.7010422014 JUN1916:49:3060000000.00.00.00.00.00.0
274656,827.7020832014 JUN1916:51:09909090−4.50.0−4.50.0−4.50.0
274756,827.7031252014 JUN1916:52:30180000000.00.00.00.00.00.0
274856,827.7041672014 JUN1916:54:0190000000.00.00.00.00.00.0
274956,827.7052082014 JUN1916:55:29200000000.00.00.00.00.00.0
275056,827.7062502014 JUN1916:57:0210000000.00.00.00.00.00.0
275156,827.7072922014 JUN1916:58:30160000000.00.00.00.00.00.0
275256,827.7083332014 JUN1917:60: 010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
283456,828.6937502014 JUN2016:39:020000000.00.00.00.00.00.0
283556,828.6947922014 JUN2016:40:3020000000.00.00.00.00.00.0
283656,828.6958332014 JUN2016:42:020000000.00.00.00.00.00.0
283756,828.6968752014 JUN2016:43:3070000000.00.00.00.00.00.0
283856,828.6979172014 JUN2016:45:0110000000.00.00.00.00.00.0
283956,828.6989582014 JUN2016:46:2910100100100−4.50.0−4.50.0−4.50.0
284056,828.7000002014 JUN2016:48:0140000000.00.00.00.00.00.0
284156,828.7010422014 JUN2016:49:30110000000.00.00.00.00.00.0
284256,828.7020832014 JUN2016:51:0220000000.00.00.00.00.00.0
284356,828.7031252014 JUN2016:52:30210000000.00.00.00.00.00.0
284456,828.7041672014 JUN2016:54:0230000000.00.00.00.00.00.0
284556,828.7052082014 JUN2016:55:29220000000.00.00.00.00.00.0
284656,828.7104172014 JUN2017:3:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
289556,829.6937502014 JUN2116:39:070000000.00.00.00.00.00.0
289656,829.6947922014 JUN2116:40:3040000000.00.00.00.00.00.0
289756,829.6958332014 JUN2116:42:05505050−4.50.0−4.50.0−4.50.0
289856,829.6968752014 JUN2116:43:30110000000.00.00.00.00.00.0
289956,829.6979172014 JUN2116:45:0150000000.00.00.00.00.00.0
290056,829.6989582014 JUN2116:46:2980000000.00.00.00.00.00.0
290156,829.7000002014 JUN2116:48:090000000.00.00.00.00.00.0
290256,829.7010422014 JUN2116:49:30200000000.00.00.00.00.00.0
290356,829.7020832014 JUN2116:51:0290000000.00.00.00.00.00.0
290456,829.7031252014 JUN2116:52:3040000000.00.00.00.00.00.0
290556,829.7041672014 JUN2116:54:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
293356,830.6895832014 JUN2216:33:050000000.00.00.00.00.00.0
293456,830.6906252014 JUN2216:34:3050000000.00.00.00.00.00.0
293556,830.6916672014 JUN2216:36:040000000.00.00.00.00.00.0
293656,830.6927082014 JUN2216:37:293303030−4.50.0−4.50.0−4.50.0
293756,830.6937502014 JUN2216:39:0100000000.00.00.00.00.00.0
293856,830.6947922014 JUN2216:40:30130000000.00.00.00.00.00.0
293956,830.6958332014 JUN2216:42:0140000000.00.00.00.00.00.0
294056,830.6968752014 JUN2216:43:30120000000.00.00.00.00.00.0
294156,830.6979172014 JUN2216:45:0230000000.00.00.00.00.00.0
294256,830.6989582014 JUN2216:46:29160000000.00.00.00.00.00.0
294356,830.7218752014 JUN2217:19:3020000000.00.00.00.00.00.0
294456,830.7229172014 JUN2217:21:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
299756,831.6854172014 JUN2316:27:060000000.00.00.00.00.00.0
299856,831.6864582014 JUN2316:28:2970000000.00.00.00.00.00.0
299956,831.6875002014 JUN2316:30:080000000.00.00.00.00.00.0
300056,831.6885422014 JUN2316:31:30110000000.00.00.00.00.00.0
300156,831.6895832014 JUN2316:33:010100100100−4.50.0−4.50.0−4.50.0
300256,831.6906252014 JUN2316:34:30120000000.00.00.00.00.00.0
300356,831.6916672014 JUN2316:36:0120000000.00.00.00.00.00.0
300456,831.6927082014 JUN2316:37:29180000000.00.00.00.00.00.0
300556,831.6937502014 JUN2316:39:0180000000.00.00.00.00.00.0
300656,831.6947922014 JUN2316:40:30230000000.00.00.00.00.00.0
300756,831.6958332014 JUN2316:42:0260000000.00.00.00.00.00.0
300856,831.6968752014 JUN2316:43:30190000000.00.00.00.00.00.0
300956,831.7000002014 JUN2316:48:020000000.00.00.00.00.00.0
301056,831.7125002014 JUN2317:6:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
306156,832.6781252014 JUN2416:16:2920000000.00.00.00.00.00.0
306256,832.6791672014 JUN2416:18:030000000.00.00.00.00.00.0
306356,832.6802082014 JUN2416:19:2920000000.00.00.00.00.00.0
306456,832.6812502014 JUN2416:21:020000000.00.00.00.00.00.0
306556,832.6822922014 JUN2416:22:3020000000.00.00.00.00.00.0
306656,832.6833332014 JUN2416:24:050000000.00.00.00.00.00.0
306756,832.6843752014 JUN2416:25:2960000000.00.00.00.00.00.0
306856,832.6854172014 JUN2416:27:050000000.00.00.00.00.00.0
306956,832.6864582014 JUN2416:28:299909090−4.50.0−4.50.0−4.50.0
307056,832.6875002014 JUN2416:30:070000000.00.00.00.00.00.0
307156,832.6885422014 JUN2416:31:30120000000.00.00.00.00.00.0
307256,832.6895832014 JUN2416:33:0170000000.00.00.00.00.00.0
307356,832.6906252014 JUN2416:34:30190000000.00.00.00.00.00.0
307456,832.6916672014 JUN2416:36:0140000000.00.00.00.00.00.0
307556,832.6927082014 JUN2416:37:29160000000.00.00.00.00.00.0
307656,832.6937502014 JUN2416:39:0280000000.00.00.00.00.00.0
