DSMF-Net: A Spatiotemporal Memory Flow Network for Long-Range Prediction of Stratospheric Sudden Warming Events
Abstract
1. Introduction
- We propose DSMF-Net, a novel video prediction framework for stratospheric sudden warming forecasting, which introduces a cross-layer spatiotemporal memory flow and a dual-memory ST-LSTM to decouple long- and short-term dynamical dependencies.
- A decoupled memory regularization mechanism is designed to enhance long-lead stability and improve physical interpretability without increasing model complexity.
- Comprehensive experiments demonstrate that DSMF-Net achieves stable 20-day lead forecasts and consistently outperforms existing deep learning and ensemble numerical models in both accuracy and structural consistency.
2. Related Work
2.1. Traditional Approaches to SSW Prediction
2.2. Deep Learning-Based SSW Prediction
3. Data and Methodology
3.1. Data and Preprocessing
3.2. DSMF-Net
3.2.1. Decoupled Spatiotemporal Memory Flow
3.2.2. Memory Decoupling Regularization
3.2.3. Reverse Scheduled Sampling
3.2.4. Loss Function
4. Experiment and Analysis
4.1. Baselines
- PredRNN [5]: Utilizes spatiotemporal LSTM units and introduces dual flows of hidden and spatiotemporal memories to jointly model localized dynamics and large-scale background evolution.
- MotionRNN [50]: Decomposes transient variations and motion trends through MotionGRU and cross-layer motion highways, explicitly modeling motion accumulation to mitigate blurring and displacement errors in long-term forecasts.
4.2. Evaluation Metrics
- Numerical Error Metrics. We employ Mean Absolute Error (MAE) and Mean Squared Error (MSE) to evaluate pixel-wise intensity deviations:where . MAE reflects the average deviation, while MSE is more sensitive to outliers, capturing the model’s robustness under extreme perturbations and rapid morphological transitions.
- Structural and Perceptual Similarity Metrics. To assess the model’s ability to reproduce polar vortex morphology, we adopt the Structural Similarity Index (SSIM) and the Learned Perceptual Image Patch Similarity (LPIPS). SSIM [51] is a full-reference image quality metric that evaluates similarity in terms of luminance, contrast, and structural information:where and denote mean values, and denote standard deviations, is the covariance, and are constants for numerical stability. SSIM values range from 0 to 1, with higher values indicating better structural fidelity. LPIPS [52] measures deep-feature distances using a pre-trained convolutional network (VGGNet in this study), providing a perceptual similarity score that better aligns with human judgment. Unlike pixel-wise metrics, LPIPS captures high-level distortions in spatial structures.
- Anomaly Correlation Coefficient. To assess phase consistency and dynamical forecasting skill, we adopt the Anomaly Correlation Coefficient (ACC), a standard metric in reanalysis and operational forecasts [53]. ACC measures the spatial correlation between predicted and observed anomalies—i.e., deviations from climatology:where i indexes spatial grid points, and are anomaly values after removing the climatological mean, and and denote spatial means over the verification domain. Higher ACC values indicate stronger spatial–temporal phase alignment in capturing key dynamical structures such as vortex displacement, splitting, and SSW onset.
4.3. Basic Settings
4.4. Experimental Results
4.5. Evaluation Against Numerical Forecast Models
4.6. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden stratospheric warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Stephenson, D.B.; Thompson, D.W.J.; Dunkerton, T.J.; Charlton, A.J.; O’Neill, A. Stratospheric memory and skill of extended-range weather forecasts. Science 2003, 301, 636–640. [Google Scholar] [CrossRef]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Resonant waves play an important role in the increasing heat waves in Northern Hemisphere mid-latitudes under global warming. Geophys. Res. Lett. 2023, 50, e2023GL104839. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Charlton-Perez, A.; Balmaseda, M.; Tyrrell, N.; Vitart, F. Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett. 2018, 45, 13538–13546. [Google Scholar] [CrossRef]
- Jucker, M.; Reichler, T. Dynamical precursors for statistical prediction of stratospheric sudden warming events. Geophys. Res. Lett. 2018, 45, 13124–13132. [Google Scholar] [CrossRef]
