Spatiotemporal Analyses of High-Resolution Precipitation Ensemble Simulations in the Chinese Mainland Based on Quantile Mapping (QM) Bias Correction and Bayesian Model Averaging (BMA) Methods for CMIP6 Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. QM Method
2.3.2. Statistical Indicators
2.3.3. BMA
2.3.4. M-K Test
3. Results
3.1. Bias Correction
3.2. BMA for Six Optimal Models
3.3. Spatiotemporal Variation in BMA Simulations
3.3.1. Evaluation of BMA Simulation
3.3.2. Seasonal Analysis
3.3.3. Comparation Between BMA and the Worst Multi-Model Ensemble (WMME) [52]
4. Discussion
4.1. Consistency of Assessment Results
4.2. Explanation of the Physical Mechanism of Precipitation Differences Simulated by CMIP6 Models
4.3. Uncertainty Analysis
4.4. Comparison with Low-Resolution Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Jiang, Z.H. Future changes in precipitation over Hunan Province based on CMIP5 simulations using the statistical downscaling method of transform cumulative distribution function. Acta Meteorol. Sin. 2017, 75, 223–235. [Google Scholar]
- Han, H.; Zhang, J.; Ma, G.; Zhang, X.; Bai, Y. Advances on impact of climate change on ecosystem services. J. Nanjing Forest. Univ. 2018, 42, 184. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteor. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Martens, B.; Cabus, P.; De Jongh, I.; Verhoest, N.E.C. Merging weather radar observations with ground-based measurements of rainfall using an adaptive multiquadric surface fitting algorithm. J. Hydrol. 2013, 500, 84–96. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Roshun, S.H.; Booij, M.J. Comparison of satellite-based and reanalysis precipitation products for hydrological modeling over a data-scarce region. Clim. Dyn. 2024, 62, 3505–3537. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett. 2009, 36, L17808. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar]
- Ougahi, J.H.; Mahmood, S.A. Evaluation of satellite-based and reanalysis precipitation datasets by hydrologic simulation in the Chenab river basin. J. Water Clim. Change 2022, 13, 1563–1582. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. 2012, 117, D05102. [Google Scholar] [CrossRef]
- Huang, J.; Zhai, J.; Jiang, T.; Wang, Y.; Li, X.; Wang, R.; Fischer, T. Analysis of future drought characteristics in China using the regional climate model CCLM. Clim. Dyn. 2018, 50, 507–525. [Google Scholar] [CrossRef]
- Zhao, M.; Su, B.; Jiang, T.; Wang, A.; Tao, H. Simulation and projection of precipitation in the upper Yellow River Basin by CMIP6 multi-model ensemble. Plateau Meteorol. 2021, 40, 547–558. [Google Scholar]
- Tu, K.; Yan, Z.; Zhang, X.; Dong, W. Simulation of precipitation in monsoon regions of China by CMIP3 models. Atmos. Ocean. Sci. Lett. 2009, 2, 194–200. [Google Scholar]
- Sun, Q.; Miao, C.; Duan, Q. Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.; Taylor, K.E. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Jiang, J.; Lai, X.; Zhang, Z. Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin, China. Clim. Change 2012, 111, 737–751. [Google Scholar] [CrossRef]
- Miao, C.; Duan, Q.; Yang, L.; Borthwick, A.G. On the applicability of temperature and precipitation data from CMIP3 for China. PLoS ONE 2012, 7, e44659. [Google Scholar] [CrossRef]
- Gao, C.; Su, B.; Krysanova, V.; Zha, Q.; Chen, C.; Luo, G.; Jiang, T. A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China. Earth Syst. Sci. 2020, 12, 387–402. [Google Scholar] [CrossRef]
- Yuan, W. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci. 2013, 30, 1679–1694. [Google Scholar] [CrossRef]
- Salunke, P.; Jain, S.; Mishra, S.K. Performance of the CMIP5 models in the simulation of the Himalaya-Tibetan Plateau monsoon. Theor. Appl. Climatol. 2019, 137, 909–928. [Google Scholar] [CrossRef]