307756,832.6947922014 JUN2416:40:3020000000.00.00.00.00.00.0
307856,832.6958332014 JUN2416:42:020000000.00.00.00.00.00.0
307956,832.6968752014 JUN2416:43:3050000000.00.00.00.00.00.0
308056,832.6979172014 JUN2416:45:020000000.00.00.00.00.00.0
308156,832.6989582014 JUN2416:46:2940000000.00.00.00.00.00.0
308256,832.7000002014 JUN2416:48:030000000.00.00.00.00.00.0
308356,832.7125002014 JUN2417:6:020000000.00.00.00.00.00.0
308456,832.7406252014 JUN2417:46:2910000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
312356,833.6812502014 JUN2516:21:050000000.00.00.00.00.00.0
312456,833.6822922014 JUN2516:22:3070000000.00.00.00.00.00.0
312556,833.6833332014 JUN2516:24:04404040−4.50.0−4.50.0−4.50.0
312656,833.6843752014 JUN2516:25:2970000000.00.00.00.00.00.0
312756,833.6854172014 JUN2516:27:0110000000.00.00.00.00.00.0
312856,833.6864582014 JUN2516:28:29130000000.00.00.00.00.00.0
312956,833.6875002014 JUN2516:30:0140000000.00.00.00.00.00.0
313056,833.6885422014 JUN2516:31:30130000000.00.00.00.00.00.0
313156,833.6895832014 JUN2516:33:0100000000.00.00.00.00.00.0
313256,833.6906252014 JUN2516:34:30280000000.00.00.00.00.00.0
313356,833.6916672014 JUN2516:36:050000000.00.00.00.00.00.0
313456,833.6927082014 JUN2516:37:2910000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
319456,834.6718752014 JUN2616:7:3030000000.00.00.00.00.00.0
319556,834.6729172014 JUN2616:9:030000000.00.00.00.00.00.0
319656,834.6739582014 JUN2616:10:2920000000.00.00.00.00.00.0
319856,834.6760422014 JUN2616:13:3020000000.00.00.00.00.00.0
319956,834.6770832014 JUN2616:15:020000000.00.00.00.00.00.0
320056,834.6781252014 JUN2616:16:2940000000.00.00.00.00.00.0
320156,834.6791672014 JUN2616:18:050000000.00.00.00.00.00.0
320256,834.6802082014 JUN2616:19:2912120120120−4.50.0−4.50.0−4.50.0
320356,834.6812502014 JUN2616:21:0100000000.00.00.00.00.00.0
320456,834.6822922014 JUN2616:22:30190000000.00.00.00.00.00.0
320556,834.6833332014 JUN2616:24:0140000000.00.00.00.00.00.0
320656,834.6843752014 JUN2616:25:29180000000.00.00.00.00.00.0
320756,834.6854172014 JUN2616:27:0230000000.00.00.00.00.00.0
320856,834.6864582014 JUN2616:28:29200000000.00.00.00.00.00.0
320956,834.6875002014 JUN2616:30:0160000000.00.00.00.00.00.0
321056,834.6885422014 JUN2616:31:3010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
323656,835.6687502014 JUN2716:3:020000000.00.00.00.00.00.0
323756,835.6697922014 JUN2716:4:3060000000.00.00.00.00.00.0
323856,835.6708332014 JUN2716:6:030000000.00.00.00.00.00.0
323956,835.6718752014 JUN2716:7:3030000000.00.00.00.00.00.0
324056,835.6729172014 JUN2716:9:020000000.00.00.00.00.00.0
324156,835.6739582014 JUN2716:10:2940000000.00.00.00.00.00.0
324256,835.6750002014 JUN2716:12:040000000.00.00.00.00.00.0
324356,835.6760422014 JUN2716:13:3060000000.00.00.00.00.00.0
324456,835.6770832014 JUN2716:15:06606060−4.50.0−4.50.0−4.50.0
324556,835.6781252014 JUN2716:16:29120000000.00.00.00.00.00.0
324656,835.6791672014 JUN2716:18:0100000000.00.00.00.00.00.0
324756,835.6802082014 JUN2716:19:29160000000.00.00.00.00.00.0
324856,835.6812502014 JUN2716:21:0140000000.00.00.00.00.00.0
324956,835.6822922014 JUN2716:22:30180000000.00.00.00.00.00.0
325056,835.6833332014 JUN2716:24:0140000000.00.00.00.00.00.0
325156,835.6843752014 JUN2716:25:29180000000.00.00.00.00.00.0
325256,835.6854172014 JUN2716:27:0210000000.00.00.00.00.00.0
325356,835.6864582014 JUN2716:28:2930000000.00.00.00.00.00.0
325456,835.6875002014 JUN2716:30:030000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
327856,836.6718752014 JUN2816:6:040000000.00.00.00.00.00.0
327956,836.6729172014 JUN2816:7:3050000000.00.00.00.00.00.0
328056,836.6739582014 JUN2816:10:294404040−4.50.0−4.50.0−4.50.0
328156,836.6750002014 JUN2816:12:050000000.00.00.00.00.00.0
328256,836.6760422014 JUN2816:13:3070000000.00.00.00.00.00.0
328356,836.6770832014 JUN2816:15:060000000.00.00.00.00.00.0
328456,836.6781252014 JUN2816:16:29130000000.00.00.00.00.00.0
328556,836.6791672014 JUN2816:18:0110000000.00.00.00.00.00.0
328656,836.6802082014 JUN2816:19:2970000000.00.00.00.00.00.0
328756,836.6812502014 JUN2816:21:0100000000.00.00.00.00.00.0
328856,836.6822922014 JUN2816:22:30120000000.00.00.00.00.00.0
328956,836.6875002014 JUN2816:30:010000000.00.00.00.00.00.0
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag
331356,837.6687502014 JUN2916:3:050000000.00.00.00.00.00.0
331456,837.6697922014 JUN2916:4:3050000000.00.00.00.00.00.0
331556,837.6708332014 JUN2916:6:010100100100−4.50.0−4.50.0−4.50.0
331656,837.6718752014 JUN2916:7:3080000000.00.00.00.00.00.0
331756,837.6729172014 JUN2916:9:0120000000.00.00.00.00.00.0
331856,837.6739582014 JUN2916:10:29120000000.00.00.00.00.00.0
