Pilot Survey of Outdoor Radon and Thoron Levels in Bulgaria Using an Innovative DVD-Based Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Substantial variation in radon and thoron concentrations outdoors: Radon and thoron levels can vary significantly outdoors even over distances of less than 10 m. With advancements in the design of highly sensitive radon detectors [12,13,14,19] and the development of protocols for their metrological assurance [10], it is likely that large-scale projects for mapping outdoor radon concentrations will be initiated. In the past, extensive indoor radon mapping projects have been conducted [39], often using a 10 × 10 km grid [39]. Within such a grid, both indoor and outdoor radon concentrations can vary substantially, and these variations should be considered when assessing the “map uncertainties”. For outdoor mapping, addressing potential short-distance variations might require the definition of a “place of measurement” that includes several measuring points situated 10 to 100 m apart.
- Weak but statistically significant radon–thoron correlation outdoors: A weak but statistically significant correlation between outdoor radon and thoron levels was observed. The correlation between average concentrations across zones is much stronger than that between individual points. Further studies are needed to explore the radon–thoron correlation outdoors and to determine whether it can be used to correct (including retrospectively) data collected using radon detectors that are also sensitive to thoron.
- Benchmarks for further research: Once resources become available, we plan to conduct a more comprehensive radon and thoron survey in this and other regions. In addition to atmospheric radon and thoron measurements, the survey will include soil gas radon sampling and soil collection at measurement points for subsequent gamma spectrometry analysis. This will allow for the determination of natural radionuclides from the 238U and 232Th decay series, which may help clarify the reasons behind significant variations in radon and thoron levels, even over short distances.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogen Risks to Humans; IARC: Lyon, France, 1988; Volume 43.
- WHO. Handbook on Indoor Radon: A Public Health Perspective; Zeeb, H., Shannoun, F., Eds.; WHO Publications: Geneva, Switzerland, 2009. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources of Ionizing Radiation. In United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly; Volume I: Sources; UNSCEAR: Vienna, Austria, 2008. [Google Scholar]
- Celikovic, I.; Pantelic, G.; Vukanac, I.; Nikolic, J.K.; Živanovic, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Poncela, L.S.Q.; Rabago, D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- TraceRADON. Available online: http://traceradon-empir.eu (accessed on 18 July 2024).
- Council of the European Union. Council Directive 2013/59/EURATOM of 5 December 2013. Off. J. Eur. Union 2014, 13, 103. [Google Scholar]
- Lopez, M.; Schmidt, M.; Yver, C.; Messager, C.; Worthy, D.; Kazan, V.; Ramonet, M.; Bousquet, P.; Ciais, P. Seasonal variation of N2O emissions over three sites in Northern France inferred from 10 years of continuous atmospheric N2O and 222Rn measurements. J. Geophys. Res. 2012, 117, D14. [Google Scholar]
- Wada, A.; Matsueda, H.; Murayama, S.; Taguchi, S.; Hirao, S.; Yamazawa, H.; Moriizumi, J.; Tsuboi, K.; Niwa, Y.; Sawa, Y. Quantification of emission estimates of CO2, CH4 and CO for East Asia derived from atmospheric radon-222 measurements over the western North Pacific. Tellus 2013, B 65, 18037. [Google Scholar] [CrossRef]
- Grossi, C.; Vogel, F.R.; Curcoll, R.; Àgueda, A.; Vargas, A.; Rodó, X.; Morguí, J.-A. Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer. Atmos. Chem. Phys. 2018, 18, 5847–5860. [Google Scholar] [CrossRef]
- Röttger, S.; Röttger, A.; Grossi, C.; Vargas, A.; Karstens, U.; Cinelli, G.; Chung, E.; Kikaj, D.; Rennick, C.; Mertes, F.; et al. Radon metrology for use in climate change observation and radiation protection at the environmental level. Adv. Geosci. 2022, 57, 37–47. [Google Scholar] [CrossRef]
- Grossi, C.; Arnold, D.; Adame, J.A.; López-Coto, I.; Bolívar, J.P.; de la Morena, B.A.; Vargas, A. Atmospheric 222Rn concentration and source term at El Arenosillo 100 m meteorological tower in southwest Spain. Radiat. Meas. 2012, 47, 149–162. [Google Scholar] [CrossRef]
- Chambers, S.D.; Hong, S.-B.; Williams, A.G.; Crawford, J.; Griffiths, A.D.; Park, S.-J. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmos. Phys. Chem. 2014, 14, 9903–9916. [Google Scholar] [CrossRef]
- Pressyanov, D. New generation of highly sensitive radon detectors based on activated carbon with compensated temperature dependence. Sci. Rep. 2022, 12, 8479. [Google Scholar] [CrossRef]
- Pressyanov, D.; Dimitrov, D. The sensitivity of innovative techniques for measuring low levels of radon in the environment using passive detectors. J. Environ. Radioact. 2024, 277, 107461. [Google Scholar] [CrossRef]
- MetroRADON. Deliverable 2, Annexes V and VIII. Available online: http://metroradon.eu (accessed on 24 July 2024).
