Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH
Abstract
1. Introduction
2. Data and Methodology
3. Evaporation Duct Diagnostic Model
3.1. Data Standardization
3.2. Evaluation Metrics
4. Main Model
4.1. BLA-EDH Model
4.2. Random Forest Model
5. Results and Discussion
5.1. Analysis of BLA-EDH Model Results
5.2. Comparative Analysis of Model Efficiency
5.3. Meteorological Parameter Sensitivity
5.4. Model Analysis and Validation
5.5. Temporal Generalization Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moszkowicz, S.; Ciach, G.J.; Krajewski, W.F. Statistical detection of anomalous propagation in radar reflectivity patterns. J. Atmos. Ocean. Technol. 1994, 11, 1026–1034. [Google Scholar] [CrossRef]
- Mesnard, F.; Sauvageot, H. Climatology of anomalous propagation radar echoes in a coastal area. J. Appl. Meteorol. Climatol. 2010, 49, 2285–2300. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Yang, C. Long-range microwave links guided by evaporation ducts. IEEE Commun. Mag. 2022, 60, 68–72. [Google Scholar] [CrossRef]
- Yang, N.; Su, D.; Wang, T. Atmospheric ducts and their electromagnetic propagation characteristics in the Northwestern South China Sea. Remote Sens. 2023, 15, 3317. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Wang, J. The preliminary investigation of communication characteristics using evaporation duct across the Taiwan Strait. J. Mar. Sci. Eng. 2022, 10, 1493. [Google Scholar] [CrossRef]
- Wang, Q.; Alappattu, D.P.; Billingsley, S.; Blomquist, B.; Burkholder, R.J.; Christman, A.J.; Creegan, E.D.; de Paolo, T.; Eleuterio, D.P.; Fernando, H.J.S.; et al. CASPER: Coupled air–sea processes and electromagnetic ducting research. Bull. Am. Meteorol. Soc. 2018, 99, 1449–1471. [Google Scholar] [CrossRef]
- Qi, Z.; Mao, H.; Qiu, C.; Qi, Y. Validation of atmospheric evaporation duct in the eastern Indian Ocean. Front. Earth Sci. 2024, 12, 1472383. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y. The investigation of cooperation diversity for communication exploiting evaporation ducts in the South China Sea. IEEE Trans. Antennas Propag. 2022, 70, 8337–8347. [Google Scholar] [CrossRef]
- Jeske, H. State and limits of prediction methods of radar wave propagation conditions over sea. In Proceedings of the NATO Advanced Study Institute on Modern Topics in Microwave Propagation and Air-Sea Interaction, Sorrento, Italy, 5–14 June 1973; pp. 130–148. [Google Scholar]
- Paulus, R. Practical application of an evaporation duct model. Radio Sci. 1985, 20, 887–896. [Google Scholar] [CrossRef]
- Musson-Genon, L.; Gauthier, S.; Bruth, E. A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Sci. 1992, 27, 635–644. [Google Scholar] [CrossRef]
- Tabrikian, J.; Krolik, J.L.; Vasudevan, S. Estimating tropospheric refractivity parameters from radar sea clutter. In Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, Caesarea, Israel, 16 June 1999; pp. 345–348. [Google Scholar] [CrossRef]
- Babin, S.M.; Dockery, G.D. LKB-based evaporation duct model comparison with buoy data. J. Appl. Meteorol. 2002, 41, 434–446. [Google Scholar] [CrossRef]
- Hao, X.-J.; Li, Q.-L.; Guo, L.-X.; Lin, L.-K.; Ding, Z.-H.; Zhao, Z.-W. Digital maps of atmospheric refractivity and atmospheric ducts based on a meteorological observation dataset. IEEE Trans. Antennas Propag. 2022, 70, 2873–2883. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Zhu, M.; Jiang, Z.; Li, Y. An evaporation duct height prediction method based on deep learning. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1307–1311. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, J.; Li, J.; Zhao, D.; Huang, L.; Zhu, J. An evaporation duct height prediction model based on a long short-term memory neural network. IEEE Trans. Antennas Propag. 2021, 69, 7795–7804. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Zhao, J.; Jiang, T.; Zhu, J.; Zhao, D.; Zhao, J. Research on evaporation duct height prediction based on back propagation neural network. IET Microw. Antennas Propag. 2020, 14, 1547–1554. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y. A multi-dimensional deep-learning-based evaporation duct height prediction model derived from MAGIC data. Remote Sens. 2022, 14, 5484. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Kashani, M.H.; Jun, C.; Bateni, S.M.; Band, S.S. Forecast of rainfall distribution based on fixed sliding window long short-term memory. Eng. Appl. Comput. Fluid Mech. 2022, 16, 248–261. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, W. Multistage attention network for multivariate time series prediction. Neurocomputing 2020, 383, 122–137. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, S.; Feng, W.; Dauphin, G. Feature importance ranking of random forest-based end-to-end learning algorithm. Remote Sens. 2023, 15, 5203. [Google Scholar] [CrossRef]
- Effrosynidis, D.; Arampatzis, A. An evaluation of feature selection methods for environmental data. Ecol. Inform. 2021, 61, 101224. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Shen, L.; Wen, J.; Zhang, Y.; Ullah, S.; Meng, X.; Chen, G. Performance evaluation of ERA5 extreme precipitation in the Yangtze River Delta, China. Atmosphere 2022, 13, 1416. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Zou, J.; Yang, P.; Wang, B.; Yang, S.; Qiu, Z.; Li, Z.; Hu, T.; Song, M. Investigating the temporal and spatial characteristics of lower atmospheric ducts in the Arctic via long-term numerical simulations. Atmosphere 2024, 16, 11. [Google Scholar] [CrossRef]
- Ding, J.; Fei, J.; Huang, X.; Cheng, X.; Hu, X.; Ji, L. Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments. J. Meteorol. Res. 2015, 29, 467–481. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, X.; Liu, Y. The statistical characteristics of atmospheric ducts observed over stations in different regions of American mainland based on high-resolution GPS radiosonde soundings. Front. Environ. Sci. 2022, 10, 946226. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Qiao, J.; Li, J.; Zhou, C. Statistical analysis of the spatiotemporal distribution of lower atmospheric ducts over the seas adjacent to China, based on the ECMWF reanalysis dataset. Remote Sens. 2022, 14, 4864. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Wang, J. Regional spatiotemporal statistical database of evaporation ducts over the South China Sea for future long-range radio application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 14, 6432–6444. [Google Scholar] [CrossRef]
- Dockery, D.; Kuttler, J.R. An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation. IEEE Trans. Antennas Propag. 1996, 44, 592–1599. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Yang, C. UAV-aided maritime communication over the Pacific Ocean using the elevated duct toward future wireless networks. Sci. Rep. 2025, 15, 11920. [Google Scholar] [CrossRef]
Reanalysis Variables | Level | Horizontal Resolution |
---|---|---|
Air temperature (K) | 2 m | |
Relative humidity (% *) | 2 m (derived) | |
Sea-surface temperature (K) | Sea surface | |
Sea-level pressure (Pa) | Sea surface | |
Dewpoint temperature (K) | 2 m | |
U component of wind (m/s) | 10 m | |
V component of wind (m/s) | 10 m |
Model | RMSE | MAE | R2 |
---|---|---|---|
MLP | 0.6823 | 0.2520 | 0.9692 |
LSTM | 0.7592 | 0.5180 | 0.9619 |
Bi-LSTM | 0.7013 | 0.1974 | 0.9675 |
MLP+A | 0.7214 | 0.2590 | 0.9656 |
LSTM+A | 0.6214 | 0.1938 | 0.9745 |
BLA-EDH | 0.4492 | 0.1442 | 0.9867 |
Model | Single File Processing(s) | Total File Processing(s) | Efficiency GAP |
---|---|---|---|
BLA-EDH | 2.89–4.45 | 12.29 | - |
NPS | 1701.39–5044.59 | 10,536.26 | 3 orders of magnitude |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Li, L.; Zhang, Z.; Chen, C.; Liu, H. Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH. Atmosphere 2025, 16, 1156. https://doi.org/10.3390/atmos16101156
Wu X, Li L, Zhang Z, Chen C, Liu H. Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH. Atmosphere. 2025; 16(10):1156. https://doi.org/10.3390/atmos16101156
Chicago/Turabian StyleWu, Xiaoyu, Lei Li, Zheyan Zhang, Can Chen, and Haozhi Liu. 2025. "Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH" Atmosphere 16, no. 10: 1156. https://doi.org/10.3390/atmos16101156
APA StyleWu, X., Li, L., Zhang, Z., Chen, C., & Liu, H. (2025). Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH. Atmosphere, 16(10), 1156. https://doi.org/10.3390/atmos16101156