- Ou, T.; Chen, D.; Linderholm, H.W.; Jeong, J.H. Evaluation of global climate models in simulating extreme precipitation in China. Tellus A 2013, 65, 19799. [Google Scholar] [CrossRef]
- Chen, L.; Frauenfeld, O.W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Santer, B.D.; Fyfe, J.C.; Pallotta, G.; Flato, G.M.; Meehl, G.A.; England, M.H.; Zou, C.Z. Causes of differences in model and satellite tropospheric warming rates. Nat. Geosci. 2017, 10, 478–485. [Google Scholar] [CrossRef]
- Wei, K.; Xu, T.; Du, Z.; Gong, H.; Xie, B. How well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon? Clim. Dyn. 2014, 43, 1241–1255. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Williamson, M.S. Taking climate model evaluation to the next level. Nat. Clim. Change 2019, 9, 102–110. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Haarsma, R.; Acosta, M.; Bakhshi, R.; Bretonnière, P.A.B.; Caron, L.P.; Castrillo, M.; Wyser, K. HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR. Description, model performance, data handling and validation. Geosci. Model Dev. 2020, 13, 3507–3527. [Google Scholar] [CrossRef]
- Song, F.; Zhou, T. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Clim. 2014, 27, 1679–1697. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Jie, W.; Zhang, J. Impact of higher resolution on precipitation over China in CMIP6 HighResMIP models. Atmosphere 2021, 12, 762. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, P.A.; Xu, B.; Zhu, F.; Fu, J. Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin. Theor. Appl. Clim. 2018, 133, 191–204. [Google Scholar]
- Feng, J.; Lee, D.K.; Fu, C.; Tang, J.; Sato, Y.; Kato, H.; Mabuchi, K. Comparison of four ensemble methods combining regional climate simulations over Asia. Meteorol. Atmos. Phys. 2011, 111, 41–53. [Google Scholar]
- Hu, Y.; Xu, Y.; Li, J.; Han, Z. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China. Adv. Clim. Change Res. 2021, 17, 730. [Google Scholar]
- He, L.; Cleverly, J.; Wang, B.; Jin, N.; Mi, C.; Liu, D.L.; Yu, Q. Multi-model ensemble projections of future extreme heat stress on rice across southern China. Theor. Appl. Clim. 2018, 133, 1107–1118. [Google Scholar]
- Jia, B.; Cai, X.; Zhao, F.; Liu, J.; Chen, S.; Luo, X.; Xu, J. Potential future changes of terrestrial water storage based on climate projections by ensemble model simulations. Adv. Water. Resour. 2020, 142, 103635. [Google Scholar]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Feng, F. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors. Stat. Sci. 1999, 14, 382–417. [Google Scholar]
- Zhou, T.J.; Li, Z. Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Clim. Dyn. 2002, 19, 167–180. [Google Scholar] [CrossRef]
- Shi, X.; Xu, X. Regional characteristics of the interdecadal turning of winter/summer climate modes in Chinese mainland. Chin. Sci. Bull. 2007, 52, 101–112. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth Syst. Sci. Data 2023, 15, 3147–3161. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Navarra, A. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar]
- An, B.; Yu, Y.; Bao, Q.; He, B.; Li, J.; Luan, Y.; Zheng, W. CAS FGOALS-f3-H dataset for the high-resolution model intercomparison project (HighResMIP) tier 2. Adv. Atmos. Sci. 2022, 39, 1873–1884. [Google Scholar] [CrossRef]
- Roberts, M.J.; Baker, A.; Blockley, E.W.; Calvert, D.; Coward, A.; Hewitt, H.T.; Vidale, P.L. Description of the resolution hierarchy of the global coupled HadGEM3-GC3. 1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 2019, 12, 4999–5028. [Google Scholar] [CrossRef]
