Retrieval of Atmospheric Visibility and Its Driving Factors in Shanghai, China
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Temporal Variations in Visibility and Related Factors
3.2. Distributions of Relative Humidity and PM2.5 Concentration Under Extreme Visibility Conditions
3.3. Visibility Retrieval Based on Random Forest Regression
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, J.; Gong, C.; Liu, Z.; Cong, Z.; Gao, W.; Song, T.; Pan, Y.; Sun, Y.; Ji, D.; Wang, L. The observation-based relationships between PM2.5 and AOD over China. J. Geophys. Res. Atmos. 2016, 121, 10, 701–710, 716. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, G.; Tan, T.; Li, C.; Zong, T.; Xu, N.; Zhu, W.; Hu, M. Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China. Environ. Pollut. 2021, 290, 118032. [Google Scholar] [CrossRef]
- Covert, D.S.; Charlson, R.; Ahlquist, N. A study of the relationship of chemical composition and humidity to light scattering by aerosols. J. Appl. Meteorol. Climatol. 1972, 11, 968–976. [Google Scholar] [CrossRef]
- Lin, J.; van Donkelaar, A.; Xin, J.; Che, H.; Wang, Y. Clear-sky aerosol optical depth over East China estimated from visibility measurements and chemical transport modeling. Atmos. Environ. 2014, 95, 258–267. [Google Scholar] [CrossRef]
- Won, W.-S.; Oh, R.; Lee, W.; Ku, S.; Su, P.-C.; Yoon, Y.-J. Hygroscopic properties of particulate matter and effects of their interactions with weather on visibility. Sci. Rep. 2021, 11, 16401. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-Y.; Cha, J.W.; Chang, K.-H.; Lee, C. Estimation of the Visibility in Seoul, South Korea, Based on Particulate Matter and Weather Data, Using Machine-learning Algorithm. Aerosol Air Qual. Res. 2022, 22, 220125. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R. How did air pollution change during the COVID-19 outbreak in China? Bull. Am. Meteorol. Soc. 2020, 101, E1645–E1652. [Google Scholar] [CrossRef]
- Wang, X.; Dickinson, R.E.; Su, L.; Zhou, C.; Wang, K. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Am. Meteorol. Soc. 2018, 99, 105–119. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X. Meteorological factor contributions to the seesaw concentration pattern between PM2.5 and O3 in Shanghai. Front. Environ. Sci. 2022, 10, 1015723. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Tan, Y.; Yu, W. Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing. Atmos. Chem. Phys. Discuss. 2020, 2020, 1–35. [Google Scholar]
- Zhang, X.; Ding, X.; Talifu, D.; Wang, X.; Abulizi, A.; Maihemuti, M.; Rekefu, S. Humidity and PM2.5 composition determine atmospheric light extinction in the arid region of northwest China. J. Environ. Sci. 2021, 100, 279–286. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K.; Su, L. Contribution of atmospheric diffusion conditions to the recent improvement in air quality in China. Sci. Rep. 2016, 6, 36404. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Hu, Q.; Li, G.; Ding, X.; Zhang, Y.; He, Q.; Liu, T.; Zhang, Z.; Yu, Q. Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region. J. Environ. Sci. 2016, 40, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, X.; Xu, X.; Zhao, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711–718. [Google Scholar] [CrossRef]
- Cao, J.-J.; Wang, Q.-Y.; Chow, J.C.; Watson, J.G.; Tie, X.-X.; Shen, Z.-X.; Wang, P.; An, Z.-S. Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmos. Environ. 2012, 59, 559–566. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, L.; Yan, W.; Zhang, J.; Lu, W.; Yang, Y.; Chen, J.; Wang, W. Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China. Sci. Total Environ. 2017, 575, 458–466. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Deng, X.; Tie, X.; Wu, D.; Zhou, X.; Bi, X.; Tan, H.; Li, F.; Jiang, C. Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmos. Environ. 2008, 42, 1424–1435. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Qu, Y.; An, J.; Jiang, R.; Zhang, Y.; Sun, Y.; Wu, Z.; Zhang, F.; Xu, W. Characteristics and formation mechanism of continuous hazes in China: A case study during the autumn of 2014 in the North China Plain. Atmos. Chem. Phys. 2015, 15, 8165–8178. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.-F.; Feng, Y.-C.; Zheng, X.-J.; Jiao, L.; Hong, S.-M.; Shen, J.-D.; Zhu, T.; Ding, J.; Zhang, Q. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China. Atmos. Res. 2016, 178, 570–579. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Y.; Zhang, J.; Yu, H.; Yu, X. Characterization and source apportionment of aerosol light scattering in a typical polluted city in the Yangtze River Delta, China. Atmos. Chem. Phys. 2020, 20, 10193–10210. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Y.; Hong, Y.; Xu, L.; Chen, Y.; Du, W.; Chen, J. Optical properties of PM2.5 and the impacts of chemical compositions in the coastal city Xiamen in China. Sci. Total Environ. 2016, 557, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wu, Y.; Fu, S.; Zhang, D.; Han, Z.; Zhang, R. Pollution severity-dependent aerosol light scattering enhanced by inorganic species formation in Beijing haze. Sci. Total Environ. 2020, 719, 137545. [Google Scholar] [CrossRef]
- Wang, H.; Shi, G.; Tian, M.; Zhang, L.; Chen, Y.; Yang, F.; Cao, X. Aerosol optical properties and chemical composition apportionment in Sichuan Basin, China. Sci. Total Environ. 2017, 577, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Cui, Y.; He, Q.; Gao, W.; Pei, K.; Zhu, L.; Li, H.; Wang, X. Contributions of aerosol chemical composition and sources to light extinction during haze and non-haze days in Taiyuan, China. Atmos. Pollut. Res. 2021, 12, 101140. [Google Scholar] [CrossRef]
- Lan, Z.; Zhang, B.; Huang, X.; Zhu, Q.; Yuan, J.; Zeng, L.; Hu, M.; He, L. Source apportionment of PM2.5 light extinction in an urban atmosphere in China. J. Environ. Sci. 2018, 63, 277–284. [Google Scholar] [CrossRef]
- Liao, W.; Zhou, J.; Zhu, S.; Xiao, A.; Li, K.; Schauer, J.J. Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China. Chemosphere 2020, 241, 125033. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Tao, J.; Zhang, L.; Zhang, R.; Li, S.; Wu, Y.; Cao, J.; Wang, X.; Ma, Q.; Xiong, Z. Impact of size distributions of major chemical components in fine particles on light extinction in urban Guangzhou. Sci. Total Environ. 2017, 587, 240–247. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.; Wang, Z.; Zhou, Y.; Cheng, S.; Xu, P.; Gao, X.; Nie, W.; Wang, X.; Wang, W. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmos. Environ. 2012, 55, 506–514. [Google Scholar] [CrossRef]
- Xin, J.; Wu, X.; Zhang, W.; Kong, L.; Ma, Y.; Ma, Y. A review on the extinction contribution of aerosol components in the United States and China. Chin. J. Atmos. Sci. 2024, 48, 273–286. [Google Scholar]
- Ortega, L.C.; Otero, L.D.; Solomon, M.; Otero, C.E.; Fabregas, A. Deep learning models for visibility forecasting using climatological data. Int. J. Forecast. 2023, 39, 992–1004. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Belorid, M.; Cha, J.W. Short-term visibility prediction using tree-based machine learning algorithms and numerical weather prediction data. Weather Forecast. 2022, 37, 2263–2274. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, Y.; Wang, Y.; Ma, J.; Cao, Y. Application of machine-learning-based fusion model in visibility forecast: A case study of Shanghai, China. Remote Sens. 2021, 13, 2096. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, K.; Zeng, Z.; Fei, Y.; Li, L.; Zheng, Y.; Peng, Y.; Liu, Y.; Shang, N.; Zhao, H. Mapping the seamless hourly surface visibility in China: A real-time retrieval framework using a machine-learning-based stacked ensemble model. NPJ Clim. Atmos. Sci. 2024, 7, 68. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, Z.; Meng, X. Reconstruction of daily haze data across China between 1961 and 2020. Int. J. Climatol. 2022, 42, 5629–5643. [Google Scholar] [CrossRef]
- Li, X.; Tang, G.; Li, L.; Quan, W.; Wang, Y.; Zhao, Z.; Liu, N.; Hong, Y.; Ma, Y. Multilevel air quality evolution in Shenyang: Impact of elevated point emission reduction. J. Environ. Sci. 2022, 113, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Weiwei, L.; Xiaohua, L.; Zuoyang, T.; Xiaohua, X.; Yong, X. Fault Analysis and Maintenance of DZZ Series of Automatic Weather Stations. Meteorol. Environ. Res. 2018, 9, 35–37. [Google Scholar]
- Wang, Y.; Li, Z.; Wang, Q.; Jin, X.; Yan, P.; Cribb, M.; Li, Y.; Yuan, C.; Wu, H.; Wu, T. Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring Festival 2019 and enlightenment for regional PM2.5 control in Beijing. Atmos. Chem. Phys. Discuss. 2020, 2020, 1–28. [Google Scholar]
