Sensitivity of Atmospheric Energetics to Optically Thin Ice Clouds During the Arctic Polar Night
Abstract
1. Introduction
2. Diagnostic Equations and Data
2.1. Energy Budget Equations Associated with Climate Studies
2.2. Data Simulations
3. Results and Analysis
3.1. Arctic Thermodynamics Variables—January 2007 Means
3.2. Contribution of CRCM6 Physical Tendencies in Total Diabatic Heating
3.3. TICs’ Effect on the Temperature and Heating Rates
3.4. TICs’ Influence on Atmospheric Energetics
- The four energy reservoir terms (AM, KM, ATV, and KTV);
- The term responsible for the generation of available enthalpy through diabatic processes in the time-mean state (GM and GTV) and for kinetic energy dissipation due to surface turbulence effects (DKM and DTV);
- The terms responsible for converting energy between reservoirs (CM, CA, CTV, and CK). The term IAB, which converts available enthalpy between its pressure and temperature and will not be analyzed as it acts similarly to CM;
- The terms responsible for transport due to limited area domains (FAM, FKM, FATV, FKTV, HAM, HKM, HATV, and HKTV).
3.4.1. Energy Reservoir Terms
3.4.2. Energy Generation and Dissipation Terms
3.4.3. Energy Conversions Terms
3.4.4. Boundary Flux Transport Terms
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, S.A.; Jakob, C. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Weather Rev. 1999, 127, 2514–2531. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Zhai, C.; Perun, V.S.; Del Genio, A.; Nazarenko, L.S.; Donner, L.J.; Horowitz, L.; Seman, C.; Cole, J. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res. Atmos. 2012, 117, D4. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ma, Z.; Liu, Q.; Zhao, C.; Shen, X.; Wang, Y.; Jiang, J.H.; Li, Z.; Yung, Y. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst. 2018, 10, 652–667. [Google Scholar] [CrossRef]
- Taylor, P.C.; Boeke, R.C.; Li, Y.; Thompson, D.W. Arctic cloud annual cycle biases in climate models. Atmos. Chem. Phys. 2019, 19, 8759–8782. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Rossow, W.B.; Randall, D. Overview of Arctic cloud and radiation characteristics. J. Clim. 1996, 9, 1731–1764. [Google Scholar] [CrossRef]
- Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 2004, 17, 616–628. [Google Scholar] [CrossRef]
- Kay, J.E.; L’Ecuyer, T.; Gettelman, A.; Stephens, G.; O’Dell, C. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett. 2008, 35, L08503. [Google Scholar] [CrossRef]
- Cesana, G.; Kay, J.; Chepfer, H.; English, J.; De Boer, G. Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett. 2012, 39, L20804. [Google Scholar] [CrossRef]
- Kay, J.E.; L’Ecuyer, T. Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos. 2013, 118, 7219–7236. [Google Scholar] [CrossRef]
- Kay, J.; L’Ecuyer, T.; Chepfer, H.; Loeb, N.; Morrison, A.; Cesana, G. Recent advances in Arctic cloud and climate research. Curr. Clim. Change Rep. 2016, 2, 159–169. [Google Scholar] [CrossRef]
- Persson, P.O.G.; Fairall, C.W.; Andreas, E.L.; Guest, P.S.; Perovich, D.K. Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res. Ocean. 2002, 107, 8030. [Google Scholar] [CrossRef]
- Morrison, H.; De Boer, G.; Feingold, G.; Harrington, J.; Shupe, M.; Sulia, K. Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 2012, 5, 11–17. [Google Scholar] [CrossRef]
- Persson, P.O.G.; Shupe, M.D.; Perovich, D.; Solomon, A. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions. Clim. Dyn. 2017, 49, 1341–1364. [Google Scholar] [CrossRef]
- Intrieri, J.M.; Shupe, M.D. Characteristics and radiative effects of diamond dust over the western Arctic Ocean region. J. Clim. 2004, 17, 2953–2960. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R.; Wang, X. Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophys. Res. Lett. 2009, 36, L20710. [Google Scholar] [CrossRef]