331956,837.6750002014 JUN2916:12:0160000000.00.00.00.00.00.0
332056,837.6760422014 JUN2916:13:30170000000.00.00.00.00.00.0
332156,837.6770832014 JUN2916:15:0120000000.00.00.00.00.00.0
332256,837.6781252014 JUN2916:16:29180000000.00.00.00.00.00.0
332356,837.6791672014 JUN2916:18:0180000000.00.00.00.00.00.0
332456,837.6802082014 JUN2916:19:2940000000.00.00.00.00.00.0
332556,837.6812502014 JUN2916:21:010000000.00.00.00.00.00.0

References

  1. Coster, A.J. Space Weather and Its Effects on GNSS. Available online: http://cedar.openmadrigal.org/index.html/ (accessed on 7 March 2023).
  2. Vasylyev, D.; Beniguel, Y.; Volker, W.; Kriegel, M.; Berdermann, J. Modeling of ionospheric scintillation. J. Space Weather Space Clim. 2022, 12, 22. [Google Scholar] [CrossRef]
  3. Linty, N.; Minetto, A.; Dovis, F.; Spogli, L. Effects of Phase Scintillation on the GNSS Positioning Error During the September 2017 Storm at Svalbard. Space Weather 2018, 16, 1317–1329. [Google Scholar] [CrossRef]
  4. Marques, H.A.; Marques, H.A.S.; Aquino, M.; Veettil, S.V.; Monico, J.F.G. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects. J. Space Weather Space Clim. 2018, 8, A15. [Google Scholar] [CrossRef]
  5. Lu, Y.; Wang, Z.; Ji, S.; Chen, W. Assessing the Positioning Performance Under the Effects of Strong Ionospheric Anomalies with Multi-GNSS in Hong Kong. Radio Sci. 2020, 55, 1–18. [Google Scholar] [CrossRef]
  6. He, L.; Guo, C.; Yue, Q.; Zhang, S.; Qin, Z.; Zhang, J. A Novel Ionospheric Disturbance Index to Evaluate the Global Effect on BeiDou Navigation Satellite System Signal Caused by the Moderate Geomagnetic Storm on 12 May 2021. Sensors 2023, 23, 1183. [Google Scholar] [CrossRef] [PubMed]
  7. Paziewski, J.; Høeg, P.; Sieradzki, R.; Jin, Y.; Jarmolowski, W.; Hoque, M.M.; Berdermann, J.; Hernandez-Pajares, M.; Wielgosz, P.; Lyu, H.; et al. The implications of ionospheric disturbances for precise GNSS positioning in Greenland. J. Space Weather Space Clim. 2022, 12, 33. [Google Scholar] [CrossRef]
  8. Hayes, L.A.; O’Hara, O.S.D.; Murray, S.A.; Gallagher, P.T. Solar Flare Effects on the Earth’s Lower Ionosphere. Sol. Phys. 2021, 296, 1–17. [Google Scholar] [CrossRef]
  9. Hamza, A.M.; Song, K.; Meziane, K.; Jayachandran, P.T. Two-Component Phase Scintillation Spectra in the Auroral Region: Observations and Model. J. Geophys. Res. Phys. 2024, 129, e2023JA031998. [Google Scholar] [CrossRef]
  10. Grunwald, G.; Ciećko, A.; Kozakiewicz, T.; Krasuski, K. Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation. Sensors 2023, 23, 1112. [Google Scholar] [CrossRef] [PubMed]
  11. Su, X.; Zeng, J.; Zhou, Q.; Liu, Z.; Li, Q.; Li, Z.; Wang, G.; Ma, H.; Cui, J.; Chen, X. Initial Study of Adaptive Threshold Cycle Slip Detection on BDS/GPS Kinematic Precise Point Positioning during Geomagnetic Storms. Remote Sens. 2024, 16, 1726. [Google Scholar] [CrossRef]
  12. Yang, Z.; Liu, C.; Mei, P.; Wang, L. A Spatiotemporical Sequence Prediction Framework Based on Mask Reconstruction: Application to Short-Duration Precipitation Radar Eshoes. J. Remote Sens. 2025, 17, 2326. [Google Scholar] [CrossRef]
  13. Jayachandran, P.T.; Langley, R.B.; MacDougall, J.W.; Mushini, S.C.; Pokhotelov, D.; Hamza, A.M.; Mann, I.R.; Milling, D.K.; Kale, Z.C.; Chadwick, R.; et al. Canadian High Arctic Ionospheric Network (CHAIN). Radio Sci. 2009, 44, 1–10. [Google Scholar] [CrossRef]
  14. Pan, Y.; Luo, X. Feasibility ana;ysisof the Doppler Index DI in ionospheric scintillation detection at High Arctic region of Canada. Surv. Rev. 2025, 1–15. [Google Scholar] [CrossRef]
  15. Kelley, M.C.; Makela, J.J.; Ledvina, B.M.; Kintner, P.M. Observations of equatorial spread-F from Haleakala, Hawaii. Geophys. Res. Lett. 2002, 29, 64-1–64-4. [Google Scholar] [CrossRef]
  16. Priyadarshi, S. A review of ionospheric scintillation models. Surv. Geophys. 2015, 36, 295–324. [Google Scholar] [CrossRef]
  17. Humphreys, T.E.; Psiaki, M.L.; Hinks, J.C.; O’Hanlon, B.; Kintner, P.M. Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops. IEEE J. Sel. Top. Signal Process. 2009, 3, 707–715. [Google Scholar] [CrossRef]
  18. Rino, C.; Breitsch, B.; Morton, Y.; Jiao, Y.; Xu, D.; Carrano, C. A compact multi-frequency GNSS scintillation model. Navigation 2018, 65, 563–569. [Google Scholar] [CrossRef]
  19. Snyder, R.; Koehler, A.; Ord, J. Forecasting for inventory control with exponential smoothing. Int. J. Forecast. 2002, 18, 5–18. [Google Scholar] [CrossRef]
  20. De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 2012, 106, 1513–1527. [Google Scholar] [CrossRef]
  21. Qi, M.; Zhang, G.P. Trend time-series modeling and forecasting with neural networks. IEEE Trans. Neural Netw. 2008, 19, 808–816. [Google Scholar] [CrossRef]
