Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective
Abstract
1. Introduction
2. Data
2.1. Lockdowns and Mobility Data
2.2. Air Quality Measures and Weather Data
2.3. Summary Statistics
3. Empirical Model
3.1. Ordinary Least Squares Strategy
3.2. Difference-in-Differences Method
4. Empirical Results
4.1. Fixed-Effects OLS Estimates
4.2. Difference-in-Differences Estimates
4.3. Robustness Checks
5. Mechanism: Mobility Restriction
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). WHO Coronavirus Disease (COVID-19) Dashboard. 2021. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 28 January 2021).
- Correia, S.; Luck, S.; Verner, E. Pandemics depress the economy, public health interventions do not: Evidence from the 1918 flu. arXiv 2020, arXiv:2207.11636. [Google Scholar] [CrossRef]
- Borjas, G.J.; Cassidy, H. The Adverse Effect of the COVID-19 Labor Market Shock on Immigrant Employment; NBER Working Paper No. 27243; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Fairlie, R.W.; Couch, K.A.; Xu, H. The Impacts of COVID-19 on Minority Unemployment: First Evidence from April 2020 CPS Microdata; NBER Working Paper No. 27246; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Chen, H.; Qian, W.; Wen, Q. The impact of the COVID-19 pandemic on consumption: Learning from high frequency transaction data. AEA Pap. Proc. 2020, 111, 307–311. [Google Scholar] [CrossRef]
- Coibion, O.; Gorodnichenko, Y.; Weber, M. The Cost of the COVID-19 Crisis: Lockdowns, Macroeconomic Expectations, and Consumer Spending; NBER Working Papers No. 27141; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Fairlie, R.W. The Impact of COVID-19 on Small Business Owners: Evidence of Early-Stage Losses from the April 2020 Current Population Survey; NBER Working Papers No. 27309; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Deaton, A. COVID-19 and Global Income Inequality; NBER Working Papers No. 28392; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Brodeur, A.; Cook, N.; Wright, T. On the Effects of COVID-19 Safer-at-Home Policies on Social Distancing, Car Crashes and Pollution; IZA Discussion Paper No. 13255; IZA Institute of Labor Economics: Bonn, Germany, 2020. [Google Scholar]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Cole, M.A.; Ozgen, C.; Strobl, E. Air Pollution Exposure and COVID-19; IEA: Bonn, Germany, 2020. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Borhani, F.; Motlagh, M.S.; Stohl, A.; Rashidi, Y.; Ehsani, A.H. Changes in short-lived climate pollutants during the COVID-19 pandemic in Tehran, Iran. Environ. Monit. Assess. 2021, 193, 331. [Google Scholar] [CrossRef]
- Turek, T.; Diakowska, E.; Kamińska, J.A. Has COVID-19 lockdown affected on air quality?—Different time scale case study in Wrocław, Poland. Atmosphere 2021, 12, 1549. [Google Scholar] [CrossRef]
- Gulyaev, E.; Antonov, K.; Markelov, Y.; Poddubny, V.; Shchelkanov, A.; Iurkov, I. Short-term effect of COVID-19 lockdowns on atmospheric CO2, CH4 and PM2.5 concentrations in urban environment. Int. J. Environ. Sci. Technol. 2023, 20, 4737–4748. [Google Scholar] [CrossRef]
- Vignesh, V.G.; Jain, C.D.; Saikranthi, K.; Venkat Ratnam, M. Spatial variability of trace gases (NO2, O3 and CO) over Indian region during 2020 and 2021 COVID-19 lockdowns. Environ. Monit. Assess. 2023, 195, 680. [Google Scholar] [CrossRef]
