Machine Learning-Driven Scattering Efficiency Prediction in Passive Daytime Radiative Cooling
Abstract
1. Introduction
2. Results and Discussion
3. Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Kim, S.; Warren, N.; Na, G.; Zhang, X.; Wang, Y.; Willemsen, A.; Lopez-Pernia, C.; Liu, Y.; Kingon, A.I.; et al. Hierarchically Micro- and Nanostructured Polymer via Crystallinity Alteration for Sustainable Environmental Cooling. Langmuir 2024, 40, 20195–20203. [Google Scholar] [CrossRef]
- Guo, N.; Shi, C.; Warren, N.; Sprague-Klein, E.A.; Sheldon, B.W.; Yan, H.; Chen, M. Challenges and Opportunities for Passive Thermoregulation. Adv. Energy Mater. 2024, 14, 2401776. [Google Scholar] [CrossRef]
- Chen, H.; Gao, K.; Tian, S.; Sun, R.; Cui, K.; Zhang, Y. Nexus between energy poverty and sustainable energy technologies: A roadmap towards environmental sustainability. Sustain. Energy Technol. Assess. 2023, 56, 102949. [Google Scholar] [CrossRef]
- Balaras, C.A.; Grossman, G.; Henning, H.-M.; Ferreira, C.A.I.; Podesser, E.; Wang, L.; Wiemken, E. Solar air conditioning in Europe—An overview. Renew. Sustain. Energy Rev. 2007, 11, 299–314. [Google Scholar] [CrossRef]
- Yu, L.; Huang, Y.; Li, W.; Shi, C.; Sheldon, B.W.; Chen, Z.; Chen, M. Radiative-coupled evaporative cooling: Fundamentals, development, and applications. Nano Res. Energy 2024, 3, e9120107. [Google Scholar] [CrossRef]
- Henry, A.; Prasher, R.; Majumdar, A. Five thermal energy grand challenges for decarbonization. Nat. Energy 2020, 5, 635–637. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Gomez, S.; Hu, G.; Abaalkhail, A.; Beasley, J.E.; Zhang, P.; Xu, Y.; Chen, X.; Tian, S.; Mandal, J.; et al. Realizing optimal radiative cooling walls in building-energy nexus via asymmetric emissivity. Nexus 2024, 1, 100028. [Google Scholar] [CrossRef]
- Sui, C.; Pu, J.; Chen, T.-H.; Liang, J.; Lai, Y.-T.; Rao, Y.; Wu, R.; Han, Y.; Wang, K.; Li, X.; et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437. [Google Scholar] [CrossRef]
- Han, W.B.; Heo, S.-Y.; Kim, D.; Yang, S.M.; Ko, G.-J.; Lee, G.J.; Kim, D.-J.; Rajaram, K.; Lee, J.H.; Shin, J.-W.; et al. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 2023, 9, eadf5883. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef]
- Zhu, K.; Yao, H.; Song, J.; Liao, Q.; He, S.; Guang, T.; Wang, H.; Hao, X.; Lu, B.; Lin, T.; et al. Temperature-adaptive dual-modal photonic textiles for thermal management. Sci. Adv. 2024, 10, eadr2062. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Jiang, Z. Visible-to-near-infrared asymmetric transmission through a cross grating. J. Quant. Spectrosc. Radiat. Transf. 2024, 315, 108899. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Y.; Cai, C.; Qu, H.; Fu, Y.; Tan, S.C. Wood Lamella-Inspired Photothermal Stearic Acid-Eutectic Gallium-Indium-Based Phase Change Aerogel for Thermal Management and Infrared Stealth. Small 2023, 19, 2302886. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Wang, F. Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 2024, 144, 101276. [Google Scholar] [CrossRef]
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A.P. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Liu, J.; Tang, H.; Jiang, C.; Wu, S.; Ye, L.; Zhao, D.; Zhou, Z. Micro-Nano Porous Structure for Efficient Daytime Radiative Sky Cooling. Adv. Funct. Mater. 2022, 32, 1–22. [Google Scholar] [CrossRef]
- Gong, Q.; Lu, L.; Chen, J. Design and performance investigation of a novel self-adaptive radiative cooling module for thermal regulation in buildings. Appl. Energy 2023, 352, 121928. [Google Scholar] [CrossRef]
- Yang, N.; Fu, Y.; Xue, X.; Lei, D.; Dai, J.G. Geopolymer-based sub-ambient daytime radiative cooling coating. EcoMat 2023, 5, e12284. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Jiang, T.; Yang, R.; Tan, G.; Long, Y. Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 2021, 89, 106440. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Raman, A.P.; Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2017, 2, 17143. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Chen, L.; Meng, W.; Wang, C.; Cheng, Z.; Liang, H.; Wang, F. Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application. Renew. Sustain. Energy Rev. 2023, 188, 113801. [Google Scholar] [CrossRef]
- Chen, M.; Li, S.; Chen, X.; Huang, Y.; Liu, B.; Yan, H.; Sheldon, B.W.; Li, Q.; Shi, C. 3D bridge-arch-structured dual-side evaporator for practical, all-weather water harvesting and desalination. J. Mater. Chem. A 2024, 12, 9574–9583. [Google Scholar] [CrossRef]
