Sources, Distribution, and Health Implications of Heavy Metals in Street Dust across Industrial, Capital City, and Peri-Urban Areas of Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Street Dust Sampling and Preparation
2.3. Sample Processing and Determination Procedure
2.4. Quality Control/Quality Assurance (QC/QA)
2.5. Methods of Estimating Pollution Indices
2.5.1. Geo-Accumulation Index (Igeo)
Heavy Metals | Global Soil Background Value (mg/kg) |
---|---|
Mn | 488 |
Zn | 70 |
Cu | 38.9 |
Pb | 27 |
Cr | 59.5 |
Co | 11.3 |
Ni | 29 |
Cd | 0.2 |
Igeo Value | Classes | Soil Condition |
---|---|---|
≤0 | 0 | Uncontaminated |
0–1 | 1 | From uncontaminated to moderately contaminated |
1–2 | 2 | Moderately contaminated |
2–3 | 3 | Moderately to strongly contaminated |
3–4 | 4 | Strongly contaminated |
4–5 | 5 | Strongly to extremely contaminated |
>6 | 6 | Extremely contaminated |
2.5.2. Pollution Factor for Suspended Street Dust Heavy Metals
2.5.3. Pollution Load Index
2.5.4. Ecological Risk for Suspended Street Dust Heavy Metals
2.5.5. Principal Component Analysis (PCA)
2.5.6. Pearson’s Correlation Analysis (CA)
2.5.7. Hierarchical Cluster Analysis (HCA)
2.6. Health Risk Assessment for Suspended Street Dust Heavy Metals
2.7. Quantitative Analysis
3. Result and Discussion
3.1. Heavy Metal Concentration in Street Dust
3.1.1. Heavy Metal Pollution in Industrial Area Suspended Street Dust
3.1.2. Heavy Metals in Capital City’s Street Dust
3.1.3. Heavy Metal in Peri-Urban Street Dust
3.2. Source Assessment
3.2.1. Principal Component Analysis
- (a)
- Anthropogenic sources
- (b)
- Industrial sources
- (c)
- Mixed sources
3.2.2. Pearson’s Correlation Analysis (CA)
3.2.3. Hierarchical Cluster Analysis (HCA)
3.3. Pollution Assessement
3.3.1. Geo-Accumulation Index (Igeo)
3.3.2. Pollution Factor (CF)
3.3.3. Pollution Load Index (PLI)
3.3.4. Ecological Risk (Er)
3.4. Health Risk Assessment
3.4.1. Exposure Calculation
3.4.2. Non-Carcinogenic Risk Assessment
3.4.3. Carcinogenic Risk (CR)
3.4.4. Cumulative Carcinogenic Risk (CCR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Bell, M.L. Global, regional, and national life expectancy, all-cause mortality and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Zhong, M. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J. Particulate matter air pollution is a significant risk factor for cardiovascular disease. Curr. Probl. Cardiol. 2024, 49, 102094. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Haines, A.; Burnett, R.; Tonne, C.; Klingmüller, K.; Münzel, T.; Pozzer, A. Air pollution deaths attributable to fossil fuels: Observational and modelling study. BMJ 2023, 383, e077784. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 20 August 2024).
- Xiao, K.; Yao, X.; Zhang, X.; Fu, N.; Shi, Q.; Meng, X.; Ren, X. Pollution Characteristics, Source Apportionment, and Health Risk Assessment of Potentially Toxic Elements (PTEs) in Road Dust Samples in Jiayuguan, Hexi Corridor, China. Toxics 2022, 10, 580. [Google Scholar] [CrossRef]
- Heidari, M.; Darijani, T.; Alipour, V. Heavy metal pollution of suspended street dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere 2021, 273, 129656. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.—Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Sahu, D.; Ramteke, S.; Dahariya, N.S.; Sahu, B.L.; Patel, K.S.; Matini, L.; Nicolas, J.; Yubero, E.; Hoinkis, J. Assessment of suspended street dust pollution in India. Atmos. Clim. Sci. 2016, 6, 77–88. [Google Scholar] [CrossRef]
- Kabir, M.H.; Wang, Q.; Rashid, M.H.; Wang, W.; Isobe, Y. Assessment of bioaccessibility and health risks of toxic metals in roadside dust of Dhaka City, Bangladesh. Atmosphere 2022, 13, 488. [Google Scholar] [CrossRef]
- Gunawardana, C.; Egodawatta, P.; Goonetilleke, A. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environ. Pollut. 2014, 184, 44–53. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, X.; Chao, S. Risk assessment of potentially toxic elements in smaller than 100-μm street dust particles from a valley-city in northwestern China. Environ. Geochem. Health 2016, 38, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mao, Z.; Huang, K.; Wang, X.; Cheng, L.; Zeng, L.; Jing, T. Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environ. Int. 2019, 129, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Zgłobicki, W.; Telecka, M.; Skupiński, S. Assessment of short-term changes in street dust pollution with heavy metals in Lublin (E Poland) levels, sources and risks. Environ. Sci. Pollut. Res. 2019, 26, 35049–35060. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Wang, X.; Liu, H.; Liang, M.; Zhu, Y.; Li, Z. Chemical speciation, pollution and ecological risk of toxic metals in readily washed off suspended street dust in a megacity (Nanjing), China. Ecotoxicol. Environ. Saf. 2019, 173, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Wameq, A.R.; Iffat, M. In Bangladesh, an urgent call for clean air. End Proverty in South Asia. 2022. Available online: https://blogs.worldbank.org/en/endpovertyinsouthasia/bangladesh-urgent-call-clean-air (accessed on 25 April 2024).
