Characterization of Urban Ozone and Non-Methane Hydrocarbon Pollution in Heilongjiang Province
Abstract
1. Introduction
2. Sources and Methods
2.1. Data Sources
2.2. Instruments and Methods
2.3. Quality Control
2.4. Data Processing and Analysis
3. Results and Discussion
3.1. Characteristics of Ambient Air Quality Changes in Heilongjiang Province
3.2. Overall Characterization of O3 and NMHC Concentrations in Heilongjiang Province
3.3. Characteristics of Temporal Distribution of NMHC and O3 Concentrations in Cities of Heilongjiang
3.3.1. Characteristics of Monthly Changes
3.3.2. Characteristics of Hourly Variations
3.3.3. Characteristics of Changes in the Heating and Non-Heating Seasons
3.4. Changes in O3 and NMHC Concentrations at Different Air Quality Levels in Heilongjiang Province
3.4.1. Change in O3 Concentration
3.4.2. Change in NMHC Concentrations
3.5. Characteristics Analysis of O3 and NMHC Pollution in Heilongjiang Province at Spatial Latitude
3.5.1. Change in O3 Concentration
3.5.2. Change in NMHC Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, D.; Mi, T.; Zheng, X.; Yang, M.; Grieneisen, M.L.; Zhan, Y.; Yang, F. Harmonizing Low-Cost and Regulatory Air Quality Monitoring Networks with Interpretable Semi-Supervised Learning: Reducing Exposure Misclassification in Underrepresented Communities. J. Hazard. Mater. 2025, 491, 137893. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, S.-C.; Feng, Y.-X.; Zou, B.; He, C. Global Air Quality Enhancement Pathways to Health Benefits and Environmental Justice. J. Hazard. Mater. 2024, 480, 136460. [Google Scholar] [CrossRef]
- Ma, X.; Morawska, L.; Zou, B.; Gao, J.; Deng, J.; Wang, X.; Wu, H.; Xu, X.; Wang, Y.; Tan, Z.; et al. Towards Compliance with the 2021 WHO Air Quality Guidelines: A Comparative Analysis of PM2.5 Trends in Australia and China. Environ. Int. 2025, 198, 109378. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z. Assessing Pesticides in the Atmosphere: A Global Study on Pollution, Human Health Effects, Monitoring Network and Regulatory Performance. Environ. Int. 2024, 187, 108653. [Google Scholar] [CrossRef]
- Yang, J.; Seo, J.-H.; Jee, Y.-K.; Kim, Y.-K.; Sohn, J.-R. Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-Sized and Nano-Sized. Aerosol Air Qual. Res. 2023, 23, 210231. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, S.; Xie, Y. Impacts of the Clean Residential Combustion Policies on Environment and Health in the Beijing-Tianjin-Hebei Area. J. Clean. Prod. 2023, 384, 135560. [Google Scholar] [CrossRef]
- Shao, T.; Wang, P.; Yu, W.; Gao, Y.; Zhu, S.; Zhang, Y.; Hu, D.; Zhang, B.; Zhang, H. Drivers of Alleviated PM2.5 and O3 Concentrations in China from 2013 to 2020. Resour. Conserv. Recycl. 2023, 197, 107110. [Google Scholar] [CrossRef]
