Seasonal Variations and Health Risk Evaluation of Trace Elements in Atmospheric PM2.5 in Liaocheng, the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Analysis
2.3. Enrichment Factor Analysis
2.4. Positive Matrix Factorization (PMF) Modeling
2.5. Health Risk Evaluation
2.6. Backward Trajectories and Potential Source Contribution Function (PSCF) Simulation
3. Results and Discussion
3.1. Seasonal Patterns of PM2.5 Mass and Elements
3.2. Enrichment Factors of Elements
3.3. Source Appointment
3.3.1. Source Appointment by PMF Analysis
3.3.2. Potential Source Contribution Function (PSCF) Analysis
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, L.; Wei, P.; Hu, J.; Chen, Y.; Shi, Y. Source apportionment and regional transport of PM2.5 during haze episodes in Beijing combined with multiple models. Atmos. Res. 2022, 266, 105957. [Google Scholar] [CrossRef]
- Chen, Y.; Ho, T.T.; Liu, K.; Jian, M.; Katoch, A.; Cheng, Y. Exploring the characteristics and source-attributed health risks associated with polycyclic aromatic hydrocarbons and metal elements in atmospheric PM2.5 during warm and cold periods in the northern metropolitan area of Taiwan. Environ. Pollut. 2024, 360, 124703–124713. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Q.; Shao, M.; Wang, J.; Wang, C.; Sun, Y.; Qian, X.; Wu, H.; Yang, M.; Li, F. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China. Environ. Pollut. 2016, 208, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Varlı, S.N.; Bilici, S.; Arı, P.E.; Gaga, E.O.; İlhan, M.N.; Arı, A. Lung deposition of PM-bound trace elements and corresponding human health risk assessment in commercial kitchens serving Mediterranean cuisine. Atmos. Pollut. Res. 2024, 15, 102227–102242. [Google Scholar] [CrossRef]
- Ma, Y.; Mummullage, S.; Wijesiri, B.; Egodawatta, P.; McGree, J.; Ayoko, G.A.; Goonetilleke, A. Source quantification and risk assessment as a foundation for risk management of metals in urban road deposited solids. J. Hazard. Mater. 2021, 408, 124912–124924. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Wang, Z.; Yang, L.; Wang, J.; Wang, W. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Sci. Total Environ. 2018, 621, 558–577. [Google Scholar] [CrossRef]
- Khan, M.F.; Hwa, S.W.; Hou, L.C.; Mustaffa, N.I.H.; Amil, N.; Mohamad, N.; Sahani, M.; Jaafar, S.A.; Nadzir, M.S.M.; Latif, M.T. Influences of inorganic and polycyclic aromatic hydrocarbons on the sources of PM2.5 in the Southeast Asian urban sites. Air Qual. Atmos. Health 2017, 10, 999–1013. [Google Scholar] [CrossRef]
- World Health Organization of the Webpage. Air Quality Guidelines for Europe, 2nd ed. Available online: https://www.who.int/publications/i/item/9789289013581 (accessed on 18 December 2024).
- Agency for Toxic Substances and Disease Registry Home Page (ATSDR). Available online: https://www.atsdr.cdc.gov/index.html (accessed on 18 December 2024).
