Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Selection of CMIP6 Models
3.2. Observed and Projected Changes in Winter Climate
3.3. Possible Mechanisms
4. Conclusions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43. [Google Scholar] [CrossRef] [PubMed]
- World Population Prospects 2024: Data Sources. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2024_wpp-data_sources.pdf (accessed on 15 October 2024).
- Dai, G.K.; Li, C.X.; Han, Z.; Luo, D.H.; Yao, Y. The nature and predictability of the East Asian extreme cold events of 2020/21. Adv. Atmos. Sci. 2022, 39, 566–575. [Google Scholar] [CrossRef]
- Liu, A.Q.; Xue, D.K.; Chen, X.L.; Huang, D.Q. Emergent constraints on the future East Asian winter surface air temperature changes. Environ. Res. Lett. 2024, 19, 064050. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Gu, L.H.; Ding, Y.H.; Shao, L.; Wu, Z.M.; Yang, X.S.; Li, C.Z.; Li, Z.C.; Wang, X.M.; Cao, Y.H. The Great 2008 Chinese Ice Storm: Its socioeconomic-ecological impact and sustainability lessons learned. Bull. Am. Meteorol. Soc. 2011, 92, 47–60. [Google Scholar] [CrossRef]
- Chen, J.J.; Zhou, M.G.; Yang, J.; Yin, P.; Wang, B.G.; Ou, C.Q.; Liu, Q.Y. The modifying effects of heat and cold wave characteristics on cardiovascular mortality in 31 major Chinese cities. Environ. Res. Lett. 2020, 15, 105009. [Google Scholar] [CrossRef]
- Miao, J.P.; Wang, T.; Chen, D. More robust changes in the East Asian winter monsoon from 1.5 to 2.0 °C global warming targets. Int. J. Climatol. 2020, 40, 4731–4749. [Google Scholar] [CrossRef]
- Kreyling, J.; Grant, K.; Hammerl, V.; Arfin-Khan, M.A.; Malyshev, A.V.; Peñuelas, J.; Pritsch, K.; Sardans, J.; Schloter, M.; Schuerings, J.; et al. Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. Sci. Rep. 2019, 9, 14632. [Google Scholar] [CrossRef]
- Sutton, A.O.; Studd, E.K.; Fernandes, T.; Bates, A.E.; Bramburger, A.J.; Cooke, S.J.; Hayden, B.; Henry, H.A.L.; Humphries, M.M.; Martin, R.; et al. Frozen out: Unanswered questions about winter biology. Environ. Rev. 2021, 29, 431–442. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengard, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Rashid, H.; Yang, K.; Zeng, A.; Ju, S.; Rashid, A.; Guo, F.; Lan, S. The Influence of Landcover and Climate Change on the Hydrology of the Minjiang River Watershed. Water 2021, 13, 3554. [Google Scholar] [CrossRef]
- Pacaldo, R.S.; Aydin, M.; Amarille, R.K. Soil respiration and controls in warmer winter: A snow manipulation study in postfire and undisturbed black pine forests. Ecol. Evol. 2024, 14, e11075. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.Y.; Wang, S.W.; Zhu, J.H. East Asian winter monsoon and Arctic oscillation. Geophys. Res. Lett. 2001, 28, 2073–2076. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Sun, J.X.; Zhang, S.P.; Jiang, Y.X.; Wang, Y.S.; Wu, B.Q.; Wang, H.J. Impacts of the interannual variability of the Kuroshio extension on the East Asian trough in winter. Atmosphere 2022, 13, 996. [Google Scholar] [CrossRef]