- Yang, X.; Ben, B.; Wang, W.; Long, B.; Xie, Y.; Wu, K.; Zhang, X. Fine Particulate Matter Pollution in the Sichuan Basin of China from 2013 to 2020: Sources, Emissions, and Mortality Burden. Environ. Int. 2025, 197, 109366. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zou, Q.; Lin, X. Evolution of Price Policy for Offshore Wind Energy in China: Trilemma of Capacity, Price and Subsidy. Renew. Sustain. Energy Rev. 2021, 136, 110366. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Hossain, M.R. How Effective Has the Low-Carbon City Pilot Policy Been as an Environmental Intervention in Curbing Pollution? Evidence from Chinese Industrial Enterprises. Energy Econ. 2023, 118, 106523. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, C. Research on the Coordination of the Power Battery Echelon Utilization Supply Chain Considering Recycling Outsourcing. J. Clean. Prod. 2022, 358, 131922. [Google Scholar] [CrossRef]
- Wu, Z.; He, Q.; Li, J.; Bi, G.; Antwi-Afari, M.F. Public Attitudes and Sentiments towards New Energy Vehicles in China: A Text Mining Approach. Renew. Sustain. Energy Rev. 2023, 178, 113242. [Google Scholar] [CrossRef]
- Chen, S.; He, Y.; Jiang, M.; You, Q.; Ma, X.; Xu, Z.; Bo, X. Unveiling the Importance of VOCs from Pesticides Applicated in Main Crops for Elevating Ozone Concentrations in China. J. Hazard. Mater. 2023, 465, 133385. [Google Scholar] [CrossRef]
- Chen, L.; Mao, F.; Hong, J.; Zang, L.; Chen, J.; Zhang, Y.; Gan, Y.; Gong, W.; Xu, H. Improving PM2.5 Predictions during COVID-19 Lockdown by Assimilating Multi-Source Observations and Adjusting Emissions. Environ. Pollut. 2021, 297, 118783. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, S.; Li, Z.; Liu, C.; Qin, K.; Liu, X.; Pinker, R.T.; Dickerson, R.R.; Lin, J.; Boersma, F.; et al. Ground-Level NO2 Surveillance from Space across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence. Environ. Sci. Technol. 2022, 56, 9988–9998. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Peng, M.; Zheng, H.; Zhang, Y. Summer Heatwave, Ozone Pollution and Ischemic Stroke Mortality: An Individual-Level Case-Crossover Study. Environ. Res. 2025, 268, 120818. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, J.; Fang, Y.; Deng, Y.; Peng, C.; Dehaen, W. Fluorescent Probes for Ozone-Specific Recognition: An Historical Overview and Future Perspectives. Trends Environ. Anal. 2023, 38, e00201. [Google Scholar] [CrossRef]
- Ninneman, M.; Petropavlovskikh, I.; Effertz, P.; Chand, D.; Jaffe, D. Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach. Atmosphere 2022, 13, 1883. [Google Scholar] [CrossRef]
- Zerillo, L.; Polvere, I.; Varricchio, R.; Madera, J.R.; D’Andrea, S.; Voccola, S.; Franchini, I.; Stilo, R.; Vito, P.; Zotti, T. Antibiofilm and Repair Activity of Ozonated Oil in Liposome. Microb. Biotechnol. 2021, 15, 1422–1433. [Google Scholar] [CrossRef]
- Wang, M.; Aaron, C.P.; Madrigano, J.; Hoffman, E.A.; Angelini, E.; Yang, J.; Laine, A.; Vetterli, T.M.; Kinney, P.L.; Sampson, P.D.; et al. Association between Long-Term Exposure to Ambient Air Pollution and Change in Quantitatively Assessed Emphysema and Lung Function. JAMA 2019, 322, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Lee, C.-S.; Haghighat, F. Indoor Ozone and Climate Change. Sustain. Cities Soc. 2017, 28, 466–472. [Google Scholar] [CrossRef]