- Eman, K.; Chung, E.S.; Ayugi, B.O. Investigating the skills of HighResMIP in capturing historical and future mean precipitation shifts over Pakistan. Int. J. Climatol. 2024, 44, 3888–3911. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Vuichard, N. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.S.; Brüggemann, N.; Stössel, A. Max planck institute earth system model (MPI-ESM1.2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Kitoh, A. Climate simulations using MRI-AGCM3. 2 with 20-km grid. J. Meteorol. Soc. Japan 2012, 90, 233–258. [Google Scholar]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Thiele-Eich, I. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, RG3003. [Google Scholar] [CrossRef]
- Tong, Y.; Gao, X.J.; Han, Z.Y.; Xu, Y. Correction of Daily Precipitation Simulation Errors over China Based on the RegCM4 Model. Chin. J. Atmos Sci. 2017, 41, 1156–1166. [Google Scholar]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 evaluation and projection of temperature and precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Duan, Q.; Phillips, T.J. Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res. 2010, 115, D18123. [Google Scholar] [CrossRef]
- Xing, L.; Huang, L.; Chi, G.; Yang, L.; Li, C.; Hou, X. A dynamic study of a karst spring based on wavelet analysis and the Mann-Kendall Trend Test. Water 2018, 10, 698. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Jia, Q.; Jia, H.; Li, Y.; Yin, D. Applicability of CMIP5 and CMIP6 models in China: Reproducibility of historical simulation and uncertainty of future projection. J. Clim. 2023, 36, 5809–5824. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Fu, Y.; Tao, H.; Zhu, B.; Yang, L. Does CMIP6 inspire more confidence in projecting precipitation over China? Int. J. Climatol. 2023, 43, 4965–4986. [Google Scholar] [CrossRef]
- Yi, P.; Chen, G.; Tang, X. Present and future climate of the Yangtze River Delta region: Analysis of the CMIP6 HighResMIP simulations. Theor. Appl. Climatol. 2024, 155, 8909–8921. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Chen, S.; Sun, Y.; Qian, D. Uncertainty of central China summer precipitation and related natural internal variability under global warming of 1 to 3 °C. Int. J. Climatol. 2021, 41, 6640–6653. [Google Scholar] [CrossRef]
- Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 2013, 118, 1613–1623. [Google Scholar] [CrossRef]
- Wu, C.H.; Freychet, N.; Chen, C.A.; Hsu, H.H. East Asian presummer precipitation in the CMIP5 at high versus low horizontal resolution. Int. J. Climatol. 2017, 37, 4158–4170. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar]
- Li, Y.; Yan, D.; Peng, H.; Xiao, S. Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2021, 253, 105406. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.S.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.L.; Sorooshian, S. Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set. Int. J. Climatol. 2019, 39, 3505–3522. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Piao, J.; Chen, W.; Chen, S. Sources of the internal variability-generated uncertainties in the projection of Northeast Asian summer precipitation. Clim. Dyn. 2021, 56, 1783–1797. [Google Scholar] [CrossRef]
- Huang, D.Q.; Zhu, J.; Zhang, Y.C.; Huang, A.N. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 9035–9047. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W. Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: Uncertainty due to internal variability. Clim. Dyn. 2019, 53, 6309–6327. [Google Scholar] [CrossRef]
- Lin, L.; Xu, Y.; Wang, Z.; Diao, C.; Dong, W.; Xie, S.-P. Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys. Res. Lett. 2018, 45, 7857–7865. [Google Scholar]
- Latif, M. Uncertainty in climate change projections. J. Geochem. Explor. 2011, 110, 1–7. [Google Scholar] [CrossRef]