- Raza, W.A.; Mahmud, I.; Rabie, T.S. Breathing Heavy: New Evidence on Air Pollution and Health in Bangladesh; International Development in Focus; World Bank: Washington, DC, USA, 2022; Available online: http://documents.worldbank.org/curated/en/099440011162223258/P16890102a72ac03b0bcb00ad18c4acbb10 (accessed on 12 July 2024).
- Ahmed, F.; Bayazid, A.Z.M.; Islam, M.M.; Rahaman, M.Z.; Al Muntasir, M.F. The terrible air pollution in Dhaka city is getting worse. GSC Adv. Res. Rev. 2024, 19, 42–52. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Kalam, A.; Al-Mamun, M. Unplanned urbanization and health risks of Dhaka City in Bangladesh: Uncovering the associations between urban environment and public health. Front. Public Health 2023, 19, 1269362. [Google Scholar] [CrossRef]
- Padoan, E.; Rome, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in suspended street dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601, 89–98. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- World Bank Press Release. High Air Pollution Level is Creating Physical and Mental Health Hazards in Bangladesh; World Bank: Washington, DC, USA, 2022; Available online: https://www.worldbank.org/en/news/press-release/2022/12/03/high-air-pollution-level-is-creating-physical-and-mental-health-hazards-in-bangladesh-world-bank (accessed on 25 April 2024).
- Rabin, M.H.; Wang, Q.; Kabir, M.H.; Wang, W. Pollution characteristics and risk assessment of potentially toxic elements of fine street dust during COVID-19 lockdown in Bangladesh. Environ. Sci. Pollut. Res. 2023, 30, 4323–4345. [Google Scholar] [CrossRef]
- Kabir, M.H.; Rashid, M.H.; Wang, Q.; Wang, W.; Lu, S.; Yonemochi, S. Determination of heavy metal pollution and pollution indices of roadside dust in Dhaka City, Bangladesh. Processes 2021, 9, 1732. [Google Scholar] [CrossRef]
- Proshad, R.; Dey, H.C.; Ritu, S.A.; Baroi, A.; Khan, M.S.; Islam, M.; Idris, A.M. A review on toxic metal pollution and source-oriented risk apportionment in road dust of a highly polluted megacity in Bangladesh. Environ. Geochem. Health 2023, 45, 2729–2762. [Google Scholar] [CrossRef]
- Rakib, M.A.; Ali, M.; Akter, M.S.; Bhuiyan, M.A. Assessment of heavy metal (Pb, Zn, Cr and Cu) content in roadside dust of Dhaka Metropolitan City, Bangladesh. Int. Res. J. Environ. Sci. 2014, 3, 1–5. [Google Scholar]
- Khan, M.D.H.; Talukder, A.; Rahman, M.S. Spatial distribution and pollution assessment of heavy metals in urban suspended street dusts from Dhaka city, Bangladesh. IOSR J. Appl. Chem. 2018, 11, 90–99. [Google Scholar]
- Rahman, M.S.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal pollution through street dust in the Southeast Asian megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Kumar, S.; Nasiruddin, M.; Saha, N. Deciphering the origin of Cu, Pb and Zn pollution in school dust and soil of Dhaka, a megacity in Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 40808–40823. [Google Scholar] [CrossRef]
- Nargis, A.; Habib, A.; Islam, N.M.; Chen, K.; Sarker, M.S.I.; Al-Razee, A.N.M.; Cai, M. Source identification, pollution status and health risk assessment of heavy metals from suspended street dusts in Dhaka, Bangladesh. J. Environ. Sci. 2022, 121, 159–174. [Google Scholar] [CrossRef]
- Chakraborty, M.; Rahat, M.M.R.; Choudhury, T.R.; Nigar, R.; Liu, G.; Habib, A. Heavy metal pollution and health risk assessment of suspended street dust from landfills in Dhaka-Narayanganj, Bangladesh. Emerg. Contam. 2024, 10, 100278. [Google Scholar] [CrossRef]
- Hoque, M.A.; Hoque, M.M.; Ahmed, K.M. Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: Causes and quantification. Hydrogeol. J. 2007, 15, 1523–1534. [Google Scholar] [CrossRef]
- Shahid, S. Recent trends in the climate of Bangladesh. Clim. Res. 2010, 42, 185–193. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Available online: https://sid.portal.gov.bd/sites/default/files/files/sid.portal.gov.bd/publications/01ad1ffe_cfef_4811_af97_594b6c64d7c3/PHC_Preliminary_Report_(English)_August_2022.pdf (accessed on 19 August 2024).