- Dong, H.; Zou, Y.; Yan, M.; Sun, H.; Chen, J.; Yan, Y.; Zhu, C.; Hao, C.; Chen, Z. Epidemiological characteristics of RSV in pediatric inpatients with lower respiratory tract infections in Suzhou and their correlation with meteorology and atmospheric pollutants. BMC Infect. Dis. 2025, 25, 662. [Google Scholar] [CrossRef]
- Chen, W.; Cao, X.; Ran, H.; Chen, T.; Yang, B.; Zheng, X. Concentration and source allocation of black carbon by AE-33 model in urban area of Shenzhen, southern China. J. Environ. Health Sci. Eng. 2022, 20, 469–483. [Google Scholar] [CrossRef]
- Gong, H.; Wang, G.; Wang, X.; Kuang, Z.; Cheng, T. Trajectories of Terrestrial Vegetation Productivity and Its Driving Factors in China’s Drylands. Geophys. Res. Lett. 2024, 51, 10. [Google Scholar] [CrossRef]
- Ding, W.; Qie, X. Prediction of air pollutant concentrations via RANDOM forest regressor coupled with uncertainty analysis—A case study in Ningxia. Atmosphere 2022, 13, 960. [Google Scholar] [CrossRef]
- Gocheva-Ilieva, S.G.; Voynikova, D.S.; Stoimenova, M.P.; Ivanov, A.V.; Iliev, I.P. Regression trees modeling of time series for air pollution analysis and forecasting. Neural Comput. Appl. 2019, 31, 9023–9039. [Google Scholar] [CrossRef]
- Sun, H.; Gui, D.; Yan, B.; Liu, Y.; Liao, W.; Zhu, Y.; Lu, C.; Zhao, N. Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Convers. Manag. 2016, 119, 121–129. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.; Shin, J.; Tesche, M.; Dehkhoda, N.; Kim, T.; Noh, Y. Increased number concentrations of small particles explain perceived stagnation in air quality over Korea. Atmos. Chem. Phys. 2025, 25, 1023–1036. [Google Scholar] [CrossRef]
- Wen, W.; Tharaka, W.A.N.D.; Liu, L.; Ma, X.; Shen, L.; Deng, Z. Comparative analysis of the impact of PM2.5 components on visibility, extinction and oxidative potential in beijing, China. Air Qual. Atmos. Health 2025, 18, 2343–2356. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, K.; Meng, F.; Wang, S.; Lee, M.; Suh, I.; Kim, D.; Jeon, K.; Park, H.; Wang, X. Characteristics and source apportionment of fine haze aerosol in Beijing during the winter of 2013. Atmos. Chem. Phys. 2018, 18, 2573–2584. [Google Scholar]
- Wu, C.; Wang, G.; Wang, J.; Li, J.; Ren, Y.; Zhang, L.; Cao, C.; Li, J.; Ge, S.; Xie, Y. Chemical characteristics of haze particles in Xi’an during Chinese Spring Festival: Impact of fireworks burning. J. Environ. Sci. 2018, 71, 179–187. [Google Scholar] [CrossRef]
Season | Total Samples (h) | 30 km Visibility (h) | Proportion of 30 km Samples (%) | Skewness * | Kurtosis * |
---|---|---|---|---|---|
Spring | 4979 | 2101 | 58.4% | −0.25 (−1.37) | 1.96 (3.56) |
Summer | 5270 | 3077 | 80.5% | −0.34 (−2.71) | 2.09 (9.53) |
Autumn | 4861 | 3912 | 69.6% | −0.03 (−1.70) | 1.86 (4.52) |
Winter | 4624 | 3217 | 42.2% | −0.05 (−0.79) | 1.88 (2.20) |
Total | 19,734 | 12,307 | 62.4% | −0.09 (−1.41) | 1.89 (3.61) |
All Case | Vis < 7500 | Vis > 7500 | |
---|---|---|---|
Intercept | 46,102 | 16,284 | 43,405 |
PM2.5 | −232.12 | −13.55 | −223.65 |
RH | −202.76 | −114.51 | −160.45 |
R2 | RMSE (m) | MAE (m) | MAPE | Durbin-Watson * | Breusch-Pagan * | |
---|---|---|---|---|---|---|
Model 1 | 0.83 | 2369.3 | 1471.31 | 12.3% | 2.2 | 0.16 |
Model 2 | 0.93 | 1652.9 | 1020.9 | 9.8% | 2.1 | 0.13 |
Variables | PM2.5 | RH | DOY | hour | prec | Org | NO3 | SO4 | NH4 | Chl | BC |
---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | 4.6 | 6.2 | 3.5 | 2.8 | 4.0 | ||||||
Model 2 | 3.8 | 5.3 | 1.1 | 1.0 | 2.8 | 3.8 | 16.3 | 6.2 | 12.6 | 3.3 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, X.; Ren, J.; Wang, G.; Wang, Y.; Zhang, M.; Wang, X. Retrieval of Atmospheric Visibility and Its Driving Factors in Shanghai, China. Atmosphere 2025, 16, 1181. https://doi.org/10.3390/atmos16101181
Gui X, Ren J, Wang G, Wang Y, Zhang M, Wang X. Retrieval of Atmospheric Visibility and Its Driving Factors in Shanghai, China. Atmosphere. 2025; 16(10):1181. https://doi.org/10.3390/atmos16101181
Chicago/Turabian StyleGui, Xiaowen, Jing Ren, Guoyin Wang, Yuying Wang, Miao Zhang, and Xiaoyan Wang. 2025. "Retrieval of Atmospheric Visibility and Its Driving Factors in Shanghai, China" Atmosphere 16, no. 10: 1181. https://doi.org/10.3390/atmos16101181
APA StyleGui, X., Ren, J., Wang, G., Wang, Y., Zhang, M., & Wang, X. (2025). Retrieval of Atmospheric Visibility and Its Driving Factors in Shanghai, China. Atmosphere, 16(10), 1181. https://doi.org/10.3390/atmos16101181