- Tokonami, S. Why is 220Rn (thoron) important? Radiat. Prot. Dosim. 2010, 141, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Haanes, H.; Finne, I.E.; Kolstad, T.; Mauring, A.; Dahlgren, S.; Rudjord, A.L. Outdoor thoron and progeny in a thorium rich area with old decommissioned mines and waste rock. J. Environ. Radioact. 2016, 162–163, 23–32. [Google Scholar] [CrossRef]
- Tokonami, S.; Takahashi, H.; Kobayashi, Y.; Zhuo, W. Up-to-date radon-thoron discriminative detector for a large-scale survey. Rev. Sci. Instrum. 2005, 76, 113505. [Google Scholar] [CrossRef]
- Pressyanov, D.; Dimitrov, D.; Georgiev, P. A sensitive DVD-based radon and thoron detector for environmental monitoring. Measurement 2022, 203, 112026. [Google Scholar] [CrossRef]
- Pressyanov, D.; Buysse, J.; Van Deynse, A.; Poffijn, A.; Meesen, G. Indoor radon detected by compact discs. Nucl. Instrum. Methods 2001, A 457, 665–666. [Google Scholar] [CrossRef]
- Pressyanov, D. Retrospective measurements of thoron and radon by CDs/DVDs: A model approach. Radiat. Prot. Dosim. 2012, 149, 464–468. [Google Scholar] [CrossRef]
- Vancraeynest, G.; Franchoo, S.; Huyse, M.; Moons, R. Optimization and modeling of electrochemically etched polycarbonate track detectors. Nucl. Instrum. Methods 1997, B 129, 65–72. [Google Scholar] [CrossRef]
- Dimitrova, I.; Mitev, K.; Pressyanov, D.; Georgiev, S.; Boshkova, T. Measurement of 222Rn and 226Ra in water by absorption of radon in polycarbonates and etching alpha-tracks. Radiat. Meas. 2011, 46, 119–127. [Google Scholar] [CrossRef]
- Pressyanov, D. Use of polycarbonate materials of high radon absorption ability for measuring radon. Rom. J. Phys. 2013, 58, S221–S229. [Google Scholar]
- Mitev, K.; Madzhunkov, Y.; Gerganov, G.; Dimitrova, I.; Georgiev, S.; Pressyanov, D. Automatic counting of electrochemically etched tracks in compact discs. Application to retrospective measurements of Rn-222. IEEE Trans. Nucl. Sci. 2010, 57, 300–308. [Google Scholar] [CrossRef]
- Pressyanov, D.; Mitev, K.; Georgiev, S.; Dimitrova, I.; Kolev, J. Laboratory facility to create reference radon + thoron atmosphere under dynamic exposure conditions. J. Environ. Radioact. 2017, 166, 181–187. [Google Scholar] [CrossRef] [PubMed]
- MetroRADON. Deliverable 2, Annexes IV. Available online: http://metroradon.eu (accessed on 24 July 2024).