- Bangladesh Road and Transport Authority (BRTA). Available online: http://brta.portal.gov.bd/sites/default/files/files/brta.portal.gov.bd/page/5818c2d3_c813_4cdf_8c89_971036fe83b3/2021-03-01-14-10-7c8dfa8d01f9c919b5412c11bd3877c3.pdf (accessed on 20 August 2024).
- Nurunnahar, S.; Shariful, I.M.; Rahman, M. Electric vehicles in Bangladesh: Impact on the environment, mobility, and the economy of an impending ban. Public Health Chall. 2022, 1, e43. [Google Scholar] [CrossRef]
- Delibašić, Š.; Đokić-Kahvedžić, N.; Karić, M. Health risk assessment of heavy metal contamination in street dust of federa- tion of Bosnia and Herzegovina. Hum. Ecol. Risk Assess. 2020, 27, 1296–1308. [Google Scholar] [CrossRef]
- Wang, L.; Du, J.; Qiao, Y.; Li, X. Geoaccumulation index and enrichment factor to assess heavy metal contamination in estuarine intertidal sediments and their adjacent arable soils in Dalian, Northeastern China. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group, LLC.: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Muller, G. Schwermetalle in den sedimenten des Rheins-Veranderungen seit. Umschav 1979, 79, 778–783. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Et Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Kamani, H.; Mahvi, A.H.; Seyedsalehi, M.; Jaafari, J.; Hoseini, M.; Safari, G.H.; Dalvand, A.; Aslani, H.; Mirzaei, N. Pollution and ecological risk assessment of heavy metals in street dust of Tehran, Iran. Int. J. Environ. Sci. Technol. 2017, 14, 2675–2682. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER 9355; Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- Wang, J.; Li, S.; Cui, X.; Li, H.; Qian, X.; Wang, C.; Sun, Y. Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicol. Environ. Saf. 2016, 128, 161–170. [Google Scholar] [CrossRef]
- US EPA. Soil Screening Guidance: Technical Background Document; Office of Soild Waste and Emergency Response: Washington, DC, USA, 1996.
- US EPA. Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organ Ically Based Matrices SW-846; US EPA: Washington, DC, USA, 1996. [Google Scholar]
- US EPA. Risk Assessment Guidance for Superfund (RAGS) Volume III—Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B; Office of Emergency and Remedial Response US Environmental Protection Agency: Washington, DC, USA, 2001; Volume III.
- Li, X.; Poon, C.S.; Liu, P.S. Heavy metal pollution of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.; Fu, B. Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in suspended street dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Office of Emergency and Remedial Response, United States Environmental Protection Agency. Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989.
- Mohmand, J.; Eqani, S.A.; Fasola, M.; Alamdar, A.; Mustafa, I.; Ali, N.; Liu, L.; Peng, S.; Shen, H. Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Kurt-Karakus, P.B. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ. Int. 2012, 50, 55. [Google Scholar] [CrossRef]
- Gu, Y.G.; Lin, Q.; Gao, Y.P. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean. Prod. 2016, 115, 122–129. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E.J. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef]
- Han, J.; Liang, L.; Zhu, Y.; Xu, X.; Wang, L.; Shang, L.; Wu, P.; Wu, Q.; Qian, X.; Qiu, G.; et al. Heavy metal (loid) s in farmland soils on the Karst Plateau, Southwest China: An integrated analysis of geochemical baselines, source apportionment, and associated health risk. Land Degrad. Dev. 2022, 33, 1689–1703. [Google Scholar] [CrossRef]
- Miazgowicz, A.; Krennhuber, K.; Lanzerstorfer, C. Metals concentrations in suspended street dust from high traffic and low traffic area: A size dependent comparison. Int. J. Environ. Sci. Technol. 2020, 17, 3365–3372. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, T.; Yu, S.; Chu, H. Pollution characteristics and health risks of heavy metals in suspended street dust in Ma’anshan, China. Environ. Sci. Pollut. Res. 2023, 30, 43726–43739. [Google Scholar] [CrossRef]
- Albuja, M.; Jeong, H.; Ra, K. Distribution of potentially toxic elements and health risk assessment of suspended street dust in a steel industrial area. Int. J. Environ. Sci. Technol. 2024, 21, 4967–4978. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista-Hernández, D.; Bautista, F.; Goguitchaichvili, A.; Cejudo, R. Is the urban form a driver of heavy metal pollution in suspended street dust? Evidence from Mexico City. Atmosphere 2021, 12, 266. [Google Scholar] [CrossRef]