- Libois, Q.; Blanchet, J.P. Added value of far-infrared radiometry for remote sensing of ice clouds. J. Geophys. Res. Atmos. 2017, 122, 6541–6564. [Google Scholar] [CrossRef]
- Girard, E.; Stefanof, A. Assessment of the dehydration-greenhouse feedback over the Arctic during February 1990. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1047–1058. [Google Scholar] [CrossRef]
- Girard, E.; Dueymes, G.; Du, P.; Bertram, A.K. Assessment of the effects of acid-coated ice nuclei on the Arctic cloud microstructure, atmospheric dehydration, radiation and temperature during winter. Int. J. Climatol. 2013, 33, 599–614. [Google Scholar] [CrossRef]
- Keita, S.A.; Girard, E.; Raut, J.-C.; Leriche, M.; Blanchet, J.-P.; Pelon, J.; Onishi, T.; Cirisan, A. A new parameterization of ice heterogeneous nucleation coupled to aerosol chemistry in WRF-Chem model version 3.5. 1: Evaluation through ISDAC measurements. Geosci. Model Dev. 2020, 13, 5737–5755. [Google Scholar] [CrossRef]
- Nikiéma, O.; Laprise, R. An approximate energy cycle for inter-member variability in ensemble simulations of a regional climate model. Clim. Dyn. 2013, 41, 831–852. [Google Scholar] [CrossRef]
- Lorenz, E.N. Available potential energy and the maintenance of the general circulation. Tellus 1955, 7, 157–167. [Google Scholar] [CrossRef]
- Oort, A.H. On estimates of the atmospheric energy cycle. Mon. Weather Rev. 1964, 92, 483–493. [Google Scholar] [CrossRef]
- Newell, R.E.; Kidson, J.W.; Vincent, D.; Boer, G. The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes; MIT Press: Cambridge, MA, USA, 1972; Volume I. [Google Scholar]
- Van Mieghem, J. Atmospheric Energetics; Oxford University Press: Oxford, UK, 1973. [Google Scholar]
- Newell, R.E.; Kidson, J.W.; Vincent, D.G.; Boer, G.J. General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes; Massachusetts Institute of Technology Press: Cambridge, MA, USA, 1974; Volume 2. [Google Scholar]
- Boer, G.J. Zonal and eddy forms of the available potential energy equations in pressure coordinates. Tellus 1975, 27, 433–442. [Google Scholar] [CrossRef]
- Pearce, R. On the concept of available potential energy. Q. J. R. Meteorol. Soc. 1978, 104, 737–755. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H.; Lorenz, E.N. Physics of Climate; Springer: Berlin/Heidelberg, Germany, 1992; Volume 520. [Google Scholar]
- Marquet, P. L’énergie utilisable de l’atmosphère. Météorologie 1996, 14, 11–26. [Google Scholar] [CrossRef][Green Version]
- Marquet, P. The available-enthalpy cycle. I: Introduction and basic equations. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2003, 129, 2445–2466. [Google Scholar] [CrossRef]
- Marquet, P. The available-enthalpy cycle. II: Applications to idealized baroclinic waves. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2003, 129, 2467–2494. [Google Scholar] [CrossRef]
- Nikiéma, O.; Laprise, R.; Dugas, B. Energetics of transient-eddy and inter-member variabilities in global and regional climate model simulations. Clim. Dyn. 2018, 51, 249–268. [Google Scholar] [CrossRef]
- Nikiéma, O.; Laprise, R. Energy cycle associated with inter-member variability in a large ensemble of simulations with the Canadian RCM (CRCM5). Clim. Dyn. 2016, 46, 651–670. [Google Scholar] [CrossRef]
- Clément, M.; Nikiéma, O.; Laprise, R. Limited-area atmospheric energetics: Illustration on a simulation of the CRCM5 over eastern North America for December 2004. Clim. Dyn. 2017, 48, 2797–2818. [Google Scholar] [CrossRef][Green Version]
- Lorenz, E. The Nature and Theory of the General Circulation of the Atmosphere; World Meteorological Organization: Geneva, Switzerland, 1967; p. 161. [Google Scholar]
- Morrison, H.; Milbrandt, J.A. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci. 2015, 72, 287–311. [Google Scholar] [CrossRef]