  22. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE 2018, 13, e0194889. [Google Scholar] [CrossRef]
  23. Krypiak-Gregorczyk, A.; Wielgosz, P.; Borkowski, A. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. Remote Sens. 2017, 9, 1221. [Google Scholar] [CrossRef]
  24. Sun, X.; Shu, Z.; Yao, J. Analyzing the Precise Precise Point Positioning Performance of Different Dual-Frequency Ionospheric-Free Combinations with BDS-3 and Galileo. Atmosphere 2025, 16, 316. [Google Scholar] [CrossRef]
  25. Berenyi, K.A.; Barta, V.; Szarnya, C.; Buzas, A.; Heilig, B. Subauroral and Auroral Conditions in the Mid- and Low-Midlatitude Ionosphere over Europe During the May 2024 Mother’s Day Superstorm. Remote Sens. 2025, 17, 2492. [Google Scholar] [CrossRef]
  26. Spogli, L.; Alberti, T.; Bagiacchi, P.; Cafarella, L.; Cesaroni, C.; Cianchini, G.; Coco, I.; Di Mauro, D.; Ghidoni, R.; Giannattasio, F.; et al. The Effects of the May 2024 Mother’s Day Superstorm over Mediterranean Sector: From Data to Public Communication. Ann. Geophys. 2024, 67, PA218. [Google Scholar] [CrossRef]
  27. Filjar, R.; Heđi, I.; Prpić-Oršić, J.; Iliev, T. An Ambient Adaptive Global Navigation Satellite System Total Electron Content Predictive Model for Short-Term Rapid Geomagnetic Storm Events. Remote Sens. 2024, 16, 3051. [Google Scholar] [CrossRef]
  28. Yang, Z.; Morton, Y.T.J.; Zakharenkova, I.; Cherniak, I.; Song, S.; Li, W. Global View of Ionospheric Disturbance Impacts on Kinematic GPS Positioning Solutions During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027681. [Google Scholar] [CrossRef]
  29. Ma, M.; Jin, S.; Jin, X.T. Characteristics of Ionospheric Disturbances during the 2021 Typhoon Chanthu Based on, G.P.S.; GLONASS. Adv. Space Res. 2024, 74, 271–283. [Google Scholar] [CrossRef]
  30. Ayyagari, D.; Datta, S.; Das, S.; Datta, A. Ionospheric response during Tropical Cyclones-A Brief Review on Amphan and Nisarga. Adv. Space Res. 2023, 71, 2799–2817. [Google Scholar] [CrossRef]
  31. Ke, F.; Cui, W.; Ming, L.; Hu, X. Ionospheric response and the impact on GPS positioning accuracy during the Tonga volcano eruption on 15 January 2022. Adv. Space Res. 2024, 73, 1831–1842. [Google Scholar] [CrossRef]
  32. Pezzopane, M.; Pignalberi, A.; Coco, I.; Consolini, G.; De Michelis, P.; Giannattasio, F.; Marcucci, M.F.; Tozzi, R. Occurrence of GPS Loss of Lock Based on a Swarm Half-Solar Cycle Dataset and Its Relation to the Background Ionosphere. Remote Sens. 2021, 13, 2209. [Google Scholar] [CrossRef]
  33. Francia, P.; Regi, M.; De Lauretis, M.; Pezzopane, M.; Cesaroni, C.; Spogli, L.; Raita, T. A case study of correspondence between Pc1 activity and ionospheric irregularities at polar latitudes. Earth Planets Space 2020, 72, 59. [Google Scholar] [CrossRef]
  34. Mandea, M.; Isac, A. Geomagnetic Field, Measurement Techniques. In Encyclopedia of Solid Earth Geophysics; Gupta, H.K., Ed.; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
  35. David, P.; Kriegel, M.; Berdermann, J.; Kauristie, K.; Jacobsen, K.S.; Fabbro, V.; Laurens, H.; Keil, R. Performance indicator development addressing mitigation of the space weather impacts on GNSS. J. Space Saf. Eng. 2023, 10, 324–330. [Google Scholar] [CrossRef]
  36. Lin, M.; Luo, Y.; Zhu, X.; Tu, G.; Lu, Z. Optimal GPS Acquisition Algorithm in Severe Ionospheric Scintillation Scene. Electronics 2023, 12, 1343. [Google Scholar] [CrossRef]
  37. Atabati, A.; Jazireeyan, I.; Alizadeh, M.; Langley, R.B. Prediction of Ionospheric Scintillation with ConvGRU Networks Using GNSS Ground-Based Data across South America. Remote Sens. 2024, 16, 2757. [Google Scholar] [CrossRef]
  38. Dobelis, D.; Zvirgzds, J.; Kaļinka, M. High Ionospheric Activity Effects on LatPos RTK Network Performance in Latvia. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 3rd International Conference on Innovative Materials, Structures and Technologies (IMST 2017), Riga, Latvia, 27–29 September 2017; Institute of Physics Publishing: Bristol, UK, 2017; Volume 251. [Google Scholar]
  39. Balodis, J.; Normand, M.; Zarins, A. The Movement of GPS Positioning Discrepancy Clouds at a Mid-Latitude Region in March 2015. Remote Sens. 2023, 15, 2032. [Google Scholar] [CrossRef]
  40. Zheng, Z.; Yang, J.; Lv, T.; Yi, Y.; Lin, Z.; Dong, J.; Li, S. A Cloud Vertical Structure Optimization Algorithm Combining FY-4A and DSCOVR Satellite Data. Remote Sens. 2025, 17, 2484. [Google Scholar] [CrossRef]
  41. CDDIS Data Archive. Available online: https://cddis.nasa.gov/archive/gnss/products/ionex/ (accessed on 14 June 2021).