- Ahogle, A.M.; Letema, S.; Schaab, G.; Ngure, V.; Mwesigye, A.R.; Korir, N.K. Heavy metals and trace elements pollution risks in peri-urban agricultural soils in Nairobi city catchment, Kenya. Front. Soil Sci. 2023, 2, 1048057. [Google Scholar] [CrossRef]
- Cao, B.; Sun, Z.; Bai, D.; Kong, L.; Zhang, X.; Chen, J.; Chen, D. The Identification of Soil Heavy Metal Sources and Environmental Risks in Industrial City Peri-Urban Areas: A Case Study from a Typical Peri-Urban Area in Western Laizhou, Shandong, China. Sustainability 2024, 16, 4655. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Lin, S. Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water 2022, 14, 3894. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Verla, E.N.; Verla, A.W.; Enyoh, C.E. Finding a relationship between physicochemical characteristics and ionic composition of River Nworie, Imo State, Nigeria. PeerJ Anal. Chem. 2020, 2, e5. [Google Scholar] [CrossRef]
- Budai, P.; Clement, A. Spatial distribution patterns of four traffic-emitted heavy metals in urban suspended street dust and the resuspension of brake-emitted particles: Findings of a field study. Transp. Res. Part D Transp. Environ. 2018, 62, 179–185. [Google Scholar] [CrossRef]
- Swietlik, R.; Trojanowska, M.; Strzelecka, M.; Bocho-Janiszewska, A. Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the suspended street dust retained on noise barriers along expressway: A potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environ. Pollut. 2015, 196, 404–413. [Google Scholar] [CrossRef]
- Lee, P.K.; Chang, H.J.; Yu, S. Characterization of Cr (VI) containing solid phase particles in dry dust deposition in Daejeon, South Korea. Environ. Pollut. 2018, 243, 1637–1647. [Google Scholar] [CrossRef]
- Kabir, M.H.; Kormoker, T.; Shammi, R.S.; Tusher, T.R.; Islam, M.S.; Khan, R.; Idris, A.M. A comprehensive assessment of heavy metal contamination in road dusts along a hectic national highway of Bangladesh: Spatial distribution, sources of contamination, ecological and human health risks. Toxin Rev. 2021, 41, 860–879. [Google Scholar] [CrossRef]
- Isinkaralar, O.; Isinkaralar, K.; Bayraktar, E.P. Monitoring the spatial distribution pattern according to urban land use and health risk assessment on potential toxic metal pollution via street dust in Ankara, Türkiye. Environ. Monit. Assess. 2023, 195, 1085. [Google Scholar] [CrossRef] [PubMed]
- Enyoh, C.E.; Isiuku, B.O. Determination and human health risk assessment of heavy metals in floodbasin soils in Owerri, Southeastern Nigeria. Chem. Afr. 2020, 3, 1059–1071. [Google Scholar] [CrossRef]
- Kormoker, T.; Proshad, R.; Islam, S. Toxic metals in agricultural soils near the industrial areas of Bangladesh: Ecological and human health risk assessment. Toxin Rev. 2019, 40, 1135–1154. [Google Scholar] [CrossRef]
- Newaz, K.K.; Pal, S.K.; Hossain, S.; Karim, A. Evaluation of heavy metal pollution risk associated with road sediment. Environ. Eng. Res. 2021, 26, 200239. [Google Scholar] [CrossRef]
- Cai, K.; Li, C.; Na, S. Spatial distribution, pollution source, and health risk assessment of heavy metals in atmospheric depositions: A case study from the sustainable city of Shijiazhuang, China. Atmosphere 2019, 10, 222. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Saleh, I.A.; Zahran, H.R.; Abdel-Latif, N.M. Ecological and Risk Assessment of Heavy Metals in a Diverse Industrial Area of Al-Akrasha, Egypt. Atmosphere 2023, 14, 1745. [Google Scholar] [CrossRef]
- Delgado-Iniesta, M.J.; Marín-Sanleandro, P.; Díaz-Pereira, E.; Bautista, F.; Romero-Muñoz, M.; Sánchez-Navarro, A. Estimation of ecological and human health risks posed by heavy metals in street dust of Madrid City (Spain). Int. J. Environ. Res. Public Health 2022, 19, 5263. [Google Scholar] [CrossRef]
- Gupta, V.; Bisht, L.; Arya, A.K.; Singh, A.P.; Gautam, S. Spatially resolved distribution, sources, exposure levels, and health risks of heavy metals in <63 μm size-fractionated suspended street dust from Lucknow City, North India. Int. J. Environ. Res. Public Health 2022, 19, 12898. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Pollution features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Integrated Risk Information System of the US Environmental Protection Agency; US Environmental Protection Agency (USEPA): Washington, DC, USA, 2012.