- Sabot, B.; Pierre, S.; Michielssen, N.; Bondiguel, S.; Cassette, P. A new thoron atmosphere reference measurement system. Appl. Radiat. Isot. 2016, 109, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM Publication: Sèvres, France, 2008; pp. 18–19. Available online: https://www.bipm.org/en/committees/jc/jcgm/publications (accessed on 15 August 2024).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Paleont. Electron. 2001, 4, 4. [Google Scholar]
- Dimitrov, D.; Pressyanov, D. The CD/DVD method as a tool for the health physics service and ventilation diagnostics in underground mines. Radiat. Prot. Dosim. 2018, 181, 30–33. [Google Scholar] [CrossRef]
- Serge, A.B.M.; Didier, T.S.S.; Samuel, B.G.; Kranrod, C.; Omori, Y.; Hosoda, M.; Saïdou; Tokonami, S. Assessment of radiological risks due to indoor radon, thoron and progeny, and soil gas radon in thorium-bearing areas of the centre and south regions of Cameroon. Atmosphere 2023, 14, 1708. [Google Scholar] [CrossRef]
- Nuhu, H.; Hashim, S.; Syazwan, M.; Sanusi, M.; Saleh, M.A.M. Radiological assessment subjected to outdoor radon and thoron concentrations and terrestrial gamma radiation measurements in Perak Malaysia. Appl. Radiat. Isot. 2022, 179, 109991. [Google Scholar] [CrossRef] [PubMed]
- Burghele, B.; Cucos, A.; Papp, B.; Dicu, T.; Pressyanov, D.; Dimitrov, D.; Dimitrova, I.; Constantin, S. Comparative study of radon and thoron measurements in four Romanian show caves. Radiat. Prot. Dosim. 2017, 177, 181–185. [Google Scholar] [CrossRef]
- Bonczyk, M.; Chałupnik, S.; Wysocka, M.; Grygier, A.; Hildebrandt, R.; Tosheva, Z. The determination of radon/thoron exhalation rate in an underground coal mine—Preliminary results. Int. J. Environ. Res. Public Health 2022, 19, 6038. [Google Scholar] [CrossRef]
- IEC 61577-2; Radiation Protection Instrumentation—Radon and Radon Decay Product Measuring Instruments—Part 2: Specific Requirements for 222Rn and 220Rn Measuring Instruments. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2014.
- Di Carlo, C.; Ampollini, M.; Antignani, S.; Caprio, M.; Carpentieri, C.; Bochicchio, F. Thoron interference on performance of continuous radon monitors: An experimental study on four devices and a proposal of an indirect method to estimate thoron concentration. Int. J. Environ. Res. Public Health 2022, 19, 2423. [Google Scholar] [CrossRef]
- Karthik Kumar, M.B.; Nagaiah, N.; Mathews, G.; Ambika, M.R. Assessment of annual effective dose due to outdoor radon activity in the environment of Bengaluru. Radiat. Prot. Environ. 2018, 41, 115–118. [Google Scholar]
- Cinelli, G.; De Cort, M.; Tollefsen, T. (Eds.) European Atlas of Natural Radiation, European Commission; Publication Office of the European Union: Luxembourg, 2019. [Google Scholar]
Zone | Isotope | N | AM (Bq m−3) | Median (Bq m−3) | Min–Max (Bq m−3) |
---|---|---|---|---|---|
A | Radon | 2 | 12 | 12 | 8–16 |
Thoron | 2 | 109 | 109 | 69–149 | |
B | Radon | 9 | 27 | 28 | 19–34 |
Thoron | 8 | 230 | 251 | 92–307 | |
C | Radon | 7 | 10 | 10 | 7–14 |
Thoron | 4 | 27 | 18 | 13–59 | |
D | Radon | 8 | 25 | 26 | 13–34 |
Thoron | 8 | 197 | 226 | 57–307 | |
All | Radon | 26 | 21 | 20 | 7–34 |
Thoron | 22 | 170 | 214 | 13–307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pressyanov, D.; Dimitrov, D. Pilot Survey of Outdoor Radon and Thoron Levels in Bulgaria Using an Innovative DVD-Based Method. Atmosphere 2024, 15, 1141. https://doi.org/10.3390/atmos15091141
Pressyanov D, Dimitrov D. Pilot Survey of Outdoor Radon and Thoron Levels in Bulgaria Using an Innovative DVD-Based Method. Atmosphere. 2024; 15(9):1141. https://doi.org/10.3390/atmos15091141
Chicago/Turabian StylePressyanov, Dobromir, and Dimitar Dimitrov. 2024. "Pilot Survey of Outdoor Radon and Thoron Levels in Bulgaria Using an Innovative DVD-Based Method" Atmosphere 15, no. 9: 1141. https://doi.org/10.3390/atmos15091141
APA StylePressyanov, D., & Dimitrov, D. (2024). Pilot Survey of Outdoor Radon and Thoron Levels in Bulgaria Using an Innovative DVD-Based Method. Atmosphere, 15(9), 1141. https://doi.org/10.3390/atmos15091141