- Tobías, A. Evaluation of the lockdowns for the SARS-CoV-2 epidemic in Italy and Spain after one month follow up. Sci. Total Environ. 2020, 725, 138539. [Google Scholar] [CrossRef] [PubMed]
- Hale, T.; Webster, S.; Petherick, A.; Phillips, T.; Kira, B. Oxford COVID-19 Government Response Tracker; Blavatnik School of Government: Oxford, UK, 2020. [Google Scholar]
- He, G.; Pan, Y.; Tanaka, T. The causal effect of air pollution on COVID-19 transmission: Evidence from China. medRxiv 2020. [Google Scholar] [CrossRef]
- Coccia, M. How sustainable environments have reduced the diffusion of coronavirus disease 2019: The interaction between spread of COVID-19 infection, polluting industrialization, wind (renewable) energy. arXiv 2020, arXiv:2005.08293. [Google Scholar]
- Goodman-Bacon, A.; Marcus, J. Using Difference-in-Differences to Identify Causal Effects of COVID-19 Policies; Discussion Papers of DIW Berlin 1870; DIW Berlin, German Institute for Economic Research: Berlin, Germany, 2020. [Google Scholar]
- Lechner, M. The estimation of causal effects by difference-in-difference methods. Found. Trends Econom. 2011, 4, 165–224. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Dang, H.A.H.; Trinh, T.A. Does the COVID-19 lockdown improve global air quality? New cross-national evidence on its unintended consequences. J. Environ. Econ. Manag. 2021, 105, 102401. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.; Du, Z.; Zheng, M.; Duan, F.; Ma, Y. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020, 8, nwaa137. [Google Scholar] [CrossRef]
- Kroll, J.H.; Heald, C.L.; Cappa, C.D.; Farmer, D.K.; Steiner, A.L. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 2020, 12, 777–779. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Liu, F.; Page, A.; Strode, S.A.; Yoshida, Y.; Choi, S.; Zheng, B.; Lamsal, L.N.; Li, C.; Krotkov, N.A.; Eskes, H.; et al. Abrupt declines in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 2020, 6, eabc2992. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hao, X.; Zhang, X.; Chen, F. Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 2021, 279, 123622. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Meyerhoefer, C.; Yang, F.A. COVID-19 Prevention and Air Pollution in the Absence of a Lockdown; NBER Working Paper No. 27604; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Salas, R.; Perez-Villadoniga, M.J.; Prieto-Rodriguez, J.; Russo, A. Were traffic restrictions in Madrid effective at reducing NO2 levels? Transport. Res. D Transp. Environ. 2021, 91, 102689. [Google Scholar] [CrossRef]
- Yang, X.; Mccoy, E.; Hough, K.; de Nazelle, A. Evaluation of low traffic neighbourhood (LTN) impacts on NO2 and traffic. Transport. Res. D Transp. Environ. 2022, 113, 103536. [Google Scholar]
- Rivera, N.M. Air quality warnings and temporary driving bans: Evidence from air pollution, car trips, and mass-transit ridership in Santiago. J. Environ. Econ. Manag. 2021, 108, 102454. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Hu, Q.; Su, W.; Yang, X.; Lin, J.; Zhang, C.; Xing, C.; Ji, X.; Tan, W.; et al. Distinct Regimes of O3 Response to COVID-19 Lockdown in China. Atmosphere 2021, 12, 184. [Google Scholar] [CrossRef]