- Lin, K.T.; Nian, X.; Li, K.; Han, J.; Zheng, N.; Lu, X.; Guo, C.; Lin, H.; Jia, B. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. ELight 2023, 3, 22. [Google Scholar] [CrossRef]
- Lee, M.; Kim, G.; Jung, Y.; Pyun, K.R.; Lee, J.; Kim, B.W.; Ko, S.H. Photonic structures in radiative cooling. Light Sci. Appl. 2023, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Liang, J.; Wu, J.; Yang, M.; Pan, Y.; Hou, C.; Liu, C.; Shen, C.; Tao, G.; et al. Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horizons 2023, 10, 5060–5070. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef]
- Huang, L.; Hu, Y.; Yao, X.; Chesman, A.S.R.; Wang, H.; Sagoe-Crentsil, K.; Duan, W. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling. ACS Appl. Mater. Interfaces 2024, 16, 54401–54411. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Chae, D.; So, S.; Lim, H.; Noh, J.; Park, J.; Kim, N.; Park, C.; Lee, H.; Rho, J. Optimally Designed Multimaterial Microparticle–Polymer Composite Paints for Passive Daytime Radiative Cooling. ACS Photonics 2023, 10, 2608–2617. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Mei, X.; Chen, M.; Wu, L. Ordered Porous Polymer Films for Highly Efficient Passive Daytime Radiative Cooling. ACS Photonics 2023, 10, 3124–3132. [Google Scholar] [CrossRef]
- Huang, M.-C.; Yang, M.; Guo, X.-J.; Xue, C.-H.; Wang, H.-D.; Ma, C.-Q.; Bai, Z.; Zhou, X.; Wang, Z.; Liu, B.-Y.; et al. Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 2023, 137, 101144. [Google Scholar] [CrossRef]
- Han, D.; Fei, J.; Wan, M.P.; Li, H.; Ng, B.F. Investigation of recycled materials for radiative cooling under tropical climate. Nanophotonics 2024, 13, 593–599. [Google Scholar] [CrossRef]
- Yue, Q.; Zhang, L.; He, C.Y.; Liu, B.H.; Wang, W.M.; Lu, Z.W.; Liu, G.; Gao, X.H. Polymer composites with hierarchical architecture and dielectric particles for efficient daytime subambient radiative cooling. J. Mater. Chem. A 2023, 11, 3126–3135. [Google Scholar] [CrossRef]
- Zhang, S.; Jing, W.; Chen, Z.; Zhang, C.; Wu, D.; Gao, Y.; Zhu, H. Full daytime sub-ambient radiative cooling film with high efficiency and low cost. Renew. Energy 2022, 194, 850–857. [Google Scholar] [CrossRef]
- Yao, P.; Chen, Z.; Liu, T.; Liao, X.; Yang, Z.; Li, J.; Jiang, Y.; Xu, N.; Li, W.; Zhu, B.; et al. Spider-Silk-Inspired Nanocomposite Polymers for Durable Daytime Radiative Cooling. Adv. Mater. 2022, 34, 2208236. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Chang, S.-W.; Chen, Y.-J.; Chen, H.-L.; Lan, P.-H.; Chen, D.; Ko, F.-H.; Lo, Y.-C.; Wang, H.-C.; Wan, D. Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 2023, 48, 101745. [Google Scholar] [CrossRef]
- Han, W.H.; Wang, Q.Y.; Kang, Y.Y.; Zhou, X.; Hao, C.C. Electrospun polymer nanocomposites for thermal management: A review. Nanoscale 2023, 15, 2003–2017. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Mandal, J.; Chen, X.; Yan, H.; He, Y.; Yu, N.; Yang, Y. Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling. Nano Lett. 2021, 21, 1412–1418. [Google Scholar] [CrossRef]
- Mie Calculator. Available online: https://physics.itmo.ru/en/mie#/spectrum (accessed on 15 November 2024).
- Bellman, R.; Bellman, R.E.; Corporation, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 2000, 42, 80–86. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Narayan, S. The generalized sigmoid activation function: Competitive supervised learning. Inf. Sci. 1997, 99, 69–82. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Zheng, J.; Wang, Y.; Gan, C.; Zhang, L.; Sheldon, B.W. Machine Learning-Driven Scattering Efficiency Prediction in Passive Daytime Radiative Cooling. Atmosphere 2025, 16, 95. https://doi.org/10.3390/atmos16010095
Shi C, Zheng J, Wang Y, Gan C, Zhang L, Sheldon BW. Machine Learning-Driven Scattering Efficiency Prediction in Passive Daytime Radiative Cooling. Atmosphere. 2025; 16(1):95. https://doi.org/10.3390/atmos16010095
Chicago/Turabian StyleShi, Changmin, Jiayu Zheng, Ying Wang, Chenjie Gan, Liwen Zhang, and Brian W. Sheldon. 2025. "Machine Learning-Driven Scattering Efficiency Prediction in Passive Daytime Radiative Cooling" Atmosphere 16, no. 1: 95. https://doi.org/10.3390/atmos16010095
APA StyleShi, C., Zheng, J., Wang, Y., Gan, C., Zhang, L., & Sheldon, B. W. (2025). Machine Learning-Driven Scattering Efficiency Prediction in Passive Daytime Radiative Cooling. Atmosphere, 16(1), 95. https://doi.org/10.3390/atmos16010095