- Lu, X.; Shi, D.; Yin, N.; Pan, H.; Smith, P. Risk assessment of heavy metals in finer than 63-μm dust particles from various functional areas in Xi’an, China. Air Qual. Atmos. Health 2017, 10, 907–915. [Google Scholar] [CrossRef]
Parameters | Description and Units | Value | Reference | |
---|---|---|---|---|
Child | Adult | |||
PEF | Particle emission factor | 1.36 × 109 | 1.36 × 109 | [50] |
IngR | Ingestion rate (mg/day) | 200 | 100 | [50] |
SA | Exposed skin area (cm2) | 2800 | 5700 | [50] |
InhR | Inhalation rate (m3/day) | 7.63 | 12.8 | [51] |
ABS | Dermal absorption factor | 0.001 | 0.001 | [50,52] |
AF | Skin adherence factor (mg/cm2) | 0.2 | 0.07 | [50] |
ED | Duration of exposure (years) | 6 | 24 | [50] |
EF | Frequency of exposure (days/year) | 350 | 350 | [53] |
AT | Average time (days) for non-carcinogens | ED × 365 | ED × 365 | [54] |
Atcan | Average time (days) for carcinogens | 70 × 365 | 70 × 365 | [54] |
BW | Body weight average (kg) | 15 | 70 | [53,55,56] |
C | Toxic metal concentration (mg/kg) | This study | ||
CF | Conversion factor (kg/mg) | 1 × 10−6 | [51] |
Heavy Metals | RfD (mg/(kg × d)) | SF ((kg × d)/mg) | |||||
---|---|---|---|---|---|---|---|
Ingestion | Inhalation | Dermal Contact | Ingestion | Inhalation | Dermal Contact | Reference | |
Cr | 3.00 × 10−3 | 2.86 × 10−5 | 6.00 × 10−5 | 8.50 × 10−3 | 4.20 × 101 | n/a | [57,58] |
Zn | 3.00 × 10−1 | 3.00 × 10−1 | 6.00 × 10−2 | n/a | n/a | n/a | [57] |
Pb | 3.50 × 10−3 | 3.52 × 10−3 | 5.2 × 10−4 | 8.50 × 10−3 | n/a | n/a | [57,59] |
Cd | 1.00 × 10−3 | 1.00 × 10−5 | 1.00 × 10−5 | 6.1 | 6.30 | n/a | [57,58] |
Ni | 2.00 × 10−2 | 2.06 × 10−2 | 5.40 × 10−3 | n/a | 8.4 × 10−1 | n/a | [57] |
Cu | 4.00 × 10−2 | 4.02 × 10−2 | 1.20 × 10−2 | n/a | n/a | n/a | [57] |
Co | 2.00 × 10−2 | 5.71 × 10−6 | 1.84 × 10−3 | n/a | 9.80 | n/a | [60] |
Mn | 4.60 × 10−1 | 1.43 × 10−5 | 1.84 × 10−3 | n/a | n/a | n/a | [61] |
Heavy Metals | Study Areas | ≤20 μm Particle Size | 20–32 μm Particle Size | ||||
---|---|---|---|---|---|---|---|
Mean | Minimum | Maximum | Mean | Minimum | Maximum | ||
Cr | Industrial areas | 238.31 | 28.96 | 855.90 | 86.11 | 25.19 | 201.32 |
Capital city areas | 45.21 | 26.93 | 55.07 | 42.17 | 29.85 | 53.31 | |
Peri-urban areas | 198.05 | 33.77 | 736.27 | 146.55 | 41.26 | 881.08 | |
Mn | Industrial areas | 444.35 | 233.16 | 1004.73 | 230.11 | 36.39 | 320.21 |
Capital city areas | 236.72 | 194.28 | 270.36 | 283.51 | 214.99 | 354.65 | |
Peri-urban areas | 369.96 | 212.18 | 630.23 | 322.98 | 40.42 | 572.17 | |
Co | Industrial areas | 10.93 | 8.98 | 14.33 | 8.81 | 4.15 | 12.13 |