- Rivers, N.; Saberian, S.; Schaufele, B. Public transit and air pollution: Evidence from Canadian transit strikes. Can. J. Econ. Rev. Can. D’économique 2020, 53, 496–525. [Google Scholar] [CrossRef]
- Sahraei, M.A.; Kukapan, E.; Odur, M.Y. Public transit usage and air quality index during the COVID-19 lockdown. J. Environ. Manag. 2021, 286, 112166. [Google Scholar] [CrossRef]
Number | Name | Description |
---|---|---|
C1 | School closings | 0—no measures; 1—recommend closing; 2—require closing; 3—require closing all levels. |
C2 | Workplace closings | 0—no measures; 1—recommend closing; 2—require closing for some sectors or categories of workers; 3—require closing for all-but-essential workplaces. |
C3 | Cancel public events | 0—no measures; 1—recommend cancelling; 2—require cancelling. |
C4 | Restrictions on gatherings | 0—no restrictions; 1—restrictions on very large gatherings (the limit is above 1000 people); 2—restrictions on gatherings between 101 and 1000 people; 3—restrictions on gatherings between 11 and 100 people; 4—restrictions on gatherings of 10 people or less. |
C5 | Close public transport | 0—no measures; 1—recommend closing (or significantly reduce; volume/route/means of transport available); 2—require closing (or prohibit most citizens from using it). |
C6 | Stay at home requirements | 0—no measures; 1—recommend not leaving house; 2—require not leaving house with exceptions for daily exercise, grocery shopping, and “essential” trips; 3—require not leaving house with minimal exceptions. |
C7 | Restrictions on internal movement | 0—no measures; 1—recommend not to travel between regions/cities; 2—internal movement restrictions in place. |
C8 | International travel controls | 0—no restrictions; 1—screening arrivals; 2—quarantine arrivals from some or all regions; 3—ban arrivals from some regions; 4—ban on all regions or total border closure. |
Variable | N | Mean | S. D. | Min | Max |
---|---|---|---|---|---|
PM2.5 | 179,165 | 52.90 | 40.53 | 1 | 834 |
PM10 | 176,040 | 26.17 | 24.58 | 1 | 884 |
SO2 | 146,468 | 3.90 | 7.38 | 0 | 500 |
NO2 | 175,522 | 9.18 | 7.18 | 0 | 183.8 |
O3 | 163,557 | 19.76 | 10.87 | 0 | 274 |
CO | 135,333 | 5.20 | 9.750 | 0.10 | 500 |
Humidity | 202,790 | 69.06 | 22.40 | 0 | 122 |
Temperature | 202,843 | 16.23 | 11.70 | −50 | 247.6 |
Wind speed | 200,335 | 3.100 | 13.71 | 0.10 | 289.8 |
Transit | 163,563 | −31.38 | 21.43 | −95 | 48 |
Driving | 169,571 | 100.71 | 40.35 | 8.74 | 670.5 |
Stringency index | 213,232 | 53.37 | 26.29 | 0 | 100.00 |
Government response index | 213,082 | 50.59 | 22.61 | 0 | 89.17 |
Containment and health index | 213,220 | 50.84 | 22.78 | 0 | 91.35 |
Economic support index | 212,178 | 49.22 | 33.43 | 0 | 100.00 |
Dep. var. = | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|---|
Measures: | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | |
C1 | −1.889 *** | ||||||||
(0.071) | |||||||||
C2 | −1.791 *** | ||||||||
(0.081) | |||||||||
C3 | −2.266 *** | ||||||||
(0.105) | |||||||||
C4 | −0.760 *** | ||||||||
(0.054) | |||||||||
C5 | −3.115 *** | ||||||||
(0.125) | |||||||||
C6 | −1.878 *** | ||||||||
(0.088) | |||||||||
C7 | −1.696 *** | ||||||||
(0.099) | |||||||||
C8 | −2.301 *** | ||||||||