- Xie, F.; Su, Y.; Tian, Y.; Shi, Y.; Zhou, X.; Wang, P.; Yu, R.; Wang, W.; He, J.; Xin, J.; et al. The shifting of secondary inorganic aerosol formation mechanisms during haze aggravation: The decisive role of aerosol liquid water. Atmos. Chem. Phys. 2023, 23, 2365–2378. [Google Scholar] [CrossRef]
- Rajput, J.S.; Trivedi, M.K. Extraction of tracer elements of particulate matter emission source using association rule mining. Atmos. Pollut. Res. 2024, 15, 102109–102117. [Google Scholar] [CrossRef]
- Jia, C.; Tong, S.; Zhang, X.; Li, F.; Zhang, W.; Li, W.; Wang, Z.; Zhang, G.; Tang, G.; Liu, Z.; et al. Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O3 and PM2.5 episodes based on observation-based model. J. Environ. Sci. 2023, 124, 557–569. [Google Scholar] [CrossRef]
- Okuda, T.; Katsuno, M.; Naoi, D.; Nakao, S.; Tanaka, S.; He, K.; Ma, Y.; Lei, Y.; Jia, Y. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere. 2008, 72, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Luo, B.; Simayi, M.; Zhang, W.; Jiang, Y.; He, J.; Xie, S. Spatiotemporal patterns of PM2.5 elemental composition over China and associated health risks. Environ. Pollut. 2020, 265, 114910. [Google Scholar] [CrossRef] [PubMed]
- Ainur, D.; Chen, Q.; Sha, T.; Zarak, M.; Dong, Z.; Guo, W.; Zhang, Z.; Dina, K.; An, T. Outdoor Health Risk of Atmospheric Particulate Matter at Night in Xi’an, Northwestern China. Environ. Sci. Technol. 2023, 57, 9252–9265. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Chen, Y.J.; Chao, S.H.; Cao, H.B.; Zhang, A.C.; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. 2018, 644, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Meng, X.; Yu, X.; Lei, M.; Li, W.; Shi, F.; Yang, W.; Zhang, S.; Xie, S. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmos. Res. 2018, 213, 550–561. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Shang, X.; Wang, S.; Zhang, R.; Yuan, M.; Xu, Y.; Ying, Q. Variations of the source-specific health risks from elements in PM2.5 from 2018 to 2021 in a Chinese megacity. Atmos. Pollut. Res. 2024, 15, 102092–102100. [Google Scholar] [CrossRef]
- Wang, Z.; Sorooshian, A.; Prabhakar, G.; Coggon, M.M.; Jonsson, H.H. Impact of emissions from shipping, land, and the ocean on stratocumulus cloud water elemental composition during the 2011 E-PEACE field campaign. Atmos. Environ. 2014, 89, 570–580. [Google Scholar] [CrossRef]
- Cheng, K.; He, Y.; Zhong, Y.; Li, X.; Li, S.; Ayitken, M. Source apportionment and health risk assessment of PM2.5-bound elements on winter pollution days in industrial cities on the northern slope of Tianshan Mountain, China. Atmos. Pollut. Res. 2024, 15, 102036–102044. [Google Scholar] [CrossRef]
- Li, Z.; Ren, Z.; Liu, C.; Ning, Z.; Liu, J.; Liu, J.; Zhai, Z.; Ma, X.; Chen, L.; Zhang, Y.; et al. Heterogeneous variations in wintertime PM2.5 sources, compositions and exposure risks at urban/suburban rural/remote rural areas in the post COVID-19/Clean-Heating period. Atmos. Environ. 2024, 326, 120463–120473. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Wang, S.; Hao, J.; Chai, F. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. J. Environ. Sci. 2012, 24, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, X.; Zhao, F.; Yao, C.; Wang, Y.; Tang, E.; Wang, K.; Yu, L.; Zhou, Z.; Wei, J.; et al. Rural-urban difference in the association between particulate matters and stroke incidence: The evidence from a multi-city perspective cohort study. Environ. Res. 2024, 261, 119695–119705. [Google Scholar] [CrossRef] [PubMed]
- Dallarosa, J.; Teixeira, E.C.; Meira, L.; Wiegand, F. Study of the chemical elements and polycyclic aromatic hydrocarbons in atmospheric particles of PM10 and PM2.5 in the urban and rural areas of South Brazil. Atmos. Res. 2008, 89, 76–92. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Biffi, B.; Colombi, C.; Cuccia, E.; Dal Santo, U.; Romanato, L. Contribution of chemical composition to oxidative potential of atmospheric particles at a rural and an urban site in the Po Valley: Influence of high ammonia agriculture emissions. Atmos. Environ. 2024, 318, 120203–120212. [Google Scholar] [CrossRef]