Capital city areas | 9.81 | 8.39 | 12.76 | 9.95 | 7.94 | 11.54 | |
Peri-urban areas | 12.88 | 9.26 | 20.19 | 11.76 | 4.80 | 24.79 | |
Ni | Industrial areas | 45.66 | 21.71 | 63.17 | 36.27 | ND | 78.47 |
Capital city areas | 43.27 | 22.13 | 100.28 | 29.93 | 12.65 | 46.85 | |
Peri-urban areas | 40.84 | 20.84 | 187.21 | 54.03 | ND | 606.03 | |
Cu | Industrial areas | 54.22 | 20.45 | 147.40 | 19.22 | 1.79 | 35.32 |
Capital city areas | 55.76 | 21.06 | 134.53 | 64.46 | 14.16 | 165.22 | |
Peri-urban areas | 34.18 | 11.55 | 59.42 | 33.44 | ND | 69.79 | |
Zn | Industrial areas | 299.25 | 67.52 | 826.45 | 140.76 | 14.94 | 350.06 |
Capital city areas | 205.19 | 95.05 | 380.33 | 271.47 | 101.06 | 530.42 | |
Peri-urban areas | 164.50 | 43.58 | 367.91 | 213.69 | ND | 1528.08 | |
Cd | Industrial areas | 2.73 | ND | 18.57 | ND | ND | 3.14 |
Capital city areas | 3.14 | 2.61 | 3.90 | ND | ND | 6.29 | |
Peri-urban areas | 0.22 | ND | 12.25 | ND | ND | 3.08 | |
Pb | Industrial areas | 52.78 | 13.41 | 143.34 | 20.69 | 3.58 | 51.74 |
Capital city areas | 27.42 | 15.68 | 52.87 | 26.39 | 9.87 | 64.33 | |
Peri-urban areas | 23.98 | 10.21 | 59.86 | 23.79 | ND | 68.13 |
Correlation Matrix | ||||||||
---|---|---|---|---|---|---|---|---|
HMs | Cr | Mn | Co | Ni | Cu | Zn | Cd | Pb |
Cr | 1.0 | |||||||
Mn | 0.670 *** | 1.0 | ||||||
Co | 0.569 *** | 0.421 ** | 1.0 | |||||
Ni | 0.420 ** | 0.180 | 0.333 * | 1.0 | ||||
Cu | 0.409 ** | 0.572 *** | 0.124 | 0.010 | 1.0 | |||
Zn | 0.453 ** | 0.689 *** | 0.108 | 0.065 | 0.895 *** | 1.0 | ||
Cd | 0.182 | 0.057 | −0.222 | −0.007 | 0.236 | 0.156 | 1.0 | |
Pb | 0.442 ** | 0.715 *** | 0.091 | 0.000 | 0.794 *** | 0.927 *** | 0.047 | 1.0 |
Heavy Metals | Industrial Area CF | Capital City Area CF | Peri-Urban Area CF |
---|---|---|---|
Cr | 4 | 0.76 | 2.46 |
Mn | 0.91 | 0.49 | 0.71 |
Co | 0.97 | 0.87 | 1.12 |
Ni | 1.57 | 1.49 | 1.18 |
Cu | 1.39 | 1.43 | 0.88 |
Zn | 4.28 | 2.93 | 2.36 |
Cd | 20.5 | 15.7 | 9.15 |
Pb | 1.95 | 1.02 | 0.94 |
Area | Pollution Load Index (PLI) |
---|---|
Industrial area | 2.45 |
Capital city area | 1.54 |
Peri-urban area | 1.59 |
Heavy Metals | Industrial Area Er | Capital City Area Er | Peri-Urban Area Er |
---|---|---|---|
Cr | 8 | 1.52 | 4.92 |
Mn | 0.91 | 0.49 | 0.71 |
Co | 0.97 | 0.87 | 1.12 |
Ni | 1.57 | 1.49 | 1.18 |
Cu | 1.39 | 1.43 | 0.88 |
Zn | 4.28 | 2.93 | 2.36 |
Cd | 615 | 471 | 274.5 |
Pb | 1.95 | 1.02 | 0.94 |
Heavy Metal | Pathways | Industrial Area | Capital City Area | Peri-Urban Area | |||
---|---|---|---|---|---|---|---|
Child | Adult | Child | Adult | Child | Adult | ||