(0.065) | |||||||||
Humidity | 0.002 | 0.012 *** | 0.011 ** | 0.017 *** | 0.013 *** | 0.013 *** | 0.011 ** | 0.006 | |
(0.005) | (0.004) | (0.004) | (0.004) | (0.004) | (0.004) | (0.005) | (0.004) | ||
Temperature | −0.677 *** | −0.676 *** | −0.681 *** | −0.690 *** | −0.691 *** | −0.708 *** | −0.690 *** | −0.640 *** | |
(0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.009) | ||
Wind speed | 0.159 *** | 0.153 *** | 0.158 *** | 0.160 *** | 0.162 *** | 0.174 *** | 0.163 *** | 0.132 *** | |
(0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | ||
R2 | 0.499 | 0.499 | 0.498 | 0.498 | 0.499 | 0.498 | 0.498 | 0.501 | |
No. of cities | 596 | 596 | 596 | 596 | 596 | 596 | 596 | 596 | |
No. of countries | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | |
N | 168,913 | 168,913 | 168,883 | 168,913 | 168,913 | 168,897 | 168,910 | 168,913 | |
Date FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
City by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Country by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Lockdown Measures: | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
Panel A: PM2.5 | −1.889 *** | −1.791 *** | −2.266 *** | −0.760 *** | −3.115 *** | −1.878 *** | −1.696 *** | −2.301 *** |
(0.071) | (0.081) | (0.105) | (0.054) | (0.125) | (0.088) | (0.099) | (0.065) | |
Panel B: PM10 | −1.420 *** | −1.241 *** | −1.423 *** | −0.555 *** | −2.337 *** | −1.388 *** | −1.239 *** | −1.368 *** |
(0.045) | (0.051) | (0.065) | (0.034) | (0.079) | (0.055) | (0.061) | (0.040) | |
Panel C: SO2 | −0.242 *** | −0.283 *** | −0.397 *** | −0.084 *** | −0.219 *** | −0.187 *** | −0.273 *** | −0.057 *** |
(0.014) | (0.016) | (0.021) | (0.011) | (0.024) | (0.017) | (0.019) | (0.013) | |
Panel D: NO2 | −1.031 *** | −1.023 *** | −1.128 *** | −0.423 *** | −1.314 *** | −0.847 *** | −0.910 *** | −0.549 *** |
(0.012) | (0.014) | (0.018) | (0.009) | (0.022) | (0.015) | (0.017) | (0.011) | |
Panel E: CO | −0.191 *** | −0.214 *** | −0.189 *** | −0.038 *** | −0.163 *** | −0.178 *** | −0.178 *** | −0.063 *** |
(0.015) | (0.018) | (0.024) | (0.012) | (0.027) | (0.019) | (0.022) | (0.014) | |
Panel F: O3 | 1.189 *** | 0.499 *** | 0.564 *** | −0.132 *** | 0.410 *** | 0.220 *** | 0.063 ** | 0.193 *** |
(0.020) | (0.024) | (0.030) | (0.016) | (0.037) | (0.025) | (0.028) | (0.019) | |
Weather controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Date FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Lockdown Measures: | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
Panel A: PM2.5 | −8.777 *** | −7.971 *** | −8.343 *** | −7.698 *** | −7.315 *** | −5.403 *** | −6.583 *** | −8.073 *** |
(0.251) | (0.245) | (0.253) | (0.240) | (0.230) | (0.232) | (0.239) | (0.278) | |
−5.855 *** | −5.287 *** | −5.406 *** | −5.245 *** | −5.053 *** | −3.726 *** | −4.523 *** | −4.609 *** | |
Panel B: PM10 | (0.152) | (0.148) | (0.153) | (0.147) | (0.137) | (0.138) | (0.142) | (0.164) |
−0.800 *** | −0.795 *** | −0.933 *** | −0.570 *** | −0.635 *** | −0.664 *** | −0.738 *** | −0.203 *** | |
(0.061) | (0.059) | (0.062) | (0.044) | (0.055) | (0.055) | (0.057) | (0.069) | |
Panel C: SO2 | −4.072 *** | −3.943 *** | −4.024 *** | −3.284 *** | −3.551 *** | −3.107 *** | −3.454 *** | −2.420 *** |
(0.047) | (0.045) | (0.047) | (0.045) | (0.041) | (0.042) | (0.044) | (0.053) | |