- Hua, C.; Ma, W.; Zheng, F.; Zhang, Y.; Xie, J.; Ma, L.; Song, B.; Yan, C.; Li, H.; Liu, Z.; et al. Health risks and sources of trace elements and black carbon in PM2.5 from 2019 to 2021 in Beijing. J. Environ. Sci. 2024, 142, 69–82. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, X.; Yao, Y.; Lv, Z.; Fu, Z.; Huang, C.; Wang, R.; Chen, J. Characteristics and sources of PM2.5-bound elements in Shanghai during autumn and winter of 2019: Insight into the development of pollution episodes. Sci. Total Environ. 2023, 881, 163432–163442. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, P.; Li, Y.; Gu, J.; Gong, Y.; Han, B.; Yang, W.; Sun, J.; Wu, C.; Song, W.; et al. The association of chemical composition particularly the heavy metals with the oxidative potential of ambient PM2.5 in a megacity (Guangzhou) of southern China. Environ. Res. 2022, 213, 113489–113496. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Wang, Y.; Huang, T.; Wang, G.; Li, Z.; Li, J.; Meng, J.; Hou, Z. Seasonal characteristics and provenance of organic aerosols in the urban atmosphere of Liaocheng in the North China Plain: Significant effect of biomass burning. Particuology 2023, 75, 185–198. [Google Scholar] [CrossRef]
- Meng, J.; Liu, X.; Hou, Z.; Yi, Y.; Li, Y.; Li, Z.; Cao, J.; Li, J.; Wang, G. Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in the urban atmosphere of the North China Plain: Implications for aqueous phase formation of SOA during the haze periods. Sci. Total Environ. 2020, 705, 135256–135268. [Google Scholar] [CrossRef]
- Liu, X.; Meng, J.; Hou, Z.; Yan, L.; Wang, G.; Yi, Y.; Wei, B.; Fu, M.; Li, J.; Cao, J. Molecular Compositions and Sources of Organic Aerosols from Urban Atmosphere in the North China Plain during the Wintertime of 2017. Aerosol Air Qual. Res. 2019, 19, 2267–2280. [Google Scholar] [CrossRef]
- Meng, J.; Li, Z.; Zhou, R.; Chen, M.; Li, Y.; Yi, Y.; Ding, Z.; Li, H.; Yan, L.; Hou, Z.; et al. Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China. Sci. Total Environ. 2021, 758, 143709–143718. [Google Scholar] [CrossRef]
- Chen, M.; Meng, J.; Li, Y.; Wang, Y.; Huang, T.; Li, Z.; Song, X.; Wu, C.; Hou, Z. Effect of COVID-19 lockdown on the characterization and mixing state of carbonaceous particles in the urban atmosphere of Liaocheng, the North China Plain. Particuology 2023, 78, 23–34. [Google Scholar] [CrossRef]
- Li, Z.; Meng, J.; Zhou, L.; Zhou, R.; Fu, M.; Wang, Y.; Yi, Y.; Song, A.; Guo, Q.; Hou, Z.; et al. Impact of the COVID-19 Event on the Characteristics of Atmospheric Single Particle in the Northern China. Aerosol Air Qual. Res. 2020, 295, 999–1013. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Li, H.; Qian, X.; Li, X.; Liu, X.; Lu, H.; Wang, C.; Sun, Y. Trace metals and magnetic particles in PM2.5: Magnetic identification and its implications. Sci. Rep. 2017, 7, 9865. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.Y.; Liou, Y.T.; Chang, M.B.; Chou, C.C.K.; Ngo, T.H.; Chi, K.H. Characteristics of PCDD/Fs in PM2.5 from emission stacks and the nearby ambient air in Taiwan. Sci. Rep. 2021, 11, 8093. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, F.; Peng, J.; Duan, L.; Ji, Y.; Marrero-Ortiz, W.; Wang, J.; Li, J.; Wu, C.; Cao, C.; et al. Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts. Atmos. Chem Phys. 2018, 18, 10123–10132. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Xu, P.; Gui, J.; Guo, X.; Yan, G.; Fei, X.; Yang, A. Chemical characterization and source identification of PM2.5 in the Huaxi urban area of Guiyang. Sci. Rep. 2024, 14, 30451. [Google Scholar] [CrossRef]
- Aghaei, Y.; Badami, M.M.; Tohidi, R.; Subramanian, P.S.G.; Boffi, R.; Borgini, A.; De Marco, C.; Contiero, P.; Ruprecht, A.A.; Verma, V.; et al. The Impact of Russia-Ukraine geopolitical conflict on the air quality and toxicological properties of ambient PM2.5 in Milan, Italy. Sci. Rep. 2024, 14, 5996. [Google Scholar] [CrossRef]