- Choi, H.; Seo, J.H.; Weon, S. Visualizing Indoor Ozone Exposures via O-Dianisidine Based Colorimetric Passive Sampler. J. Hazard. Mater. 2023, 460, 132510. [Google Scholar] [CrossRef]
- Michaudel, C.; Bataille, F.; Maillet, I.; Fauconnier, L.; Colas, C.; Sokol, H.; Straube, M.; Couturier-Maillard, A.; Dumoutier, L.; van Snick, J.; et al. Ozone-Induced Aryl Hydrocarbon Receptor Activation Controls Lung Inflammation via Interleukin-22 Modulation. Front. Immunol. 2020, 11, 144. [Google Scholar] [CrossRef]
- Zuidema, C.; Stebounova, L.V.; Sousan, S.; Gray, A.; Stroh, O.; Thomas, G.; Peters, T.; Koehler, K. Estimating Personal Exposures from a Multi-Hazard Sensor Network. J. Expo. Sci. Environ. Epidemiol. 2019, 30, 1013–1022. [Google Scholar] [CrossRef]
- Kim, K.; Lim, Y.; Bae, S.; Song, I.G.; Kim, S.; Hong, Y. Age-Specific Effects of Ozone on Pneumonia in Korean Children and Adolescents: A Nationwide Time-Series Study. Epidemiol. Health 2021, 44, e2022002. [Google Scholar] [CrossRef]
- Crooks, J.L.; Licker, R.; Hollis, A.L.; Ekwurzel, B. The Ozone Climate Penalty, NAAQS Attainment, and Health Equity along the Colorado Front Range. J. Expo. Sci. Environ. Epidemiol. 2021, 32, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Karava, P.; Chen, Q. Study of Outdoor Ozone Penetration into Buildings through Ventilation and Infiltration. Build. Environ. 2015, 93, 112–118. [Google Scholar] [CrossRef]
- Clifton, O.E.; Fiore, A.M.; Massman, W.J.; Baublitz, C.B.; Coyle, M.; Emberson, L.; Fares, S.; Farmer, D.K.; Gentine, P.; Gerosa, G.; et al. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. Rev. Geophys. 2020, 58, e2019RG000670. [Google Scholar] [CrossRef] [PubMed]
- Bourtsoukidis, E.; Pozzer, A.; Sattler, T.; Matthaios, V.N.; Ernle, L.; Edtbauer, A.; Fischer, H.; Könemann, T.; Osipov, S.; Paris, J.-D.; et al. The Red Sea Deep Water Is a Potent Source of Atmospheric Ethane and Propane. Nat. Commun. 2020, 11, 447. [Google Scholar] [CrossRef]
- Wang, M.; Hu, K.; Chen, W.; Shen, X.; Li, W.; Lu, X. Ambient Non-Methane Hydrocarbons (NMHCs) Measurements in Baoding, China: Sources and Roles in Ozone Formation. Atmosphere 2020, 11, 1205. [Google Scholar] [CrossRef]
- Helmig, D.; Rossabi, S.; Hueber, J.; Tans, P.; Montzka, S.A.; Masarie, K.; Thoning, K.; Plass-Duelmer, C.; Claude, A.; Carpenter, L.J.; et al. Reversal of Global Atmospheric Ethane and Propane Trends Largely due to US Oil and Natural Gas Production. Nat. Geosci. 2016, 9, 490–495. [Google Scholar] [CrossRef]
- Liang, B.; Bai, H.; Bai, D.; Liu, X. Emissions of Non-Methane Hydrocarbons and Typical Volatile Organic Compounds from Various Grate-Firing Coal Furnaces. Atmos. Pollut. Res. 2022, 13, 101380. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, L.; Chen, X.; Liu, Y.; Zhai, X.; Xue, Y.; Wang, W.; Liu, J.; Xu, K. Emissions Characteristics of Hazardous Air Pollutants from the Incineration of Sacrificial Offerings. Atmosphere 2019, 10, 332. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Han, B.; Wang, M.; Wang, Q.; Zhang, Y. Fiber Optic Volatile Organic Compound Gas Sensors: A Review. Coord. Chem. Rev. 2023, 493, 215297. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, S.; Li, N.; Cui, P.; Wang, H.; Amirkhanian, S.; Zhao, Z. Performance and VOCs Emission Inhibition of Environmentally Friendly Rubber Modified Asphalt with UiO-66 MOFs. J. Clean. Prod. 2023, 385, 135633. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Nanoparticles Catalysts: A Critical Review. Appl. Catal. B-Environ. 2021, 281, 119447. [Google Scholar] [CrossRef]