- Lindgren, E.A.; Sheshadri, A. The role of wave–wave interactions in sudden stratospheric warming formation. Weather Clim. Dyn. 2020, 1, 93–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, M.; Chen, K.; Xing, L.; Jin, R.; Jordan, M.I.; Wang, J. Skilful nowcasting of extreme precipitation with NowcastNet. Nature 2023, 619, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.; et al. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Kochkov, D.; Yuval, J.; Langmore, I.; Norgaard, P.; Smith, J.; Mooers, G.; Klöwer, M.; Lottes, J.; Rasp, S.; Düben, P.; et al. Neural general circulation models for weather and climate. Nature 2024, 632, 1060–1066. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Tang, S.; Li, C.; Zhang, P.; Tang, R. SwinLSTM: Improving spatiotemporal prediction accuracy using Swin Transformer and LSTM. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 13470–13479. [Google Scholar]
- Le Guen, V.; Thome, N. Disentangling physical dynamics from unknown factors for unsupervised video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11474–11484. [Google Scholar]
- Tripathi, O.P.; Charlton-Perez, A.; Sigmond, M.; Vitart, F. Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett. 2015, 10, 104007. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Grams, C.M.; Papritz, L. The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events. Weather Clim. Dyn. 2020, 1, 373–388. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Son, S.-W.; Song, K.; Aquila, V.; Oman, L.D. Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett. 2017, 44, 374–382. [Google Scholar] [CrossRef]
- Hitchcock, P.; Butler, A.; Charlton-Perez, A.; Garfinkel, C.I.; Stockdale, T.; Anstey, J.; Mitchell, D.; Domeisen, D.I.V.; Wu, T.; Lu, Y.; et al. Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): A protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geosci. Model Dev. 2022, 15, 5073–5092. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R.; Chen, H.; Yu, Y.; Zhou, Y. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res. Atmos. 2018, 123, 13332–13345. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system. Atmos. Chem. Phys. 2024, 24, 3839–3856. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 2004, 17, 3548–3554. [Google Scholar] [CrossRef]
- Martius, O.; Polvani, L.M.; Davies, H.C. Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett. 2009, 36, L14806. [Google Scholar] [CrossRef]
- Cohen, J.; Jones, J. Tropospheric precursors and stratospheric warmings. J. Clim. 2011, 24, 6562–6572. [Google Scholar] [CrossRef]
- Lehtonen, I.; Karpechko, A.Y. Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res. Atmos. 2016, 121, 1591–1610. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Hitchcock, P.; Peters, D.H.W.; Schneidereit, A. Predictability of downward propagation of major sudden stratospheric warmings. Q. J. R. Meteorol. Soc. 2017, 143, 1459–1470. [Google Scholar] [CrossRef]
- Scott, R.K.; Polvani, L.M. Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett. 2004, 31, L02115. [Google Scholar] [CrossRef]
- Ming, A.; Hitchcock, P.; Haynes, P. The double peak in upwelling and heating in the tropical lower stratosphere. J. Atmos. Sci. 2016, 73, 1889–1901. [Google Scholar] [CrossRef]
- Hirahara, S.; Ishikawa, I.; Fujii, Y.; Nakano, H.; Tsujino, H.; Adachi, Y.; Naoe, H. Tropospheric and stratospheric boreal winter jet response to eddying ocean in a seasonal forecast system. J. Geophys. Res. Atmos. 2024, 129, e2023JD040444. [Google Scholar] [CrossRef]
- Ren, R.; Cai, M. Polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Adv. Atmos. Sci. 2006, 23, 884–900. [Google Scholar] [CrossRef]
- Lu, C.; Ding, Y. Analysis of isentropic potential vorticities for the relationship between stratospheric anomalies and the cooling process in China. Sci. Bull. 2015, 60, 726–738. [Google Scholar] [CrossRef]
- Lu, C.; Zhou, B.; Ding, Y. Decadal variation of the Northern Hemisphere annular mode and its influence on the East Asian trough. J. Meteorol. Res. 2016, 30, 584–597. [Google Scholar] [CrossRef]
- Hannachi, A.; Mitchell, D.; Gray, L.; Charlton-Perez, A. On the use of geometric moments to examine the continuum of sudden stratospheric warmings. J. Atmos. Sci. 2011, 68, 657–674. [Google Scholar] [CrossRef]
- Mitchell, D.M.; Charlton-Perez, A.J.; Gray, L.J. Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci. 2011, 68, 1194–1213. [Google Scholar] [CrossRef]