- Hassan, S.K.; Khoder, M.I. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt. Atmos. Environ. 2017, 150, 346–355. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, B.; Zhang, Y.; Li, Y.; Sun, X.; Gu, Y.; Dai, C.; Li, N.; Song, C.; Dai, Q.; et al. A refined source apportionment study of atmospheric PM2.5 during winter heating period in Shijiazhuang, China, using a receptor model coupled with a source-oriented model. Atmos. Environ. 2020, 222, 117157–117170. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Xie, S.; Zhang, C.; Yan, F.; Liu, Y.; Kang, S.; Gao, S.; Li, C. Composition and sources of heavy metals in aerosol at a remote site of Southeast Tibetan Plateau, China. Sci. Total Environ. 2022, 845, 157308–157316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Fu, C.; Han, Z.; Zhu, C. Characteristics of elemental composition of PM2.5 in the spring period at Tongyu in the semi-arid region of Northeast China. Adv. Atmos. Sci. 2008, 25, 922–931. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chiang, H.-C.; Lin, S.-L.; Chen, M.-J.; Lin, T.-Y.; Chen, Y.-C. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ. 2016, 541, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Han, Y.; Kim, H.; Cho, S.; Kim, P.; Kim, W. Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmos. Res. 2015, 153, 416–428. [Google Scholar] [CrossRef]
- Tan, J.-H.; Duan, J.-C.; Ma, Y.-L.; Yang, F.-M.; Cheng, Y.; He, K.-B.; Yu, Y.-C.; Wang, J.-W. Source of atmospheric heavy metals in winter in Foshan, China. Sci. Total Environ. 2014, 493, 262–270. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency of the Webpage. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Available online: https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide (accessed on 18 December 2024).
- Wu, X.; Cao, F.; Haque, M.; Fan, M.; Zhang, S.; Zhang, Y. Molecular composition and source apportionment of fine organic aerosols in Northeast China. Atmos. Environ. 2020, 239, 117722–117734. [Google Scholar] [CrossRef]
- Shrivastava, M.K.; Subramanian, R.; Rogge, W.F.; Robinson, A.L. Sources of organic aerosol: Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models. Atmos. Environ. 2007, 41, 9353–9369. [Google Scholar] [CrossRef]
- Hovorka, J.; Pokorná, P.; Hopke, P.K.; Křůmal, K.; Mikuška, P.; Píšová, M. Wood combustion, a dominant source of winter aerosol in residential district in proximity to a large automobile factory in Central Europe. Atmos. Environ. 2015, 113, 98–107. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency of the Webpage. Risk Assessment Guidance for Superfund (RAGS): Part F. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f (accessed on 18 December 2024).
- Liu, Y.; Wang, R.; Zhao, T.; Zhang, Y.; Wang, J.; Wu, H.; Hu, P. Source apportionment and health risk due to PM10 and TSP at the surface workings of an underground coal mine in the arid desert region of northwestern China. Sci. Total Environ. 2022, 803, 149901. [Google Scholar] [CrossRef]
- He, R.D.; Zhang, Y.S.; Chen, Y.Y.; Jin, M.J.; Han, S.J.; Zhao, J.S.; Zhang, R.Q.; Yan, Q.S. Heavy Metal Pollution Characteristics and Ecological and Health Risk Assessment of Atmospheric PM2.5 in a Living Area of Zhengzhou City. Huan Jing Ke Xue 2019, 40, 4774–4782. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, B.; Zhang, Y.; Dai, Q.; Song, C.; Duan, L.; Guo, L.; Zhao, J.; Xue, Z.; Bi, X.; et al. Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China. Environ. Pollut. 2021, 284, 117454. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Mu, L.; Tian, M.; Zheng, L.R.; Li, Y.Y. Characteristics, Sources, and Health Risks of Elements in PM2.5 in Shanxi University Town. Huan Jing Ke Xue 2020, 41, 4825–4831. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment the People’s Republic of China of the Webpage. China Ecological Environment Status Bulletin. 2021. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (accessed on 18 December 2024).