- Angot, H.; Davel, C.; Wiedinmyer, C.; Pétron, G.; Chopra, J.; Hueber, J.; Blanchard, B.; Bourgeois, I.; Vimont, I.; Montzka, S.A.; et al. Temporary Pause in the Growth of Atmospheric Ethane and Propane in 2015-2018. Atmos. Chem. Phys. 2021, 21, 15153–15170. [Google Scholar] [CrossRef]
- Azmi, S.; Sharma, M.; Nagar, P.K. NMVOC Emissions and Their Formation into Secondary Organic Aerosols over India Using WRF-Chem Model. Atmos. Environ. 2022, 287, 119254. [Google Scholar] [CrossRef]
- Song, M.; Liu, X.; Zhang, Y.; Shao, M.; Lu, K.; Tan, Q.; Feng, M.; Yu, Q. Sources and Abatement Mechanisms of VOCs in Southern China. Atmos. Environ. 2019, 201, 28–40. [Google Scholar] [CrossRef]
- Wang, G.; Qian, Y.; Kong, F.; Liu, X.; Liu, Y.; Zhu, Z.; Gao, W.; Zhang, H.; Wang, Y. Non-Methane Hydrocarbon Characteristics and Their Ozone and Secondary Organic Aerosol Formation Potentials and Sources in the Plate and Logistics Capital of China. Atmos. Pollut. Res. 2023, 14, 101873. [Google Scholar] [CrossRef]
- Zhao, T.; Dang, Y.; Wang, A.; Gao, H.; Zhang, H.; Xing, D.; Li, B.; Li, Y.; Liu, Z.; Li, C. Viral Metagenomics Analysis of Rodents from Two Border Provinces Located in Northeast and Southwest China. Front. Microbiol. 2022, 12, 701089. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, B.; Wu, L.; Gao, Q.; Wang, F.; Wen, C.; Wang, M.; Liang, Y.; Hale, L.; Zhou, J.; et al. Zonal Soil Type Determines Soil Microbial Responses to Maize Cropping and Fertilization. mSystems 2016, 1. [Google Scholar] [CrossRef]
- Tian, Y.; Peng, K.; Lou, G.; Ren, Z.; Sun, X.; Wang, Z.; Xing, J.; Song, C.; Cang, J. Transcriptome Analysis of the Winter Wheat Dn1 in Response to Cold Stress. BMC Plant Biol. 2022, 22, 277. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, J.; Li, M.; Chen, J.; Ou, C. Nonlinear and Lagged Meteorological Effects on Daily Levels of Ambient PM2.5 and O3: Evidence from 284 Chinese Cities. J. Clean. Prod. 2021, 278, 123931. [Google Scholar] [CrossRef]
- Lai, H.; Dai, Y.; Mkasimongwa, S.W.; Hsiao, M.; Lai, L. The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere 2023, 14, 406. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Zhou, H. Impact of China’s Economic Growth and Energy Consumption Structure on Atmospheric Pollutants: Based on a Panel Threshold Model. J. Clean. Prod. 2019, 236, 117694. [Google Scholar] [CrossRef]
- Zhu, J.H.; Wang, S.S. Evaluation and Influencing Factor Analysis of Sustainable Green Transformation Efficiency of Resource-Based Cities in Western China in the Post-COVID-19 Era. Front. Public Health 2022, 10, 832904. [Google Scholar] [CrossRef]
- Benchrif, A.; Wheida, A.; Tahri, M.; Shubbar, R.M.; Biswas, B. Air Quality during Three Covid-19 Lockdown Phases: AQI, PM2.5 and NO2 Assessment in Cities with More than 1 million Inhabitants. Sustain. Cities Soc. 2021, 74, 103170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ren, F.; Shi, Y.; Chen, H.; Tian, Z. CO2, Environmental Emergencies, and Industrial Pollution Assessment in China from the Perspective of the Circular Economy. Front. Env. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Reilly, J.P.; Zhao, Z.; Shashaty, M.G.S.; Koyama, T.; Christie, J.D.; Lanken, P.N.; Wang, C.; Balmes, J.R.; Matthay, M.A.; Calfee, C.S.; et al. Low to Moderate Air Pollutant Exposure and Acute Respiratory Distress Syndrome after Severe Trauma. Am. J. Respir. Crit. Care Med. 2019, 199, 62–70. [Google Scholar] [CrossRef]
- Visser, A.J.; Boersma, K.F.; Ganzeveld, L.N.; Krol, M.C. European NOx emissions in WRF-Chem derived from OMI: Impacts on summertime surface ozone. Atmos. Chem. Phys. 2019, 19, 11821–11841. [Google Scholar] [CrossRef]
- Li, Y.; Lau, A.K.H.; Fung, J.C.H.; Ma, H.; Tse, Y. Systematic Evaluation of Ozone Control Policies Using an Ozone Source Apportionment Method. Atmos. Environ. 2013, 76, 136–146. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Konopacki, S.; Bretz, S. Inclusion of Cool Roofs in Nonresidential Title 24 Prescriptive Requirements. Energy Policy 2005, 33, 151–170. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Chai, S.; Guan, J.; Fan, G.; Yang, W.; Ma, G.; Han, N.; Chen, Y. β-Co(OH)2 Nanostructures with High Spin Co(II) in Distorted [CoO6] for Catalytic Ozone Decomposition. ACS Appl. Nano Mater. 2022, 5, 18680–18690. [Google Scholar] [CrossRef]
- Lepeule, J.; Litonjua, A.A.; Gasparrini, A.; Koutrakis, P.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Lung Function Association with Outdoor Temperature and Relative Humidity and Its Interaction with Air Pollution in the Elderly. Environ. Res. 2018, 165, 110–117. [Google Scholar] [CrossRef]
- Guo, W.; Chen, Q.; Yang, Y.; Zhang, Y.; Liu, X.; Zhang, R.; Zhu, Y.; Li, G.; Liu, P.; Chen, M. Investigating the Mechanism of Morning Ozone Concentration Peaks in a Petrochemical Industrial City. Atmos. Environ. 2022, 270, 118897. [Google Scholar] [CrossRef]
- Moore, K.F.; Ning, Z.; Ntziachristos, L.; Schauer, J.J.; Sioutas, C. Daily Variation in the Properties of Urban Ultrafine Aerosol—Part I: Physical Characterization and Volatility. Atmos. Environ. 2007, 41, 8633–8646. [Google Scholar] [CrossRef]
- Korhale, N.; Anand, V.; Beig, G. Disparity in Ozone Trends under COVID-19 Lockdown in a Closely Located Coastal and Hillocky Metropolis of India. Air Qual. Atmos. Health 2020. [Google Scholar] [CrossRef]
- Deng, T.; Zou, Y.; Hu, S.; Li, F.; He, G.; Ouyang, S.; Zhang, X.; Wang, Q.; Zhang, Z.; Mai, B.; et al. Study on the Characteristics of Actinic Radiation and Direct Aerosol Radiation Effects in the Pearl River Delta Region. Atmos. Environ. 2023, 309, 119937. [Google Scholar] [CrossRef]
- Marin, C.A.; Mărmureanu, L.; Radu, C.; Dandocsi, A.; Stan, C.; Ţoancă, F.; Preda, L.; Antonescu, B. Wintertime Variations of Gaseous Atmospheric Constituents in Bucharest Peri-Urban Area. Atmosphere 2019, 10, 478. [Google Scholar] [CrossRef]