- Feng, G.L.; Zou, M.; Qiao, S.B.; Zhi, R.; Gong, Z.Q. The changing relationship between the December North Atlantic Oscillation and the following February East Asian trough before and after the late 1980s. Clim. Dyn. 2018, 51, 4229–4242. [Google Scholar] [CrossRef]
- Luo, X.; Wang, B. How autumn Eurasian snow anomalies affect East Asian winter monsoon: A numerical study. Clim. Dyn. 2019, 52, 69–82. [Google Scholar] [CrossRef]
- Sun, C.S.; Yang, S.; Li, W.J.; Zhang, R.N.; Wu, R.G. Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice. Clim. Dyn. 2016, 47, 481–496. [Google Scholar] [CrossRef]
- Ding, Y.H.; Wang, Z.Y.; Song, Y.F.; Zhang, J. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta. Meteorol. Sin. 2008, 5, 808–825. (In Chinese) [Google Scholar] [CrossRef]
- Ding, T.; Wang, Y.G.; Ke, Z.J.; Wang, Z.Y. Northern Hemisphere Atmospheric Circulation in Winter 2016/2017 and Its Impact on Temperature in China. Meteorol. Mon. 2017, 43, 887–893. (In Chinese) [Google Scholar] [CrossRef]
- Ding, Y.H.; Liu, Y.J.; Liang, S.J.; Ma, X.Q.; Zhang, Y.X.; Si, D.; Liang, P.; Song, Y.F.; Zhang, J. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteorol. Res. 2014, 28, 693–713. [Google Scholar] [CrossRef]
- Hao, X.; He, S.P.; Wang, H.J.; Han, T.T. Quantifying the contribution of anthropogenic influence to the East Asian winter monsoon in 1960–2012. Atmos. Chem. Phys. 2019, 19, 9903–9911. [Google Scholar] [CrossRef]
- Miao, J.P.; Wang, T.; Wang, H.J.; Zhu, Y.L.; Sun, J.Q. Interdecadal weakening of the East Asian winter monsoon in the mid-1980s: The roles of external forcings. J. Clim. 2018, 31, 8985–9000. [Google Scholar] [CrossRef]
- Hong, J.Y.; Ahn, J.B.; Jhun, J.G. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices. Clim. Dyn. 2017, 48, 577–595. [Google Scholar] [CrossRef]
- Xu, M.M.; Xu, H.M.; Ma, J. Responses of the East Asian winter monsoon to global warming in CMIP5 models. Int. J. Climatol. 2016, 36, 2139–2155. [Google Scholar] [CrossRef]
- Wang, J.M.; Guan, Y.P.; Wu, L.X.; Guan, X.D.; Cai, W.J.; Huang, J.P.; Dong, W.J.; Zhang, B.L. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Chen, G.W.; Ling, J.; Zhang, R.W.; Xiao, Z.N.; Li, C.Y. The MJO From CMIP5 to CMIP6: Perspectives From Tracking MJO Precipitation. Geophys. Res. Lett. 2022, 49, e2021GL095241. [Google Scholar] [CrossRef]
- Deng, R.; Qiao, S.B.; Zhu, X.; Dong, T.Y.; Feng, G.L.; Dong, W.J. The improvements of sea surface temperature simulation over China Offshore Sea in present climate from CMIP5 to CMIP6 models. Clim. Dyn. 2023, 61, 5111–5130. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Jiang, D.B.; Hu, D.; Tian, Z.P.; Lang, X.M. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Makula, E.K.; Zhou, B.T. Coupled Model Intercomparison Project phase 6 evaluation and projection of east African precipitation. Int. J. Climatol. 2022, 42, 2398–2412. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.; Doelman, J.C.; van den Berg, M.; Harmsen, M.; de Boer, H.S.; Bouwman, L.F.; Daioglou, V.; Edelenbosch, O.Y.; et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 2017, 42, 237–250. [Google Scholar] [CrossRef]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Change 2017, 42, 251–267. [Google Scholar] [CrossRef]