- Duan, Y.; Wang, M.; Shen, Y.; Yi, M.; Fu, Q.; Chen, J.; Xiu, G. Influence of ship emissions on PM2.5 in Shanghai: From COVID19 to OMICRON22 lockdown episodes. Atmos. Environ. 2023, 315, 120112. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Li, X.; Fu, J.; Ge, Y.; Guo, Z.; Ji, J.; Lu, S. Trace elements in PM2.5 from 2016 to 2021 in Shenzhen, China: Concentrations, temporal and spatial distribution, and related human inhalation exposure risk. Sci. Total Environ. 2024, 951, 175818–175825. [Google Scholar] [CrossRef]
- Hao, Y.; Gou, Y.; Wang, Z.; Huang, W.; Wan, F.; Tian, M.; Chen, J. Current challenges in the visibility improvement of urban Chongqing in Southwest China: From the perspective of PM2.5-bound water uptake property over 2015–2021. Atmos. Res. 2024, 300, 107215–107228. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558–105578. [Google Scholar] [CrossRef]
- Xu, G.; Ren, X.; Xiong, K.; Li, L.; Bi, X.; Wu, Q. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 105889–105899. [Google Scholar] [CrossRef]
- Dutta, M.; Chatterjee, A. Assessment of the relative influences of long-range transport, fossil fuel and biomass burning from aerosol pollution under restricted anthropogenic emissions: A national scenario in India. Atmos. Environ. 2021, 255, 118423–118432. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Du, W.; Zhang, Y.; Chen, Y.; Lei, Y.; Wu, C.; Wang, G. Characterization of PM2.5-bound parent and oxygenated PAHs in three cities under the implementation of Clean Air Action in Northern China. Atmos. Res. 2022, 267, 105932–105940. [Google Scholar] [CrossRef]
- Wang, X.; Yin, S.; Zhang, R.; Yuan, M.; Ying, Q. Assessment of summertime O3 formation and the O3-NOX-VOC sensitivity in Zhengzhou, China using an observation-based model. Sci. Total Environ. 2022, 813, 152449. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Liu, Y.; Xu, X.; He, J.; Liu, N.; Ge, B.; Wang, Y. Abundance, distribution and deposition of PM2.5-bound iron in northern China during 2021 dust and dust storm periods. Atmos. Environ. 2024, 318, 120249–120257. [Google Scholar] [CrossRef]
- Nor Aznizam Nik Norizam, N.; Szuhánszki, J.; Ahmed, I.; Yang, X.; Ingham, D.; Milkowski, K.; Gheit, A.; Heeley, A.; Ma, L.; Pourkashanian, M. Impact of the blending of kaolin on particulate matter (PM) emissions in a biomass field-scale 250 kW grate boiler. Fuel 2024, 374, 132454–132461. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China of the Webpage. Ambient Air Quality Standards (GB3095-2012). Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 18 December 2024).
- European Commission of the Webpage. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0107 (accessed on 18 December 2024).