  42. Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
  43. Kwak, J.; Hwang, J.; Park, J.; Kim, J.; Kim, H. Comparison of geomagnetic storm and non-storm periods midlatitude Pc1 pulsations characteristics. J. Space Weather Space Clim. 2024, 14, 26. [Google Scholar] [CrossRef]
  44. Pilipenko, V.A.; Fedorov, E.N.; Xu, Z.; Hartinger, M.D.; Engebretson, M.J.; Edwards, T.R. Incidence of Alfvenic SC pulse onto the conjugate ionospheres. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027397. [Google Scholar] [CrossRef]
  45. Lysak, R.L. Kinetic Alfvén waves and auroral particle acceleration: A review. Rev. Mod. Plasma Phys. 2023, 7, 6. [Google Scholar] [CrossRef] [PubMed]
Figure 1. An information subset of the ionospheric scintillation wave registered in the analysis of positioning discrepancies in the Latvian CORS network.
Figure 1. An information subset of the ionospheric scintillation wave registered in the analysis of positioning discrepancies in the Latvian CORS network.
Atmosphere 16 01330 g001
Figure 2. The number of CORSs with regular daily scintillation waves in March 2015.
Figure 2. The number of CORSs with regular daily scintillation waves in March 2015.
Atmosphere 16 01330 g002
Figure 3. The number of CORSs with scintillation waves in August 2007.
Figure 3. The number of CORSs with scintillation waves in August 2007.
Atmosphere 16 01330 g003
Figure 4. The number of CORSs with scintillation waves in July 2016.
Figure 4. The number of CORSs with scintillation waves in July 2016.
Atmosphere 16 01330 g004
Figure 5. The number of clouds and waves.
Figure 5. The number of clouds and waves.
Atmosphere 16 01330 g005
Figure 6. A typical scintillation wave and its skewed distribution of clouds. Shown are the date, time, and peak cloud (red); the beginning of the time sequence and initial cloud; and both the median of the time sequence and the end of the time sequence clouds (green).
Figure 6. A typical scintillation wave and its skewed distribution of clouds. Shown are the date, time, and peak cloud (red); the beginning of the time sequence and initial cloud; and both the median of the time sequence and the end of the time sequence clouds (green).
Atmosphere 16 01330 g006
Figure 7. Linear approximation errors for the daily timing (min) of the peak, median, and beginning.
Figure 7. Linear approximation errors for the daily timing (min) of the peak, median, and beginning.
Atmosphere 16 01330 g007
Figure 8. The length of regular daily waves (min) in March 2015.
Figure 8. The length of regular daily waves (min) in March 2015.
Atmosphere 16 01330 g008
Figure 9. Variations in Const in December 2014 (DoY—day of the year).
Figure 9. Variations in Const in December 2014 (DoY—day of the year).
Atmosphere 16 01330 g009
Figure 10. The search results as input data for linear approximation with the number of days for the respective month of the year with regular waves.
Figure 10. The search results as input data for linear approximation with the number of days for the respective month of the year with regular waves.
Atmosphere 16 01330 g010
Figure 11. The presence of predicted scintillation waves in the CORS dataset is shown in a linear approximation.
Figure 11. The presence of predicted scintillation waves in the CORS dataset is shown in a linear approximation.
Atmosphere 16 01330 g011
Figure 12. The percentage distribution of wavelengths analyzed during 2007 and 2008.
Figure 12. The percentage distribution of wavelengths analyzed during 2007 and 2008.
Atmosphere 16 01330 g012
Figure 13. The percentage distribution of wavelengths analyzed during September and November 2011.
Figure 13. The percentage distribution of wavelengths analyzed during September and November 2011.
Atmosphere 16 01330 g013
Figure 14. The percentage distribution of wavelengths analyzed during June, October and December 2014.
Figure 14. The percentage distribution of wavelengths analyzed during June, October and December 2014.
Atmosphere 16 01330 g014
Figure 15. The percentage distribution of wavelengths analyzed during March, May, June, October and December 2015.
Figure 15. The percentage distribution of wavelengths analyzed during March, May, June, October and December 2015.
Atmosphere 16 01330 g015
Figure 16. The percentage distribution of wavelengths analyzed during April and July 2016.
Figure 16. The percentage distribution of wavelengths analyzed during April and July 2016.
Atmosphere 16 01330 g016
Figure 17. The percentage distribution of wavelengths analyzed during April, May, July, September and October 2016.