- Kriegler, E.; Bauer, N.; Popp, A.; Humpenöder, F.; Leimbach, M.; Strefler, J.; Baumstark, L.; Bodirsky, B.L.; Hilaire, J.; Klein, D.; et al. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Glob. Environ. Change 2017, 42, 297–315. [Google Scholar] [CrossRef]
- Yan, Y.H.; Zhu, C.W.; Liu, B.Q.; Jiang, S. Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere 2021, 12, 24. [Google Scholar] [CrossRef]
- Dong, Z.Z.; Yang, R.W.; Cao, J.; Wang, L. Effect of anthropogenic forcing on increased winter precipitation in Southeast Asia from 1979 to 2014. Front. Environ. Sci. 2023, 10, 1115698. [Google Scholar] [CrossRef]
- Nooni, I.K.; Ogou, F.K.; Chaibou, A.A.S.; Nakoty, F.M.; Gnitou, G.T.; Lu, J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere 2023, 14, 607. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Jin, C.H.; Wang, B.; Liu, J. Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models. J. Clim. 2020, 33, 9307–9326. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Y.Q.; Sun, D.Z. Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Clim. 2013, 26, 4947–4961. [Google Scholar] [CrossRef]
- Yu, T.T.; Chen, W.; Gong, H.N.; Feng, J.; Chen, S.F. Comparisons between CMIP5 and CMIP6 models in simulations of the climatology and interannual variability of the east asian summer Monsoon. Clim. Dyn. 2023, 60, 2183–2198. [Google Scholar] [CrossRef]
- Park, B.J.; Kim, Y.H.; Min, S.K.; Lim, E.P. Anthropogenic and natural contributions to the lengthening of the summer season in the northern hemisphere. J. Clim. 2018, 31, 6803–6819. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Sun, J.X.; Ma, L.; Li, H.; Wang, Y.S. Influence of the interannual variability of the Kuroshio Extension on the Mediterranean trough in the cold season. Front. Mar. Sci. 2022, 9, 1081452. [Google Scholar] [CrossRef]
- Liu, B.Q.; Zhu, C.W. Diverse impacts of the Siberian high on surface air temperature in Northeast China during boreal winter. Int. J. Climatol. 2020, 40, 594–603. [Google Scholar] [CrossRef]
- Gong, H.N.; Wang, L.; Chen, W.; Wu, R.G. Attribution of the East Asian winter temperature trends during 1979–2018: Role of external forcing and internal variability. Geophys. Res. Lett. 2019, 46, 10874–10881. [Google Scholar] [CrossRef]
- Bartolini, S.; Massai, R.; Iacona, C.; Guerriero, R.; Viti, R. Forty-year investigations on apricot blooming: Evidences of climate change effects. Sic. Hortic. 2019, 244, 399–405. [Google Scholar] [CrossRef]
- Christidis, N.; McCarthy, M.; Stott, P.A. The increasing likelihood of temperatures above 30 to 40 °C in the United Kingdom. Nat. Commun. 2020, 11, 3093. [Google Scholar] [CrossRef]
- Power, S.B.; Delage, F.P.D. Setting and smashing extreme temperature records over the coming century. Nat. Clim. Change 2019, 9, 529–534. [Google Scholar] [CrossRef]
- Wang, A.; Dai, Y.; Zhang, M.M.; Chen, E.Q. Exploring the cooling intensity of green cover on urban heat island: A case study of nine main urban districts in Chongqing. Sustain. Cities Soc. 2025, 124, 106299. [Google Scholar] [CrossRef]
- Buermann, W.; Forkel, M.; O’Sullivanl, M.; Sitch, S.; Friedlingstein, P.; Haverd, V. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–115. [Google Scholar] [CrossRef]