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef]
- Deng, M.; Chen, D.; Zhang, G.; Cheng, H. Policy-driven variations in oxidation potential and source apportionment of PM2.5 in Wuhan, central China. Sci. Total Environ. 2022, 853, 158255–158265. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, Y.; Yan, C.; Zhu, X.; Schauer, J.J.; Zhang, Y. Review of PM2.5 source apportionment methods in China. Acta Sci. Nat. Univ. Pekin. 2014, 50, 1141–1154. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Booth, M.J.; Smith, W.; Fisher, R.; Harrison, R.M. A Study of the Size Distributions and the Chemical Characterization of Airborne Particles in the Vicinity of a Large Integrated Steelworks. Aerosol Sci. Technol. 2008, 42, 981–991. [Google Scholar] [CrossRef]
- Khan, M.F.; Latif, M.T.; Saw, W.H.; Amil, N.; Nadzir, M.S.M.; Sahani, M.; Tahir, N.M.; Chung, J.X. Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmos. Chem. Phys. 2016, 16, 597–617. [Google Scholar] [CrossRef]
- Yao, L.; Yang, L.; Yuan, Q.; Yan, C.; Dong, C.; Meng, C.; Sui, X.; Yang, F.; Lu, Y.; Wang, W. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 2016, 541, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Shafer, M.M.; Toner, B.M.; Overdier, J.T.; Schauer, J.J.; Fakra, S.C.; Hu, S.; Herner, J.D.; Ayala, A. Chemical Speciation of Vanadium in Particulate Matter Emitted from Diesel Vehicles and Urban Atmospheric Aerosols. Environ. Sci. Technol. 2012, 46, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, H.; Malloy, Q.G.J.; Welch, W.A.; Wayne Miller, J.; Cocker, D.R. In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos. Environ. 2008, 42, 504–5510. [Google Scholar] [CrossRef]
- Masri, S.; Kang, C.-M.; Koutrakis, P. Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. J. Air Waste Manag. Assoc. 2015, 65, 287–297. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS—Diurnal variations and PMF receptor modelling. Atmos. Chem. Phys. 2013, 13, 4375–4392. [Google Scholar] [CrossRef]
- Harrison, R.M.; Beddows, D.C.S.; Hu, L.; Yin, J. Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos. Chem. Phys. 2012, 12, 8271–8283. [Google Scholar] [CrossRef]
- Diao, L.; Zhang, H.; Liu, B.; Dai, C.; Zhang, Y.; Dai, Q.; Bi, X.; Zhang, L.; Song, C.; Feng, Y. Health risks of inhaled selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources. Environ. Pollut. 2021, 276, 116664–116675. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Sci. Total Environ. 2020, 716, 136517–136527. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, Z.; Liu, R.; Zhu, B.; Li, J.; Zhang, R. A Modeling Study of the Impact of Crop Residue Burning on PM2.5 Concentration in Beijing and Tianjin during a Severe Autumn Haze Event. Aerosol Air Qual. Res. 2018, 18, 1558–1572. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Wang, Q.; Zhu, A.; Liu, Z.; Wang, Y.; Allen, D.T.; Li, L. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Sci. Total Environ. 2021, 789, 147935–147946. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ji, D.; He, J.; Kong, S.; Wang, Y. In situ continuous observation of hourly elements in PM2.5 in urban beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmos. Environ. 2020, 222, 117164–117174. [Google Scholar] [CrossRef]