Ingestion | 1.1 × 10−4 | 7.51 × 10−5 | 2.17 × 10−5 | 1.42 × 10−5 | 7.04 × 10−5 | 4.61 × 10−5 | |
Cr | Inhalation | 3.20 × 10−9 | 1.10 × 10−8 | 6.07 × 10−10 | 2.09 × 10−9 | 1.96 × 10−9 | 6.78 × 10−9 |
Dermal | 3.20 × 10−9 | 2.99 × 10−9 | 6.08 × 10−10 | 5.70 × 10−10 | 1.97 × 10−9 | 1.84 × 10−9 | |
Ingestion | 2.70 × 10−3 | 3.54 × 10−4 | 1.44 × 10−3 | 1.88 × 10−4 | 2.11 × 10−3 | 2.76 × 10−4 | |
Mn | Inhalation | 7.56 × 10−8 | 5.21 × 10−8 | 4.02 × 10−8 | 2.77 × 10−8 | 5.89 × 10−8 | 4.06 × 10−8 |
Dermal | 7.57 × 10−8 | 1.41 × 10−8 | 4.03 × 10−8 | 7.54 × 10−9 | 5.90 × 10−8 | 1.10 × 10−8 | |
Ingestion | 5.00 × 10−6 | 3.40 × 10−6 | 4.70 × 10−6 | 3.10 × 10−4 | 6.10 × 10−6 | 4.00 × 10−6 | |
Co | Inhalation | 1.5 × 10−10 | 5.10 × 10−10 | 1.32 × 10−10 | 4.50 × 10−10 | 1.70 × 10−10 | 5.86 × 10−10 |
Dermal | 1.47 × 10−10 | 1.37 × 10−10 | 1.32 × 10−10 | 1.20 × 10−10 | 1.70 × 10−10 | 1.59 × 10−10 | |
Ingestion | 2.20 × 10−5 | 5.49 × 10−2 | 2.08 × 10−5 | 1.36 × 10−4 | 1.64 × 10−5 | 1.07 × 10−5 | |
Ni | Inhalation | 6.10 × 10−9 | 2.12 × 10−9 | 5.81 × 10−10 | 2.00 × 10−9 | 4.58 × 10−10 | 1.58 × 10−9 |
Dermal | 6.15 × 10−10 | 5.74 × 10−10 | 5.82 × 10−10 | 5.40 × 10−9 | 4.60 × 10−10 | 4.29 × 10−10 | |
Ingestion | 3.30 × 10−4 | 4.33 × 10−5 | 3.39 × 10−4 | 4.45 × 10−4 | 2.07 × 10−4 | 2.72 × 10−5 | |
Cu | Inhalation | 9.22 × 10−9 | 6.36 × 10−9 | 9.48 × 10−10 | 6.54 × 10−9 | 5.79 × 10−9 | 3.99 × 10−9 |
Dermal | 9.24 × 10−9 | 1.72 × 10−9 | 9.50 × 10−9 | 1.78 × 10−9 | 5.81 × 10−9 | 1.08 × 10−9 | |
Ingestion | 1.82 × 10−3 | 2.38 × 10−4 | 1.24 × 10−3 | 1.63 × 10−4 | 1.00 × 10−3 | 1.32 × 10−4 | |
Zn | Inhalation | 5.09 × 10−8 | 3.51 × 10−8 | 3.49 × 10−8 | 2.40 × 10−8 | 2.81 × 10−8 | 1.94 × 10−8 |
Dermal | 5.10 × 10−8 | 9.52 × 10−9 | 3.49 × 10−8 | 6.53 × 10−9 | 2.82 × 10−8 | 5.26 × 10−9 | |
Ingestion | 2.00 × 10−6 | 4.93 × 10−3 | 1.50 × 10−6 | 1.00 × 10−6 | 9.00 × 10−7 | 6.00 × 10−7 | |
Cd | Inhalation | 6.00 × 10−11 | 1.90 × 10−10 | 4.20 × 10−11 | 1.50 × 10−10 | 2.50 × 10−11 | 8.50 × 10−11 |
Dermal | 5.50 × 10−11 | 5.20 × 10−11 | 4.20 × 10−11 | 4.00 × 10−11 | 2.00 × 10−11 | 2.30 × 10−11 | |
Ingestion | 2.50 × 10−5 | 1.66 × 10−5 | 1.32 × 10−3 | 8.60 × 10−6 | 1.22 × 10−5 | 8.00 × 10−6 | |
Pb | Inhalation | 7.10 × 10−11 | 2.44 × 10−9 | 3.68 × 10−10 | 1.27 × 10−9 | 3.41 × 10−10 | 1.75 × 10−9 |
Dermal | 7.10 × 10−10 | 6.63 × 10−10 | 3.69 × 10−10 | 3.40 × 10−5 | 3.40 × 10−10 | 3.19 × 10−10 |
Heavy Metal | Pathways | Industrial Area | Capital City Area | Peri-Urban Area |
---|---|---|---|---|
Ingestion | 1.89 × 10−4 | 2.17 × 10−5 | 1.16 × 10−4 | |