Figure 17. The percentage distribution of wavelengths analyzed during April, May, July, September and October 2016.
Atmosphere 16 01330 g017
Figure 18. Mean TEC-max values and mean count of cycle slips, faulty solutions, and cycle slips for faulty solutions.
Figure 18. Mean TEC-max values and mean count of cycle slips, faulty solutions, and cycle slips for faulty solutions.
Atmosphere 16 01330 g018
Figure 19. Pearson’s coefficient values for three cases.
Figure 19. Pearson’s coefficient values for three cases.
Atmosphere 16 01330 g019
Figure 20. A daily regular scintillation event registered by Latvian CORS on 7 June 2014.
Figure 20. A daily regular scintillation event registered by Latvian CORS on 7 June 2014.
Atmosphere 16 01330 g020
Figure 21. Two ionospheric scintillation events registered by Latvian CORS on 22 February 2007.
Figure 21. Two ionospheric scintillation events registered by Latvian CORS on 22 February 2007.
Atmosphere 16 01330 g021
Table 1. Monthly ionospheric wave impact with a minimum of 2 clouds.
Table 1. Monthly ionospheric wave impact with a minimum of 2 clouds.
#YearMonthCloudsWaves#YearMonthCloudsWaves
12007FEB1569120242012OCT83788
22007MAY4359308252013MAY1587201
32007JUN3501272262013OCT3772152
42007AUG5830491272013NOV935114
52008MAR72669282013DEC1155136
62008JUN1600140292014FEB126899
72008SEP1986193302014JUN3393295
82008OCT1328107312014OCT1241117
92009JUL2473216322014DEC1837126
102009AUG1413126332015MAR1584119
112009OCT1304107342015MAY1749170
122009DEC2056115352015JUN2499154
132010JAN25520362015OCT880118
142010FEB112366372015DEC988119
152010APR44959382016FEB1166104
162010NOV126345392016APR1401105
172011MAR74748402016MAY2541175
182011AUG1943248412016JUL3445339
192011SEP1477134422017APR1980120
202011NOV52377432017MAY2894136
212012JAN36635442017JUL6442214
222012MAR46156452017SEP1181126
232012JUL2155227462017OCT1145112
Table 2. An example of the subset of tuples of wave information (P is m a x | S k i | ) .
Table 2. An example of the subset of tuples of wave information (P is m a x | S k i | ) .
k c 1 bep g l o b o e o p o g nP
50 WAVE51657,092.99166757,092.998958PK 57,092.992708MED 57,092.995313DIFF 0.0072910.0020840.0093750.0031250.005730PK 83
51 WAVE52557,093.53437557,093.581250PK 57,093.534375MED 57,093.557813DIFF 0.0468750.5427080.5822920.5416670.562500PK 32
52 WAVE53457,093.81770857,093.894792PK 57,093.817708MED 57,093.856250DIFF 0.0770840.2833330.3135420.2833330.298437PK 23
53 WAVE54057,093.90208357,093.906250PK 57,093.903125MED 57,093.904166DIFF 0.0041670.0843750.0114580.0854170.047916PK 44
54 WAVE55157,093.93854257,093.952083PK 57,093.941667MED 57,093.945312DIFF 0.0135410.0364590.0458330.0385420.041146PK 1415
55 WAVE56957,093.98645857,093.997917PK 57,093.990625MED 57,093.992188DIFF 0.0114590.0479160.0458340.0489580.046875PK 124
56 WAVE60857,094.93229257,094.951042PK 57,094.938542MED 57,094.941667DIFF 0.0187500.9458340.9531250.9479170.949479PK 1927
57 WAVE64957,094.97500057,094.976042PK 57,094.975000MED 57,094.975521DIFF 0.0010420.0427080.0250000.0364580.033854PK 22
Table 3. Regular daily wave characterization parameters (min) in March 2015 (p − b = peak − beg; m − p = med − peak; p − e = peak − end).
Table 3. Regular daily wave characterization parameters (min) in March 2015 (p − b = peak − beg; m − p = med − peak; p − e = peak − end).
DateMJDShiftPeakMedBegLengthp − bm − pp − e
257,083.969792 −0.1−4−10.24224−318
357,084.966667−4.5−0.5−5.5−9.537.522.5−3.715
457,085.963542−4.5−0.9−1−2.733151.518
557,086.961458−3.00.2−1−0.428.513.50.815
657,087.959375−3.01.30.51.927121.515
757,088.954167−7.5−2.14.37.1243921
857,089.9541670.02.11.34.922.592.213.5
957,090.948958−7.5−1.31.37.2183615
1057,091.946875−3.0−0.21.3522.565.316.5
1157,092.944792−3.00.91.45.82164.515
1257,093.941667−4.50.51.46.519.54.55.215
1357,094.938542−4.50.1−0.11.32794.518
1457,095.934375−6.0−1.8−1.63.619.54.55.315
1557,096.933333−1.50.8−0.14.42164.515
1657,097.930208−4.50.4−0.13.722.565.316.5
1757,098.928125−3.01.629.9−22.61353334.5102
1857,099.923958−6.0−0.3−6.1−6.831.5150.816.5
1957,100.922917−1.52.3−3−1.527121.515
2057,101.917708−7.5−1.1−5.3−3.72710.5316.5
2157,102.914583−4.5−1.5−30.1246618
2257,103.912500−3.0−0.4−1.53.819.536.816.5
2357,104.910417−3.00.7−4.50.1217.5313.5
2457,105.906250−6.0−1.2−2.22.42137.518
2557,106.905208−1.51.5−2.21.722.565.316.5
2657,107.901042−6.0−0.4−4.4−0.522.565.216.5
2757,108.898958−3.00.7−3.71.719.54.55.315
2857,109.895833−4.50.3−4.4119.54.55.315
2957,110.892708−4.5−0.1−5.2−1.222.565.316.5
3057,111.889583−4.5−0.521.9−3.4817.53373.5
3157,112.886458−4.5−0.9−4.40.32137.518
Table 4. Example of discrepancies and ROTI for each cloud’s station.