- Agarwal, A.; Mangal, A.; Satsangi, A.; Lakhani, A.; Kumari, K.M. Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos. Res. 2017, 197, 121–131. [Google Scholar] [CrossRef]
- Tang, Q.; Sheng, W.; Li, L.; Zheng, L.; Miao, C.; Sun, R. Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China. Environ. Pollut. 2018, 239, 768–776. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, X.; Li, C.; Ding, H.; Tang, L.; Ji, H. Characteristics of PM2.5 in Miyun, the northeastern suburb of Beijing: Chemical composition and evaluation of health risk. Environ. Sci. Pollut. Res. 2015, 22, 16688–16699. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef]
- Vossler, T.; Černikovský, L.; Novák, J.; Williams, R. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization. Atmos Pollut. Res. 2016, 7, 503–512. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, L.; Zhou, M.; Zhu, S.; Griffith, S.; Li, L.; Yu, J.Z. Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time-Resolution Influence. J. Geophys. Res. Atmos. 2018, 123, 5284–5300. [Google Scholar] [CrossRef]
Parameters | Abbreviation | Children | Adult Males | Adult Females |
---|---|---|---|---|
Inhalation rate | IR | 8.6 m3 day−1 | 16.6 m3 day−1 | 13.5 m3 day−1 |
Exposure frequency | EF | 365 days year−1 | 365 days year−1 | 365 days year−1 |
Exposure duration | ED | 6 years | 24 years | 24 years |
Average body weight | BW | 15 kg | 67.3 kg | 57.5 kg |
Average time (non-carcinogens) | AT | ED × 365 days | ED × 365 days | ED × 365 days |
Average time (carcinogens) | AT | 70 × 365 days | 70 × 365 days | 70 × 365 days |
Toxic Elements | RfD (mg (kg day)−1) | SF ((kg·day) mg−1) |
---|---|---|
As | 3.01 × 10−4 | 1.51 × 101 |
Ni | 2.06 × 10−2 | 8.40 × 10−1 |
Co | 5.71 × 10−6 | 9.80 × 10 |
Pb | 3.52 × 10−3 | 8.50 × 10−3 |
Mn | 1.43 × 10−5 | − |
Zn | 3.00 × 10−1 | − |
V | 7.00 × 10−3 | − |
Parameter | Spring | Summer | Autumn | Winter | Annual |
---|---|---|---|---|---|
Ⅰ. Elements (ng m−3) | |||||
Al | 795 ± 183 | 551 ± 28.3 | 608 ± 74.9 | 714 ± 35.5 | 667 ± 172 |
Ca | 587 ± 130 | 166 ± 49.8 | 184 ± 64.3 | 632 ± 81.6 | 393 ± 189 |
Fe | 372 ± 256 | 122 ± 21.8 | 116 ± 23.0 | 318 ± 60.7 | 232 ± 235 |
K | 207 ± 258 | 80 ± 10.3 | 120 ± 14.6 | 256 ± 43. 1 | 166 ± 120 |
Ti | 30.2 ± 44.2 | 6.5 ± 1.4 | 12.3 ± 1.4 | 22.3 ± 4.7 | 17.8 ± 17.7 |
Mg | 97.9 ± 40.6 | 51.2 ± 3.0 | 47.8 ± 4. 1 | 72.4 ± 8.8 | 67.3 ± 7.6 |
∑Crust | 2089 ± 507 | 977 ± 332 | 1088 ± 317 | 2015 ± 469 | 1542 ± 512 |
S | 118 ± 65.2 | 223 ± 36.6 | 139 ± 39.9 | 277 ± 61. 1 | 189 ± 59.9 |
Cl | 76.5 ± 16.0 | 34.9 ± 15.2 | 104 ± 10.3 | 391 ± 13.3 | 151 ± 19.7 |
Zn | 67.3 ± 9.3 | 56.5 ± 3.5 | 58.4 ± 5.3 | 108 ± 7.0 | 72.5 ± 6.9 |
Mn | 38. 1 ± 14.0 | 9.9 ± 0.7 | 15.4 ± 1. 1 | 12.9 ± 2.3 | 19. 1 ± 2.3 |
Ba | 7.4 ± 1.4 | 7.0 ± 0.5 | 5.0 ± 1.0 | 20 ± 1.3 | 9.9 ± 1. 1 |