- Kretschmer, M.; Runge, J.; Coumou, D. Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys. Res. Lett. 2017, 44, 8592–8600. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth Syst. Sci. Data 2017, 9, 63–76. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, X.; Li, H.; Wu, J.; Lu, B.; Chen, D.; Xie, S.-P.; Wu, L.; Chao, Q.; Lin, C.; et al. A machine learning model that outperforms conventional global subseasonal forecast models. Nat. Commun. 2024, 15, 6425. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Liang, Y.-C.; Wu, C.-M.; Huang, J.-D.; Lee, S.H.; Wang, Y.; Zeng, Y.-J. Exploiting a variational auto-encoder to represent the evolution of sudden stratospheric warmings. Environ. Res. Clim. 2024, 3, 025006. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kim, J.-H.; Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Dong, P.; Tang, Z.; Chu, X.; Liang, J. VMRNN: Integrating vision mamba and LSTM for efficient and accurate spatiotemporal forecasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 5663–5673. [Google Scholar]
- Mooers, G.; Tuyls, J.; Mandt, S.; Pritchard, M.; Beucler, T.G. Generative modeling of atmospheric convection. In Proceedings of the 10th International Conference on Climate Informatics, Virtual, 22–25 September 2020; pp. 98–105. [Google Scholar]
- Peng, K.; Cao, X.; Liu, B.; Guo, Y.; Xiao, C.; Tian, W. Polar vortex multi-day intensity prediction relying on new deep learning model: A combined convolution neural network with long short-term memory based on Gaussian smoothing method. Entropy 2021, 23, 1314. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Manney, G.L. Characterizing stratospheric polar vortex variability with computer vision techniques. J. Geophys. Res. Atmos. 2018, 123, 1510–1535. [Google Scholar] [CrossRef]
- de Fondeville, R.; Wu, Z.; Székely, E.; Obozinski, G.; Domeisen, D.I.V. Improved extended-range prediction of persistent stratospheric perturbations using machine learning. Weather. Clim. Dyn. 2023, 4, 287–307. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Kalchbrenner, N.; Oord, A.; Simonyan, K.; Danihelka, I.; Vinyals, O.; Graves, A.; Kavukcuoglu, K. Video pixel networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1771–1779. [Google Scholar]
- Bengio, S.; Vinyals, O.; Jaitly, N.; Shazeer, N. Scheduled sampling for sequence prediction with recurrent neural networks. In Proceedings of the Advances in Neural Information Processing Systems 28, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Wu, H.; Yao, Z.; Wang, J.; Long, M. MotionRNN: A flexible model for video prediction with spacetime-varying motions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15435–15444. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar]
- World Meteorological Organization. Guidelines on Ensemble Prediction Systems and Forecasting; WMO-No. 1091; World Meteorological Organization: Geneva, Switzerland, 2012.
- Rao, J.; Garfinkel, C.I.; Chen, H.; White, I.P. The 2019 new year stratospheric sudden warming and its real-time predictions in multiple S2S models. J. Geophys. Res. Atmos. 2019, 124, 11155–11174. [Google Scholar] [CrossRef]







| Parameter | Setting |
|---|---|
| Image size (H × W) | |
| Hidden channels | 128, 128, 128, 128 |
| Dropout | 0.1 |
| Learning rate | |
| Batch size | 8 |
| Max iterations | 20,000 |
| Optimizer | Adam |
| Model | MSE (↓) | MAE (↓) | SSIM (↑) | LPIPS (↓) |
|---|---|---|---|---|
| MotionRNN (10to10) | 12.387 | 265.633 | 0.906 | 0.087 |
| PredRNN (10to10) | 13.411 | 281.255 | 0.904 | 0.088 |
| DSMF-Net (10to10) | 11.969 | 253.277 | 0.910 | 0.081 |
| MotionRNN (10to20) | 17.717 | 319.742 | 0.895 | 0.100 |
| PredRNN (10to20) | 17.281 | 315.625 | 0.894 | 0.098 |
| DSMF-Net (10to20) | 15.655 | 297.214 | 0.901 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Zhao, F.; Yue, B.; Liu, X. DSMF-Net: A Spatiotemporal Memory Flow Network for Long-Range Prediction of Stratospheric Sudden Warming Events. Atmosphere 2025, 16, 1316. https://doi.org/10.3390/atmos16121316
Ma X, Zhao F, Yue B, Liu X. DSMF-Net: A Spatiotemporal Memory Flow Network for Long-Range Prediction of Stratospheric Sudden Warming Events. Atmosphere. 2025; 16(12):1316. https://doi.org/10.3390/atmos16121316
Chicago/Turabian StyleMa, Xiao, Fengmei Zhao, Bin Yue, and Xinshuang Liu. 2025. "DSMF-Net: A Spatiotemporal Memory Flow Network for Long-Range Prediction of Stratospheric Sudden Warming Events" Atmosphere 16, no. 12: 1316. https://doi.org/10.3390/atmos16121316
APA StyleMa, X., Zhao, F., Yue, B., & Liu, X. (2025). DSMF-Net: A Spatiotemporal Memory Flow Network for Long-Range Prediction of Stratospheric Sudden Warming Events. Atmosphere, 16(12), 1316. https://doi.org/10.3390/atmos16121316