Table 4. Example of discrepancies and ROTI for each cloud’s station.
#DateTime UTDOME#dNdEdh3DAzROTI
2582015 MAR 522:58:30 UTIRBE12110.0170.0040.1050.10613.20.0394
OJAR1214−0.005−0.007−0.1100.110−125.50.0403
DAU112100.0240.0030.1150.1187.10.0384
KREI1212−0.029−0.002−0.1500.153−176.10.0403
VANG12150.0430.0060.1540.1607.90.0403
MAZS12130.059−0.0010.2190.227−1.00.0407
ALUK1209−0.0760.009−0.2360.248173.20.0403
Table 5. A sample of summarized search results in the month of November 2011.
Table 5. A sample of summarized search results in the month of November 2011.
#MJDDateDayTime UTStationsStations/CloudAdj. Days’ Time Lag (min)
3155,867.0739582011 NOV21:46:2944040404.50.04.50.04.50.0
3255,867.0750002011 NOV21:48:020200000.03.00.00.00.00.0
3355,867.0760422011 NOV21:49:3010000000.00.00.00.00.00.0
5055,868.0708332011 NOV31:42:030030300.00.04.50.04.50.0
5155,868.0718752011 NOV31:43:2940000000.00.00.00.00.00.0
5255,868.0729172011 NOV31:45:030000000.00.00.00.00.00.0
5355,868.0739582011 NOV31:46:2920200000.01.50.00.00.00.0
5455,868.0770832011 NOV31:51:010000000.00.00.00.00.00.0
11455,871.0635422011 NOV 61:31:3020020200.00.03.00.03.00.0
11555,871.0645832011 NOV 61:33:020200000.04.50.00.00.00.0
12755,872.0593752011 NOV 71:25:2920000000.00.00.00.00.00.0
12855,872.0604172011 NOV 71:27:050050500.00.04.50.04.50.0
12955,872.0614582011 NOV 71:28:2920200000.04.50.00.00.00.0
13055,872.0625002011 NOV 71:30:010000000.00.00.00.00.00.0
Table 6. The results of the wave search after peak time approximation.
Table 6. The results of the wave search after peak time approximation.
#YearMonthPredNotFoundWlenFor-meanMeanOutliersThr
12007JUN3013039.22711.7360.0
22007AUG3143111.63111.6060.0
32008JUN3013014.22913.3160.0
42011SEP3032836.12710.4360.0
52011NOV308528.542.32660.0
62013OCT245811.4811.41660.0
72013NOV3082631.6243.4660.0
82013DEC3122341.2202.41160.0
92014JUN3023026.82925.4160.0
102014OCT3123182.22814.6360.0
112014DEC3103157.62425.3760.0
122015MAR3113129.12923.6260.0
132015MAY3133122.62910.2260.0
142015JUN3013045.02813.9260.0
152015OCT3123057.6266.1560.0
162015DEC317934.783.02360.0
172016APR30966.969.22460.0
182016JUL3122828.3258.9660.0
192017APR3022857.62511.0560.0
202017MAY31131129.02414.9760.0
212017JUL31631143.22616.8560.0
222017SEP3013023.3279.0360.0
232017OCT3102833.8245.6760.0
Table 7. Wavelength percentage in min.
Table 7. Wavelength percentage in min.
YearMonth[0; 5)[5; 10)[10; 15)[15; 20)[20; 25)[25;30)[30; 60)>60
2007JUN10.020.033.326.70.00.00.010.0
2007AUG6.535.432.319.43.23.20.00.0
2008JUN0.020.060.16.73.33.33.33.3
2011SEP17.953.517.90.00.00.07.13.6
2011NOV80.00.00.00.00.00.00.020.0
2013OCT62.512.50.00.012.50.012.50.0
2013NOV69.319.23.80.00.00.00.07.7
2013DEC82.70.04.30.00.00.00.013.0
2014JUN3.30.013.336.810.010.023.33.3
2014OCT3.26.532.345.13.20.00.09.7
2014DEC0.00.00.00.067.70.09.722.6
2015MAR3.30.00.019.441.916.112.96.5
2015MAY12.935.529.016.10.00.00.06.5
2015JUN10.013.346.713.30.00.010.06.7
2015OCT50.030.03.30.00.00.03.313.4
2015DEC66.722.20.00.00.00.00.011.1
2016APR83.30.00.00.00.00.016.70.0
2016JUL39.421.410.710.70.07.10.010.7
2017APR0.025.057.27.10.00.00.010.7
2017MAY0.00.061.39.73.20.03.222.6
2017JUL3.20.042.025.83.23.26.516.1
2017SEP10.050.023.43.33.30.00.010.0
2017OCT42.835.73.63.60.00.00.014.3
AVERAGE28.617.420.610.66.61.94.79.6
Table 8. Pearson’s correlation coefficient results before the removal of the Loss-of-Lock (1st row) and after the removal of the Loss-of-Lock (2nd row).
Table 8. Pearson’s correlation coefficient results before the removal of the Loss-of-Lock (1st row) and after the removal of the Loss-of-Lock (2nd row).
TEC and Cycle SlipsTEC and Faulty
Solutions
TEC and Cycle Slips from Faulty SolutionsCycle Slips and
Faulty Solutions
[0; 0.4)[0.4; 0.7)[0.7; 1](0; −1][0; 0.4)[0.4; 0.7)[0.7; 1](0; −1][0; 0.4)[0.4; 0.7)[0.7; 1](0; −1][0; 0.4)[0.4; 0.7)[0.7; 1](0; −1]
185023184024254017251218
195022166024263017210223
Table 9. Pearson’s correlation coefficient results for ROTI and faulty solutions.