−0.693 *** | −0.693 *** | −0.641 *** | −0.490 *** | −0.407 *** | −0.418 *** | −0.552 *** | −0.520 *** | |
Panel D: NO2 | (0.066) | (0.063) | (0.067) | (0.067) | (0.058) | (0.060) | (0.062) | (0.077) |
4.565 *** | 4.288 *** | 5.009 *** | 3.760 *** | 3.183 *** | 3.881 *** | 3.756 *** | 2.647 *** | |
(0.067) | (0.067) | (0.067) | (0.072) | (0.068) | (0.063) | (0.065) | (0.079) | |
Panel E: CO | −8.777 *** | −7.971 *** | −8.343 *** | −7.698 *** | −7.315 *** | −5.403 *** | −6.583 *** | −8.073 *** |
(0.251) | (0.245) | (0.253) | (0.240) | (0.230) | (0.232) | (0.239) | (0.278) | |
−5.855 *** | −5.287 *** | −5.406 *** | −5.245 *** | −5.053 *** | −3.726 *** | −4.523 *** | −4.609 *** | |
Panel F: O3 | (0.152) | (0.148) | (0.153) | (0.147) | (0.137) | (0.138) | (0.142) | (0.164) |
−0.800 *** | −0.795 *** | −0.933 *** | −0.570 *** | −0.635 *** | −0.664 *** | −0.738 *** | −0.203 *** | |
(0.061) | (0.059) | (0.062) | (0.044) | (0.055) | (0.055) | (0.057) | (0.069) | |
Weather controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Date FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Independent Variable: | PM2.5 | log (PM2.5) | The Dynamic Panel Data Model | Excluding Observations 5 Days Near the Lockdown Date | Excluding Observations 10 Days Near the Lockdown Date | Cities with More than One Monitoring Station Only | Full Sample | Country-Level Data |
Stringency index | −0.093 *** | |||||||
(0.003) | ||||||||
C1 | −0.109 *** | −3.156 *** | −5.610 *** | −5.706 *** | −5.422 *** | −5.598 *** | −9.390 *** | |
(0.004) | (0.198) | (0.220) | (0.229) | (0.213) | (0.214) | (0.572) | ||
C2 | −0.101 *** | −2.836 *** | −4.812 *** | −4.817 *** | −4.613 *** | −4.605 *** | −7.697 *** | |
(0.004) | (0.192) | (0.204) | (0.211) | (0.199) | (0.199) | (0.562) | ||
C3 | −0.105 *** | −3.071 *** | −5.083 *** | −4.905 *** | −4.788 *** | −4.985 *** | −9.019 *** | |
(0.004) | (0.200) | (0.214) | (0.221) | (0.209) | (0.209) | (0.577) | ||
C4 | −0.103 *** | −2.732 *** | −3.100 *** | −3.153 *** | −2.816 *** | −3.011 *** | −7.817 *** | |
(0.004) | (0.187) | (0.210) | (0.216) | (0.204) | (0.204) | (0.554) | ||
C5 | −0.108 *** | −3.016 *** | −1.816 *** | −1.816 *** | −1.176 *** | −1.749 *** | −8.319 *** | |
(0.004) | (0.179) | (0.179) | (0.179) | (0.175) | (0.175) | (0.536) | ||
C6 | −0.066 *** | −2.144 *** | −1.138 *** | −0.809 *** | −1.090 *** | −1.397 *** | −7.181 *** | |
(0.004) | (0.182) | (0.178) | (0.181) | (0.174) | (0.174) | (0.537) | ||
C7 | −0.077 *** | −2.362 *** | −1.514 *** | −1.446 *** | −0.965 *** | −1.559 *** | −6.734 *** | |
(0.004) | (0.186) | (0.180) | (0.184) | (0.177) | (0.177) | (0.539) | ||
C8 | −0.133 *** | −2.984 *** | −7.088 *** | −7.520 *** | −6.600 *** | −6.590 *** | −4.822 *** | |
(0.005) | (0.223) | (0.245) | (0.258) | (0.233) | (0.234) | (0.632) |
LDM | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | |||||||||
lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | |
LD | 0.840 *** | −5.696 *** | −0.776 *** | −7.154 *** | −0.789 *** | −4.153 *** | −0.647 *** | −4.405 *** | ||||
(0.005) | (0.407) | (0.004) | (0.360) | (0.005) | (0.405) | (0.004) | (0.320) | |||||
lnt | −1.468 *** | −3.850 *** | 1.840 ** | −5.627 *** | −1.605 *** | −3.072 *** | −2.531 *** | −4.435 *** | ||||