- Kokic, P.; Jin, H.; Crimp, S. Improved point scale climate projections using a block bootstrap simulation and quantile matching method. Clim. Dyn. 2013, 41, 853–866. [Google Scholar] [CrossRef]
- Su, F.; Duan, X.; Chen, D.; Hao, Z.; Cuo, L. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef]
- Hagedorn, R.; Doblas-Reyes, F.J.; Palmer, T.N. The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 2005, 57, 219–233. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, T.; Neale, R.B.; Wu, X.; Zhang, G.J. Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Clim. 2010, 23, 3657–3675. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, L.; Zhou, T.; Zheng, J. Assessing the performance of CMIP6 models in simulating droughts across global drylands. Adv. Atmos. Sci. 2024, 41, 193–208. [Google Scholar] [CrossRef]
Serial Number | Model Data Name | National and Research Institutions | Reference | Resolution/km |
---|---|---|---|---|
1 | CMCC-CM2-VHR4 CMCC-CM2-HR4 | Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy | [39] | 25 100 |
2 | EC-Earth3P-HR EC-Earth3P | EC-Earth Consortiu, Europe | [28] | 25 100 |
3 | FGOALS-f3-H FGOALS-f3-L | Chinese Academy of Sciences, China | [40] | 25 100 |
4 | HadGEM3-GC31-HH HadGEM3-GC31-LL | Met Office Hadley Centre, UK | [41] | 25 250 |
5 | HadGEM3-GC31-HM HadGEM3-GC31-LM | Met Office Hadley Centre, UK | [41] | 25 250 |
6 | HiRAM-SIT-HR HiRAM-SIT-LR | Research Center for Environmental Changes, Taiwan, China | [42] | 25 50 |
7 | IPSL-CM6A-ATM-ICO-VHR IPSL-CM6A-ATM-HR | Institute Pierre Simon Laplace, France | [43] | 25 50 |
8 | MPI-ESM1-2-XR MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany | [44] | 25 100 |
9 | MRI-AGCM3-2-S MRI-AGCM3-2-H | Meteorological Research Institute of the Japan Meteorological Agency, Japan | [45] | 25 50 |
Models | RMSE (Unit: mm/Month) | CC | S |
---|---|---|---|
CMCC-CM2-VHR4 | 24.96 | 0.69 | 0.48 |
EC-Earth3P-HR | 24.89 | 0.71 | 0.50 |
FGOALS-f3-H | 33.27 | 0.63 | 0.41 |
HadGEM3-GC31-HH | 25.93 | 0.70 | 0.47 |
HadGEM3-GC31-HM | 25.99 | 0.69 | 0.47 |
HiRAM-SIT-HR | 29.73 | 0.63 | 0.41 |
IPSL-CM6A-ATM-ICO-VHR | 27.37 | 0.66 | 0.45 |
MPI-ESM1-2-XR | 25.77 | 0.69 | 0.48 |
MRI-AGCM3-2-S | 25.29 | 0.69 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Di, Z.; Zhang, W.; Sun, H.; Tian, X.; Wang, X.; Xie, M.; Li, Y. Spatiotemporal Analyses of High-Resolution Precipitation Ensemble Simulations in the Chinese Mainland Based on Quantile Mapping (QM) Bias Correction and Bayesian Model Averaging (BMA) Methods for CMIP6 Models. Atmosphere 2025, 16, 1133. https://doi.org/10.3390/atmos16101133
Meng H, Di Z, Zhang W, Sun H, Tian X, Wang X, Xie M, Li Y. Spatiotemporal Analyses of High-Resolution Precipitation Ensemble Simulations in the Chinese Mainland Based on Quantile Mapping (QM) Bias Correction and Bayesian Model Averaging (BMA) Methods for CMIP6 Models. Atmosphere. 2025; 16(10):1133. https://doi.org/10.3390/atmos16101133
Chicago/Turabian StyleMeng, Hao, Zhenhua Di, Wenjuan Zhang, Huiying Sun, Xinling Tian, Xurui Wang, Meixia Xie, and Yufu Li. 2025. "Spatiotemporal Analyses of High-Resolution Precipitation Ensemble Simulations in the Chinese Mainland Based on Quantile Mapping (QM) Bias Correction and Bayesian Model Averaging (BMA) Methods for CMIP6 Models" Atmosphere 16, no. 10: 1133. https://doi.org/10.3390/atmos16101133
APA StyleMeng, H., Di, Z., Zhang, W., Sun, H., Tian, X., Wang, X., Xie, M., & Li, Y. (2025). Spatiotemporal Analyses of High-Resolution Precipitation Ensemble Simulations in the Chinese Mainland Based on Quantile Mapping (QM) Bias Correction and Bayesian Model Averaging (BMA) Methods for CMIP6 Models. Atmosphere, 16(10), 1133. https://doi.org/10.3390/atmos16101133