- Sankaré, H.; Blanchet, J.-P.; Laprise, R.; O’Neill, N.T. Simulation of Arctic Thin Ice Clouds with Canadian Regional Climate Model Version 6: Verification against CloudSat-CALIPSO. Atmosphere 2022, 13, 187. [Google Scholar] [CrossRef]
- Li, J.; Barker, H. A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci. 2005, 62, 286–309. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Kuo, E. Wave scattering and transmission at irregular surfaces. J. Acoust. Soc. Am. 1964, 36, 2135–2142. [Google Scholar] [CrossRef]
- Bélair, S.; Mailhot, J.; Girard, C.; Vaillancourt, P. Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Weather Rev. 2005, 133, 1938–1960. [Google Scholar] [CrossRef]
- Milbrandt, J.; Morrison, H. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci. 2016, 73, 975–995. [Google Scholar] [CrossRef]
- Verseghy, D.L. The Canadian land surface scheme (CLASS): Its history and future. Atmos.-Ocean 2000, 38, 1–13. [Google Scholar] [CrossRef]
- Verseghy, D. The Canadian land surface scheme. Atmos.-Ocean 2008, 38, 1–13. [Google Scholar] [CrossRef]
- Uttal, T.; Starkweather, S.; Drummond, J.R.; Vihma, T.; Makshtas, A.P.; Darby, L.S.; Burkhart, J.F.; Cox, C.J.; Schmeisser, L.N.; Haiden, T. International Arctic systems for observing the atmosphere: An international polar year legacy consortium. Bull. Am. Meteorol. Soc. 2016, 97, 1033–1056. [Google Scholar] [CrossRef]
- Becker, S.; Ehrlich, A.; Schäfer, M.; Wendisch, M. Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait. Atmos. Chem. Phys. 2023, 12, 7015–7031. [Google Scholar] [CrossRef]
- Luo, H.; Quaas, J.; Han, Y. Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios. Atmos. Chem. Phys. 2023, 14, 8169–8186. [Google Scholar] [CrossRef]
- Veiga, J.A.P.; Ambrizzi, T. A global and hemispherical analysis of the Lorenz energetics based on the representative concentration pathways used in CMIP5. Adv. Meteorol. 2013, 1, 485047. [Google Scholar] [CrossRef]


















| Simulations | Cloud Fraction | Cloud Ice Effective Radius (Microns) | IWC (g/kg) | IWP(g/m2) |
|---|---|---|---|---|
| CRCM6(ori) | CRCM6 + P3 | CRCM6 + P3 | CRCM6 + P3 | CRCM6 + P3 |
| CRCM6(100%cld) | 1 | 55 | 0.55 | 50 |
| CRCM6(nocld) | 0 | 0 | 0 | 0 |
| Variables | CRCM6 | CRCM6 − CRCM6(nocld) | (CRCM6 − CRCM6(100%cld)) | CRE | |
|---|---|---|---|---|---|
| AM (×105 J·m−2) | 68.48 | 0.06 | 7.08 | 7.14 | 9.4% |
| KM (×105 J·m−2) | 0.69 | −0.03 | −0.01 | −0.04 | −5.9% |
| ATV (×105 J·m−2) | 1.80 | −0.51 | 0.19 | −0.32 | −16.1% |
| KTV (×105 J·m−2) | 4.77 | 0.1 | −0.56 | −0.46 | −10.9% |
| GM (W·m−2) | 6.19 | 3.33 | 0.62 | 3.95 | 58.0% |
| CM (W·m−2) | −2.77 | −4.21 | −17.51 | −21.72 | 107.1% |
| CA (W·m−2) | 1.49 | 0.81 | −0.09 | 0.72 | 51.4% |
| CK (W·m−2) | −0.34 | −0.36 | 0.37 | 0.01 | 33.3% |
| CTV (W·m−2) | 2.42 | 1.92 | −0.34 | 1.58 | −76.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaré, H.; Blanchet, J.-P.; Laprise, R. Sensitivity of Atmospheric Energetics to Optically Thin Ice Clouds During the Arctic Polar Night. Atmosphere 2025, 16, 1329. https://doi.org/10.3390/atmos16121329
Sankaré H, Blanchet J-P, Laprise R. Sensitivity of Atmospheric Energetics to Optically Thin Ice Clouds During the Arctic Polar Night. Atmosphere. 2025; 16(12):1329. https://doi.org/10.3390/atmos16121329
Chicago/Turabian StyleSankaré, Housseyni, Jean-Pierre Blanchet, and René Laprise. 2025. "Sensitivity of Atmospheric Energetics to Optically Thin Ice Clouds During the Arctic Polar Night" Atmosphere 16, no. 12: 1329. https://doi.org/10.3390/atmos16121329
APA StyleSankaré, H., Blanchet, J.-P., & Laprise, R. (2025). Sensitivity of Atmospheric Energetics to Optically Thin Ice Clouds During the Arctic Polar Night. Atmosphere, 16(12), 1329. https://doi.org/10.3390/atmos16121329