(0.242) | (0.296) | (0.241) | (0.307) | (0.242) | (0.281) | (0.235) | (0.272) | |||||
N | 56,754 | 46,618 | 46,618 | 60,645 | 50,137 | 50,137 | 56,121 | 46,139 | 46,139 | 64,307 | 53,694 | 53,694 |
R2 | 0.524 | 0.558 | 0.559 | 0.572 | 0.550 | 0.554 | 0.473 | 0.564 | 0.565 | 0.503 | 0.548 | 0.550 |
LDM | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) |
C5 | C6 | C7 | C8 | |||||||||
lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | |
LD | −0.580 *** | −7.273 *** | −0.632 *** | −0.849 *** | −0.705 *** | −4.551 *** | −0.402 *** | −2.663 *** | ||||
(0.003) | (0.285) | (0.003) | (0.301) | (0.004) | (0.332) | (0.008) | (0.438) | |||||
lnt | −1.217 *** | −5.008 *** | 1.855 *** | −2.335 *** | −2.063 *** | −4.518 *** | −1.434 *** | −1.713 *** | ||||
(0.241) | (0.282) | (0.240) | (0.294) | (0.238) | (0.297) | (0.257) | (0.261) | |||||
N | 74,015 | 62,220 | 62,220 | 61,728 | 51,101 | 51,101 | 60,586 | 49,973 | 49,973 | 45,725 | 37,710 | 37,710 |
R2 | 0.535 | 0.535 | 0.539 | 0.548 | 0.534 | 0.534 | 0.563 | 0.558 | 0.559 | 0.348 | 0.567 | 0.568 |
LDM | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | |||||||||
lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | |
LD | −0.725 *** | −5.787 *** | −0.691 *** | −5.205 *** | −0.711 *** | −5.190 *** | −0.691 *** | −5.205 *** | ||||
(0.004) | (0.306) | (0.004) | (0.283) | (0.004) | (0.304) | (0.004) | (0.283) | |||||
lnd | 2.869 *** | −0.076 | 2.000 *** | −0.515 ** | 2.779 *** | 0.241 | 2.000 *** | −0.515 ** | ||||
(0.212) | (0.262) | (0.200) | (0.241) | (0.212) | (0.258) | (0.200) | (0.241) | |||||
N | 65,898 | 54,320 | 54,320 | 71,493 | 59,566 | 59,566 | 65,272 | 53,860 | 53,860 | 71,493 | 59,566 | 59,566 |
R2 | 0.513 | 0.519 | 0.522 | 0.523 | 0.509 | 0.512 | 0.495 | 0.522 | 0.525 | 0.523 | 0.509 | 0.512 |
LDM | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) |
C5 | C6 | C7 | C8 | |||||||||
lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | |
LD | −0.624 *** | −7.138 *** | −0.647 *** | −1.158 *** | −0.702 *** | −3.291 *** | −0.469 *** | −4.726 *** | ||||
(0.004) | (0.267) | (0.003) | (0.269) | (0.003) | (0.288) | (0.005) | (0.306) | |||||
lnd | 2.834 *** | −0.184 | 2.079 *** | 1.477 *** | 2.270 *** | 0.471 * | 2.721 *** | 1.632 *** | ||||
(0.202) | (0.230) | (0.206) | (0.249) | (0.208) | (0.260) | (0.220) | (0.231) | |||||
N | 78,902 | 66,091 | 66,091 | 70,161 | 58,113 | 58,113 | 69,211 | 57,176 | 57,176 | 55,239 | 45,655 | 45,655 |
R2 | 0.506 | 0.503 | 0.508 | 0.512 | 0.501 | 0.501 | 0.539 | 0.513 | 0.514 | 0.333 | 0.543 | 0.546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Liu, F.; Wang, M. Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective. Atmosphere 2025, 16, 113. https://doi.org/10.3390/atmos16010113
Zheng M, Liu F, Wang M. Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective. Atmosphere. 2025; 16(1):113. https://doi.org/10.3390/atmos16010113
Chicago/Turabian StyleZheng, Meina, Feng Liu, and Meichang Wang. 2025. "Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective" Atmosphere 16, no. 1: 113. https://doi.org/10.3390/atmos16010113
APA StyleZheng, M., Liu, F., & Wang, M. (2025). Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective. Atmosphere, 16(1), 113. https://doi.org/10.3390/atmos16010113