Table 9. Pearson’s correlation coefficient results for ROTI and faulty solutions.
ROTI and Cycle SlipsROTI and Faulty
Solutions
ROTI and Cycle Slips from Faulty SolutionsROTI and TEC
[0; 0.4)[0.4; 0.7)[0.7; 1](0; −1][0; 0.4)[0.4; 0.7)[0.7; 1](0; −1][0; 0.4)[0.4; 0.7)[0.7; 1](0; −1][0; 0.4)[0.4; 0.7)[0.7; 1](0; −1]
1853813611415411418709
Table 10. ROTI@ground and mean positioning 3D discrepancies (m) for each cloud of the wave in high solar activity.
Table 10. ROTI@ground and mean positioning 3D discrepancies (m) for each cloud of the wave in high solar activity.
#DateTime UTStationsROTI@groundMean Discr (m)
132823 MAR 201521:43:2920.01900.061
132923 MAR 201521:45:030.03250.246
133023 MAR 201521:46:3070.03790.341
133123 MAR 201521:48:0130.03861.783
133223 MAR 201521:49:29230.03860.963
133323 MAR 201521:51:0290.03890.408
133423 MAR 201521:52:29180.03900.326
133523 MAR 201521:54:0160.03940.213
133623 MAR 201521:55:30140.03920.197
133723 MAR 201521:57:090.03910.169
133823 MAR 201521:58:30140.03940.165
133923 MAR 201522:0:060.03910.182
134023 MAR 201522:1:2970.03980.140
134123 MAR 201522:3:020.03950.167
134223 MAR 201522:4:3030.03900.150
22 WAVE No. 1328AVERAGE 0.03730.368
Table 11. ROTI@ground and mean positioning 3D discrepancies for each cloud of the wave in low solar activity.
Table 11. ROTI@ground and mean positioning 3D discrepancies for each cloud of the wave in low solar activity.
#DateTime UTStationsROTI@groundMean Discr (m)
634 NOV 20111:39:060.03340.179
644 NOV 20111:40:3030.03910.160
3 WAVE No 63AVERAGE 0.03630.169
1146 NOV 20111:31:3020.01730.097
1156 NOV 20111:33:020.02550.141
4 WAVE No 114AVERAGE 0.02140.119
1277 NOV 20111:25:2920.01870.066
1287 NOV 20111:27:050.03430.159
1297 NOV 20111:28:2920.03530.147
5 WAVE No. 127AVERAGE 0.02940.124
Table 12. ROTI@ground and mean discrepancies of regular waves in March 2015.
Table 12. ROTI@ground and mean discrepancies of regular waves in March 2015.
DateROTI@groundDiscrTECCSLPDateROTI@groundDiscrTECCSLP
20.03860.271312170.05323.9934029
30.03830.37829.43180.03871.42318.42
40.03851.20231.93190.03790.32925.25
50.03960.42233.81200.03660.30119.92
60.04090.33435.13210.03860.371252
70.03820.35431.23220.03730.6433.51
80.04130.36334.70230.04190.36831.71
90.03980.424282240.04040.34332.32
100.03910.67230.22250.03961.49532.92
110.04280.82231.32260.04130.40733.30
120.04130.686302270.03880.3830.92
130.04140.30633.40280.03680.46636.43
140.0390.59730.31290.03720.64135.61
150.55760.414300300.03740.4291
160.10460.31829.32310.03720.93236.30
Table 13. Regularity results for the peak daily shift.
Table 13. Regularity results for the peak daily shift.
#Time SpanDaily Shift (day)Daily Shift (min)
1JUN 2007–30 AUG 20070.997210–4.0
2SEP 2011–28 NOV 20110.997195–4.0
3OCT 2013–23 DEC 20130.997055–4.2
4JUN 2014–30 DEC 20140.997155–4.1
5MAR 2015–31 DEC 20150.997177–4.1
6APR 2016–30 JUL 20160.997153–4.1
7APR 2017–30 OCT 20170.997145–4.1
Average0.997156
STDV0.0000460.1 min
Table 14. A comparison of Pc1 waves with GPS observations of ionospheric waves on the same date.
Table 14. A comparison of Pc1 waves with GPS observations of ionospheric waves on the same date.
#Date of Pc1 WavesPc1 WavesDur. (min)CPS d. WavesDur. (min)
14 November 201111011.5
229 November 201113017.5
318 March 2015212131.5
419 March 201541033; 27; 4.1
523 March 2015446121
629 March 2015319122.5
725 June 201512312; 4.5; 6
828 June 20151441.5; 3; 4.5; 607.5
93 April 20171821.5; 7.5
109 April 2017188216.6; 16.5
1126 April 20171103255; 1.5; 10.5
1227 April 2017110112
1319 May 2017136682.5; 3; 1.5; 16.5; 126; 15
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Balodis, J.; Normand, M.; Mitrofanovs, I. Discovery of Regular Daily Ionospheric Scintillation. Atmosphere 2025, 16, 1330. https://doi.org/10.3390/atmos16121330

AMA Style

Balodis J, Normand M, Mitrofanovs I. Discovery of Regular Daily Ionospheric Scintillation. Atmosphere. 2025; 16(12):1330. https://doi.org/10.3390/atmos16121330

Chicago/Turabian Style

Balodis, Janis, Madara Normand, and Ingus Mitrofanovs. 2025. "Discovery of Regular Daily Ionospheric Scintillation" Atmosphere 16, no. 12: 1330. https://doi.org/10.3390/atmos16121330

APA Style

Balodis, J., Normand, M., & Mitrofanovs, I. (2025). Discovery of Regular Daily Ionospheric Scintillation. Atmosphere, 16(12), 1330. https://doi.org/10.3390/atmos16121330

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop