A Novel Algorithm for Detecting Convective Cells Based on H-Maxima Transformation Using Satellite Images
Abstract
1. Introduction
2. Data and Methods
2.1. FY-2F Satellite Images
2.2. H-Maximum Transformation Technique
2.3. Neighborhood Labeling Method
- 1.
- Optimization of Region Labeling and Merging Mechanisms: Introduction of “Novel Neighborhood Labeling Method” and “Adaptive Merging Criterion”.
- 2.
- Expansion of Data Dimension: From “Single-Channel (Infrared)” to “Multi-Channel”.
- 3.
- More Comprehensive Performance Validation and Comparison: Multi-Algorithm Benchmarking and Quantitative Metrics.
| Algorithm 1: Convective Cell detection utilizing H-maxima Transformation (CCHT) |
| Input: Satellite image data X Output: Convective cells C Initialization: Set Tb threshold T = 241 K, i is adaptive threshold. while Tb > T Tb = 0 end while Detection: Compute the seed-points according to (1). Threshold is set to 0.03. for I = 1 to i do threshold=threshold + 0.01 Accumulate other seed points and compute the number of merger m. end Cluster the adjacent seed points utilizes neighborhood labeling method. Decide pair-wise seed clusters whether should be merged. |
3. Results and Discussion
3.1. Satellite Data Preprocessing
3.2. Case Study
3.3. Comparison of CCHT with Other Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumacher, R.S.; Rasmussen, K.L. The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Env. 2020, 1, 300–314. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. 100 years of research on mesoscale convective systems. Meteorol. Monogr. 2018, 59, 17.1–17.54. [Google Scholar] [CrossRef]
- Smith, A.B.; Johnson, P.L.; Roberts, R.D. Contribution of mesoscale convective systems to warm-season rainfall over the United States. Bull. Am. Meteorol. Soc. 2023, 104, E545–E564. [Google Scholar]
- Zhang, Q.; Chen, X.; Guo, J. Climatology and environmental controls of mesoscale convective systems over East Asia. Clim. Dynam. 2022, 58, 1123–1140. [Google Scholar]
- Schumacher, R.S.; Rasmussen, K.L. Numerical simulations of updraft intensification in bow-echo mesovortices. Weather Forecast. 2020, 35, 2249–2266. [Google Scholar]
- Li, J.; Wang, Y.; Zhang, Q. Updraft-scale dynamics within mesoscale convective systems: Insights from RELAMPAGO. Mon. Weather Rev. 2023, 151, 987–1004. [Google Scholar]
- Park, H.; Kim, G.; Cha, D.H.; Chang, E.C.; Kim, J.; Park, S.H.; Lee, D.K. Effect of a scale-aware convective parameterization scheme on the simulation of convective cells-related heavy rainfall in South Korea. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002696. [Google Scholar] [CrossRef]
- Lu, J.; Qie, X.; Jiang, R.; Xiao, X.; Liu, D.; Li, J.; Yuan, S.; Chen, Z.; Wang, D.; Tian, Y.; et al. Lightning activity during convective cell mergers in a squall line and corresponding dynamical and thermodynamical characteristics. Atmos. Res. 2021, 256, 105555. [Google Scholar] [CrossRef]
- Gentile, S.; Ferretti, R.; Marzano, F.S. A neural-network-based approach for the retrieval of convective rainfall from spaceborne microwave radiometers. IEEE Trans. Geosci. Remote 2014, 52, 3985–4000. [Google Scholar]
- Novo, S.; Roca, R.; Claud, C. A 10-year climatology of tropical mesoscale convective systems using an objective tracking algorithm. Int. J. Climatol. 2014, 35, 464–478. [Google Scholar]
- Sieglaff, J.M.; Cronce, L.M.; Feltz, W.F.; Bedka, K.M.; Pavolonis, M.J.; Heidinger, A.K. A convective initiation algorithm using rapidly updating geostationary satellite data. Weather Forecast. 2011, 26, 562–578. [Google Scholar]
- Han, Y.; Chen, B.; Liu, C. Deep-learning-based rapid convective initiation nowcasting using GOES-16 rapid-scan imagery. Remote Sens. Environ. 2022, 282, 113252. [Google Scholar]
- Peters, J.M.; Morrison, H.; Nelson, T.C.; Marquis, J.N.; Mulholland, J.P.; Nowotarski, C.J. The influence of shear on deep convection initiation. Part I: Theory. J. Atmos. Sci. 2022, 79, 1669–1690. [Google Scholar] [CrossRef]
- Cintineo, J.L.; Smith, T.M.; Lakshmanan, V.; Brooks, H.E.; Ortega, K.L. An objective high-resolution hail climatology of the contiguous United States. Weather Forecast. 2013, 27, 1235–1248. [Google Scholar] [CrossRef]
- Zinner, T.; Mannstein, H.; Tafferner, A. Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteorol. Atmos. Phys. 2008, 101, 191–210. [Google Scholar] [CrossRef]
- Behrendt, A.; Pal, S.; Aoshima, F.; Bender, M.; Blyth, A.; Corsmeier, U.; Cuesta, J.; Dick, G.; Dorninger, M.; Flamant, C.; et al. Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Q. J. R. Meteorol. Soc. 2011, 137, 81–100. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Sun, R.; Guo, F.; Xu, X.; Xu, H. Convective storm VIL and lightning nowcasting using satellite and weather radar measurements based on multi-task learning models. Adv. Atmos. Sci. 2023, 40, 887–899. [Google Scholar] [CrossRef]
- Fiolleau, T.; Roca, R. A deep convective systems database derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020). Earth Syst. Sci. Data 2024, 16, 1–42. [Google Scholar] [CrossRef]
- Subrahmanyam, K.V.; Bothale, R.V.; Swapna, M.; Chauhan, P. Deciphering the signatures of oceanic convective rain cells using simultaneous observations from C-band synthetic aperture radar onboard EOS-04 satellite and GPM measurements. Geophys. Res. Lett. 2023, 50, e2022GL102317. [Google Scholar] [CrossRef]
- Thomas, C.M.; Heidinger, A.K.; Pavolonis, M.J. Comparison of GOES cloud-top properties with airborne lidar measurements. J. Appl. Meteorol. Clim. 2010, 49, 234–246. [Google Scholar]
- Shukla, K.K.; Pal, P.K.; Kishtawal, C.M. Source apportionment of convective systems using satellite-derived cloud properties. Atmos. Res. 2012, 118, 1–12. [Google Scholar]
- Fiolleau, T.; Roca, R. An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote 2013, 51, 4302–4315. [Google Scholar] [CrossRef]
- Chasteen, B.C.; McFarquhar, G.M.; Nesbitt, S.W. Thermodynamic and microphysical sensitivities to microphysics schemes in idealized MCS simulations. Mon. Weather Rev. 2018, 146, 1079–1100. [Google Scholar]
- Jones, W.K.; Christensen, M.W.; Stier, P. A semi-Lagrangian method for detecting and tracking deep convective clouds in geostationary satellite observations. Atmos. Meas. Tech. 2023, 16, 1043–1059. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Haerter, J.O. The precipitation characteristics of mesoscale convective systems over Europe. J. Geophys. Res-Atmos. 2023, 128, e2023JD039045. [Google Scholar] [CrossRef]
- Zhang, Z.; Varble, A.C.; Feng, Z.; Marquis, J.N.; Hardin, J.C.; Zipser, E.J. Dependencies of simulated convective cell and system growth biases on atmospheric instability and model resolution. J. Geophys. Res.-Atmos. 2024, 129, e2024JD041090. [Google Scholar] [CrossRef]
- Han, L.; Fu, S.; Zhao, L.; Zheng, Y.; Wang, H.; Lin, Y. 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Ocean. Tech. 2009, 26, 719–732. [Google Scholar] [CrossRef]
- Autonès, T.; Moisselin, J.M. Rapid developing thunderstorms: A new method for convective system monitoring based on MSG. In Proceedings of the 6th European Conference on Severe Storms (ECSS 2012), Palma de Mallorca, Spain, 3–7 October 2012. [Google Scholar]
- Serra, J. Mathematical morphology. In Encyclopedia of Mathematical Geosciences; Springer International Publishing: Cham, Germany, 2023; pp. 820–835. [Google Scholar]
- Najman, L.; Talbot, H. (Eds.) Mathematical Morphology: From Theory to Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Liu, J.; Ma, C.; Liu, C.; Qin, D.; Gu, X. An extended maxima transform-based region growing algorithm for convective cell detection on satellite images. Remote Sens. Lett. 2014, 5, 971–980. [Google Scholar] [CrossRef]
- Kateri, M. Contingency Table Analysis; Springer: New York, NY, USA, 2014. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Xian, D.; Zhang, P.; Gao, L.; Sun, R.; Zhang, H.; Jia, X. Fengyun meteorological satellite products for earth system science applications. Adv. Atmos. Sci. 2021, 38, 1267–1284. [Google Scholar] [CrossRef]




| Channel | Wavelength (μm) | Spatial Resolution (km) | Used |
|---|---|---|---|
| IR1 | 10.3–11.3 | 5 | √ |
| IR2 | 11.5–12.5 | 5 | √ |
| IR3 | 6.3–7.6 | 5 | √ |
| IR4 | 3.5–4.0 | 5 | |
| VIS | 0.55–0.90 | 1, 5 | √ |
| Methods | h | m | f | POD | FAR | CSI |
|---|---|---|---|---|---|---|
| RDT | 20,215 | 8157 | 7213 | 0.71 | 0.26 | 0.57 |
| ETITAN | 24,627 | 7865 | 8021 | 0.76 | 0.25 | 0.61 |
| SA | 32,548 | 5613 | 9457 | 0.85 | 0.23 | 0.68 |
| CCHT | 34,782 | 5197 | 9246 | 0.87 | 0.21 | 0.71 |
| Method | h | m | f | POD | FAR | CSI |
|---|---|---|---|---|---|---|
| CCHT | 84 | 16 | 19 | 0.84 | 0.18 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Q. A Novel Algorithm for Detecting Convective Cells Based on H-Maxima Transformation Using Satellite Images. Atmosphere 2025, 16, 1232. https://doi.org/10.3390/atmos16111232
Liu J, Zhang Q. A Novel Algorithm for Detecting Convective Cells Based on H-Maxima Transformation Using Satellite Images. Atmosphere. 2025; 16(11):1232. https://doi.org/10.3390/atmos16111232
Chicago/Turabian StyleLiu, Jia, and Qian Zhang. 2025. "A Novel Algorithm for Detecting Convective Cells Based on H-Maxima Transformation Using Satellite Images" Atmosphere 16, no. 11: 1232. https://doi.org/10.3390/atmos16111232
APA StyleLiu, J., & Zhang, Q. (2025). A Novel Algorithm for Detecting Convective Cells Based on H-Maxima Transformation Using Satellite Images. Atmosphere, 16(11), 1232. https://doi.org/10.3390/atmos16111232