Cr | 1.6 ± 0.8 | 2.7 ± 0.2 | 2.3 ± 0.2 | 7.3 ± 0.4 | 3.5 ± 0.7 |
Co | 1.7 ± 1.6 | 1.4 ± 0.2 | 2.0 ± 0.2 | 2. 1 ± 0.3 | 1.8 ± 0.9 |
Cu | 2.6 ± 1.0 | 5.4 ± 0.3 | 2.8 ± 0.4 | 5.0 ± 0.8 | 3.9 ± 0.9 |
Ni | 2.7 ± 1. 1 | 1.2 ± 0.2 | 1.7 ± 0.2 | 2. 1 ± 0.6 | 1.9 ± 2. 1 |
Pb | 23.9 ± 1.7 | 14.2 ± 0.4 | 11.3 ± 2.3 | 20.8 ± 1.6 | 17.6 ± 0.4 |
V | 3. 1 ± 0.9 | 1.8 ± 0. 1 | 1.3 ± 0. 1 | 2. 1 ± 0. 1 | 2. 1 ± 0.5 |
As | 2.6 ± 0.5 | 6. 1 ± 0.2 | 4.3 ± 0.2 | 4.6 ± 0.5 | 4.4 ± 0.6 |
∑Elements | 2435 ± 515 | 1341 ± 222 | 1436 ± 218 | 2868 ± 330 | 2020 ± 325 |
Ⅱ. Inorganic ions (μg m−3) | |||||
K+ | 0.9 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 1.0 ± 0.4 | 0.5 ± 0.4 |
NO3− | 9.7 ± 4.8 | 7.0 ± 4.0 | 5.0 ± 1.8 | 9.0 ± 6.3 | 7.7 ± 1.9 |
SO42− | 11.4 ± 6.0 | 8.5 ± 2.7 | 10.2 ± 6.0 | 23.0 ± 7.8 | 13.3 ± 5.7 |
NH4+ | 9.6 ± 4.6 | 4.8 ± 1.4 | 5.4 ± 3. 1 | 7.0 ± 4. 1 | 6.7 ± 1.9 |
∑SNA | 30.7 ± 8.9 | 20.3 ± 6.0 | 20.5 ± 6.3 | 38.9 ± 12.8 | 27.6 ± 7.7 |
Ⅲ. Gaseous pollutants (μg m−3) | |||||
SO2 | 11.7 ± 6.6 | 4.9 ± 2.4 | 9.9 ± 12.5 | 16.5 ± 12.7 | 11. 1 ± 11. 1 |
CO | 0.7 ± 0. 1 | 0.7 ± 0. 1 | 1 ± 0.5 | 1 ± 0.6 | 0.9 ± 0.4 |
NO2 | 44.4 ± 12.6 | 23.3 ± 6. 1 | 23.6 ± 9. 1 | 53.8 ± 11.6 | 37 ± 17.3 |
O3 | 61.6 ± 22.7 | 80 ± 27.6 | 57 ± 17. 1 | 38 ± 40.9 | 57.2 ± 34.8 |
IV. Meteorological parameters | |||||
Temperature (℃) | 14.5 ± 2.3 | 29.4 ± 2.3 | 21.9 ± 2.8 | 2.9 ± 4.5 | 16.4 ± 11.2 |
Relative humidity (%) | 62.2 ± 18.0 | 75.9 ± 11.3 | 80.7 ± 14.0 | 61.6 ± 18.3 | 70. 1 ± 9.7 |
Wind speed (m s−1) | 4.2 ± 1.8 | 3.7 ± 1.2 | 4.6 ± 1.8 | 3.7 ± 1.8 | 4.0 ± 3.7 |
Planet boundary layer height (m) | 1175 ± 197 | 2297 ± 325 | 1655 ± 328 | 571 ± 290 | 1424 ± 731 |
Solar radiation (W m−2) | 6.7 ± 10.0 | 11.7 ± 14.8 | 5.6 ± 10. 1 | 4.6 ± 7.3 | 7. 1 ± 11.2 |
PM2.5 (μg m−3) | 80.0 ± 28.3 | 44.3 ± 10.0 | 48.6 ± 18. 1 | 89.0 ± 32.2 | 65.9 ± 31.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hou, Z.; Ma, J.; Zhang, X.; Liu, X.; Wang, Q.; Chen, C.; Yang, K.; Meng, J. Seasonal Variations and Health Risk Evaluation of Trace Elements in Atmospheric PM2.5 in Liaocheng, the North China Plain. Atmosphere 2025, 16, 72. https://doi.org/10.3390/atmos16010072
Wang Y, Hou Z, Ma J, Zhang X, Liu X, Wang Q, Chen C, Yang K, Meng J. Seasonal Variations and Health Risk Evaluation of Trace Elements in Atmospheric PM2.5 in Liaocheng, the North China Plain. Atmosphere. 2025; 16(1):72. https://doi.org/10.3390/atmos16010072
Chicago/Turabian StyleWang, Yanhui, Zhanfang Hou, Jiangkai Ma, Xiaoting Zhang, Xuan Liu, Qizong Wang, Chen Chen, Kaiyue Yang, and Jingjing Meng. 2025. "Seasonal Variations and Health Risk Evaluation of Trace Elements in Atmospheric PM2.5 in Liaocheng, the North China Plain" Atmosphere 16, no. 1: 72. https://doi.org/10.3390/atmos16010072
APA StyleWang, Y., Hou, Z., Ma, J., Zhang, X., Liu, X., Wang, Q., Chen, C., Yang, K., & Meng, J. (2025). Seasonal Variations and Health Risk Evaluation of Trace Elements in Atmospheric PM2.5 in Liaocheng, the North China Plain. Atmosphere, 16(1), 72. https://doi.org/10.3390/atmos16010072