- França, D.d.A.; Longo, K.M.; Neto, T.G.S.; Santos, J.C.; Freitas, S.R.; Rudorff, B.F.T.; Cortez, E.V.; Anselmo, E.; Carvalho, J.A. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements. Atmosphere 2012, 3, 164–180. [Google Scholar] [CrossRef]
- Nath, S.; Yadav, S. A Comparative Study on Fog and Dew Water Chemistry at New Delhi, India. Aerosol Air Qual. Res. 2018, 18, 26–36. [Google Scholar] [CrossRef]
- Capistrano, S.; Zakarya, R.; Chen, H.; Oliver, B. Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts. Int. J. Mol. Sci. 2016, 17, 1403. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Yang, Q.; Li, J.; Wang, L.; Zhang, S.; Yang, H.; Chen, H. Environmental Impact Assessment of VOC Emissions from Biomass Gasification Power Generation System Based on Life Cycle Analysis. Fuel 2023, 335, 126905. [Google Scholar] [CrossRef]
- Sampieri, A.; Pérez-Osorio, G.; Hernández-Espinosa, M.Á.; Ruiz-López, I.I.; Ruiz-Reyes, M.; Arriola-Morales, J.; Narváez-Fernández, R.I. Sorption of BTEX on a Nanoporous Composite of SBA-15 and a Calcined Hydrotalcite. Nano Converg. 2018, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.M.; Che, H.; Bilal, M.; Zhang, M. Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017. Remote Sens. 2018, 10, 1064. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Mountain Valley Cold Air Flow Interactions with Urban Morphology: A Case Study of the Urban Area of Changwon, South Korea. Landsc. Urban Plan. 2023, 233, 104703. [Google Scholar] [CrossRef]
- Yao, N.; Yeung, K.L. Investigation of the Performance of TiO2 Photocatalytic Coatings. Chem. Eng. J. 2011, 167, 13–21. [Google Scholar] [CrossRef]
- Hoshika, Y.; Fares, S.; Savi, F.; Gruening, C.; Goded, I.; De Marco, A.; Sicard, P.; Paoletti, E. Stomatal Conductance Models for Ozone Risk Assessment at Canopy Level in Two Mediterranean Evergreen Forests. Agric. For. Meteorol. 2017, 234–235, 212–221. [Google Scholar] [CrossRef]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Meng, Q.; Zhao, Y.; Yu, Z.; Gu, P.; Jiang, J.; Su, X.; Guan, J.; Zhang, R.; Wang, X.; et al. Characterization of Urban Ozone and Non-Methane Hydrocarbon Pollution in Heilongjiang Province. Atmosphere 2025, 16, 1266. https://doi.org/10.3390/atmos16111266
Wang P, Meng Q, Zhao Y, Yu Z, Gu P, Jiang J, Su X, Guan J, Zhang R, Wang X, et al. Characterization of Urban Ozone and Non-Methane Hydrocarbon Pollution in Heilongjiang Province. Atmosphere. 2025; 16(11):1266. https://doi.org/10.3390/atmos16111266
Chicago/Turabian StyleWang, Pengjie, Qingqing Meng, Yufeng Zhao, Zhiguo Yu, Ping Gu, Jingyang Jiang, Xiaohui Su, Jixin Guan, Rui Zhang, Xiaoyan Wang, and et al. 2025. "Characterization of Urban Ozone and Non-Methane Hydrocarbon Pollution in Heilongjiang Province" Atmosphere 16, no. 11: 1266. https://doi.org/10.3390/atmos16111266
APA StyleWang, P., Meng, Q., Zhao, Y., Yu, Z., Gu, P., Jiang, J., Su, X., Guan, J., Zhang, R., Wang, X., & Hu, L. (2025). Characterization of Urban Ozone and Non-Methane Hydrocarbon Pollution in Heilongjiang Province. Atmosphere, 16(11), 1266. https://doi.org/10.3390/atmos16111266