- Horton, K.G.; Sorte, F.A.L.; Sheldon, D.; Lin, T.Y.; Winner, K.; Bernstein, G.; Maji, S.; Hochachka, W.M.; Farnsworth, A. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 2020, 10, 63–68. [Google Scholar] [CrossRef]
- Witting, M.; Bischof, M.; Schmude, J. Behavioural change or “business as usual”? Characterising the reaction behaviour of winter (sport) tourists to climate change in two German destinations. Int. J. Tour. Res. 2021, 23, 110–122. [Google Scholar] [CrossRef]
- Wobus, C.; Small, E.E.; Hosterman, H.; Mills, D.; Stein, J.; Rissing, M.; Jones, R.; Duckworth, M.; Hall, R.; Kolian, M.; et al. Projected climate change impacts on skiing and snowmobiling: A case study of the United States. Glob. Environ. Change 2017, 45, 1–14. [Google Scholar] [CrossRef]
- Shan, Y.; Ying, H.; Bao, Y.H. Changes in Extreme Temperature Events and Their Contribution to Mean Temperature Changes during Historical and Future Periods over Mainland China. Atmosphere 2022, 13, 1127. [Google Scholar] [CrossRef]
- Sasai, T.; Kawase, H.; Kanno, Y.; Yamaguchi, J.; Sugimoto, S.; Yamazaki, T.; Sasaki, H.; Fujita, M. Future projection of extreme heavy snowfall events with a 5-km large ensemble regional climate simulation. J. Geophys. Res. Atmos. 2019, 124, 13975–13990. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Z.Z.; Gong, H.N.; Wang, L.; Chen, W.; Wu, R.G. Climatology and trends of wintertime diurnal temperature range over East Asia in CMIP6 models: Evaluation and attribution. Atmos. Res. 2022, 280, 106438. [Google Scholar] [CrossRef]
- Lobell, D.B. Changes in diurnal temperature range and national cereal yields. Agric. For. Meteorol. 2007, 145, 229–238. [Google Scholar] [CrossRef]
- Yi, C.X.; Ricciuto, D.; Li, R.Z.; Wolbeck, J.; Xu, X.Y.; Nilsson, M.; Aires, L.; Albertson, J.D.; Ammann, C.; Arain, M.A.; et al. Climate control of terrestrial carbon exchange across biomes and continents. Environ. Res. Lett. 2010, 5, 034007. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Z.W.; Zhu, R.; Wang, X.; Jin, L.; Song, J.; Su, H. Impact of diurnal temperature range on human health: A systematic review. Int. J. Biometeorol. 2014, 58, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, J.; Lim, Y.H.; Honda, Y.; Hashizume, M.; Guo, Y.L.; Kan, H.D.; Yi, S.; Kim, H. Comprehensive approach to understand the association between diurnal temperature range and mortality in East Asia. Sci. Total Environ. 2016, 539, 313–321. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, Q.; Liu, G.X.; Zhang, B.; Zhang, R.; Cai, J.L.; Wang, X.W.; Xiang, W. Seasonal ice dynamics in the lower ablation zone of Dagongba Glacier, southeastern Tibetan Plateau, from multitemporal UAV images. J. Glaciol. 2022, 68, 636–650. [Google Scholar] [CrossRef]
- Gan, B.L.; Wu, L.X.; Jia, F.; Li, S.J.; Cai, W.J.; Nakamura, H.; Alexander, M.A.; Miller, A.J. On the response of the Aleutian low to greenhouse warming. J. Clim. 2017, 30, 3907–3925. [Google Scholar] [CrossRef]
- Choi, H.Y.; Lee, H.J.; Kim, S.Y.; Park, W. Deepening of future Aleutian low in ensemble global warming simulations with the Kiel Climate Model. Ocean Sci. J. 2020, 55, 219–230. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Puig, D.; Adger, N.W.; Barnett, J.; Vanhala, L.; Boyd, E. Improving the effectiveness of climate change adaptation measures. Clim. Change 2025, 178, 7. [Google Scholar] [CrossRef]
- Shaw, R.; Luo, Y.; Cheong, T.S.; Abdul Halim, S.; Chaturvedi, S.; Hashizume, M.; Insarov, G.E.; Ishikawa, Y.; Jafari, M.; Kitoh, A.; et al. Asia. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Dai, L.; Cheng, T.F.; Lu, M. Define East Asian monsoon annual cycle via a selforganizing map-based approach. Geophys. Res. Lett. 2021, 48, e2020GL089542. [Google Scholar] [CrossRef]
- Dai, L.; Cheng, T.F.; Lu, M. Anthropogenic warming disrupts intraseasonal monsoon stages and brings dry-get-wetter climate in future East Asia. npj Clim. Atmos. Sci. 2022, 5, 11. [Google Scholar] [CrossRef]
- Li, Z.B.; Sun, Y.; Li, T.; Ding, Y.H.; Hu, T. Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 °C of warming. Earth’s Future 2019, 7, 1391–1406. [Google Scholar] [CrossRef]
- Moon, S.; Ha, K.J. Future changes in monsoon duration and precipitation using CMIP6. npj Clim. Atmos. Sci. 2020, 3, 45. [Google Scholar] [CrossRef]
Model ID | Institute ID | Country | Longitude × Latitude |
---|---|---|---|
ACCESS-ESM1-5 | CSIRO | Australia | 192 × 145 |
BCC-CSM2-MR | BCC | China | 320 × 160 |
CanESM5 | CCCMA | Canada | 128 × 64 |
CESM2 | NCAR | USA | 288 × 192 |
FGOALS-g3 | CAS | China | 180 × 80 |
IPSL-CM6A-LR | IPSL | France | 144 × 143 |
MIROC6 | JAMSTEC, AORI, NIES, and R-CCS | Japan | 256 × 128 |
MRI-ESM2-0 | MRI | Japan | 320 × 160 |
NorESM2-LM | NCC | Norway | 144 × 96 |
Model Name | SAT | SLP | 500 hPa Geopotential Height | |||
---|---|---|---|---|---|---|
ERA5 | NCEP-NCAR | ERA5 | NCEP-NCAR | ERA5 | NCEP-NCAR | |
ACCESS-ESM1-5 | 0.84 | 0.84 | 0.43 | 0.43 | 0.72 | 0.73 |
BCC-CSM2-MR | 0.84 | 0.85 | 0.43 | 0.42 | 0.73 | 0.74 |
CanESM5 | 0.85 | 0.85 | 0.40 | 0.39 | 0.75 | 0.76 |
CESM2 | 0.86 | 0.86 | 0.43 | 0.42 | 0.76 | 0.76 |
FGOALS-g3 | 0.85 | 0.85 | 0.40 | 0.40 | 0.74 | 0.75 |
IPSL-CM6A-LR | 0.85 | 0.85 | 0.39 | 0.38 | 0.73 | 0.73 |
MIROC6 | 0.84 | 0.84 | 0.44 | 0.44 | 0.71 | 0.72 |
MRI-ESM2-0 | 0.85 | 0.85 | 0.43 | 0.41 | 0.73 | 0.74 |
NorESM2-LM | 0.83 | 0.82 | 0.39 | 0.38 | 0.70 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Chi, Y.; Wang, W.; Li, W.; Wang, H.; Sun, J. Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models. Atmosphere 2025, 16, 1143. https://doi.org/10.3390/atmos16101143
Jiang Y, Chi Y, Wang W, Li W, Wang H, Sun J. Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models. Atmosphere. 2025; 16(10):1143. https://doi.org/10.3390/atmos16101143
Chicago/Turabian StyleJiang, Yuxi, Yutao Chi, Weidong Wang, Wenshan Li, Hui Wang, and Jianxiang Sun. 2025. "Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models" Atmosphere 16, no. 10: 1143. https://doi.org/10.3390/atmos16101143
APA StyleJiang, Y., Chi, Y., Wang, W., Li, W., Wang, H., & Sun, J. (2025). Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models. Atmosphere, 16(10), 1143. https://doi.org/10.3390/atmos16101143