Cr | Inhalation | 1.42 × 10−5 | 2.70 × 10−6 | 8.75 × 10−6 |
Dermal | 5.28 × 10−6 | 1.00 × 10−6 | 3.24 × 10−6 | |
Ingestion | 8.95 × 10−4 | 2.88 × 10−4 | 6.98 × 10−4 | |
Mn | Inhalation | 3.36 × 10−4 | 3.58 × 10−5 | 5.24 × 10−5 |
Dermal | 2.49 × 10−7 | 1.32 × 10−5 | 1.94 × 10−5 | |
Ingestion | 8.68 × 10−6 | 4.71 × 10−6 | 1.00 × 10−5 | |
Co | Inhalation | 6.51 × 10−7 | 5.86 × 10−7 | 7.55 × 10−7 |
Dermal | 2.41 × 10−7 | 2.17 × 10−7 | 2.80 × 10−7 | |
Ingestion | 3.36 × 10−5 | 2.07 × 10−5 | 2.71 × 10−5 | |
Ni | Inhalation | 2.72 × 10−6 | 2.58 × 10−6 | 2.03 × 10−6 |
Dermal | 1.01 × 10−6 | 9.58 × 10−7 | 7.56 × 10−7 | |
Ingestion | 1.09 × 10−4 | 6.78 × 10−5 | 6.86 × 10−5 | |
Cu | Inhalation | 4.10 × 10−9 | 8.44 × 10−6 | 5.15 × 10−6 |
Dermal | 3.04 × 10−6 | 3.12 × 10−6 | 1.91 × 10−6 | |
Ingestion | 6.03 × 10−4 | 2.49 × 10−4 | 3.33 × 10−4 | |
Zn | Inhalation | 2.26 × 10−4 | 3.10 × 10−5 | 2.50 × 10−5 |
Dermal | 1.67 × 10−5 | 1.15 × 10−5 | 9.28 × 10−6 | |
Ingestion | 3.26 × 10−6 | 1.50 × 10−6 | 1.45 × 10−6 | |
Cd | Inhalation | 2.44 × 10−7 | 1.87 × 10−7 | 1.09 × 10−7 |
Dermal | 9.08 × 10−8 | 6.95 × 10−8 | 4.05 × 10−8 | |
Ingestion | 4.19 × 10−5 | 1.31 × 10−5 | 2.01 × 10−5 | |
Pb | Inhalation | 3.15 × 10−6 | 1.63 × 10−6 | 1.51 × 10−6 |
Dermal | 1.16 × 10−6 | 6.07 × 10−7 | 5.62 × 10−7 |
Heavy Metal | Pathways | Industrial Area | Capital City Area | Peri-Urban Area | |||
---|---|---|---|---|---|---|---|
Child | Adult | Child | Adult | Child | Adult | ||
Cr | Ingestion | 3.67 × 10−2 | 2.50 × 10−2 | 7.23 × 10−3 | 4.73 × 10−3 | 2.35 × 10−2 | 1.54 × 10−2 |
Inhalation | 1.12 × 10−1 | 3.85 × 10−1 | 2.12 × 10−2 | 7.31 × 10−2 | 6.85 × 10−2 | 2.37 × 10−1 | |
Dermal | 5.33 × 10−2 | 4.98 × 10−2 | 1.01 × 10−2 | 9.50 × 10−3 | 3.28 × 10−2 | 3.07 × 10−2 | |
Mn | Ingestion | 5.87 × 10−3 | 7.70 × 10−4 | 3.13 × 10−3 | 4.09 × 10−4 | 4.59 × 10−3 | 6.00 × 10−4 |
Inhalation | 5.29 × 10−3 | 3.64 × 10−3 | 2.81 × 10−3 | 1.94 × 10−3 | 4.12 × 10−3 | 2.84 × 10−3 | |
Dermal | 4.11 × 10−5 | 7.64 × 10−6 | 2.19 × 10−5 | 4.10 × 10−6 | 3.20 × 10−5 | 5.98 × 10−6 | |
Co | Ingestion | 2.50 × 10−4 | 1.70 × 10−4 | 2.35 × 10−4 | 1.55 × 10−4 | 3.05 × 10−4 | 2.00 × 10−4 |
Inhalation | 2.63 × 10−4 | 8.95 × 10−4 | 2.31 × 10−4 | 7.88 × 10−4 | 2.98 × 10−4 | 1.02 × 10−3 | |
Dermal | 8.00 × 10−5 | 7.50 × 10−5 | 7.20 × 10−5 | 6.50 × 10−5 | 9.50 × 10−5 | 8.90 × 10−5 | |
Ni | Ingestion | 1.10 × 10−3 | 5.50 × 10−1 | 1.04 × 10−3 | 6.80 × 10−3 | 8.20 × 10−4 | 5.35 × 10−4 |
Inhalation | 2.96 × 10−4 | 1.03 × 10−4 | 2.82 × 10−5 | 9.67 × 10−5 | 2.29 × 10−5 | 7.92 × 10−5 | |
Dermal | 2.96 × 10−5 | 2.77 × 10−5 | 2.91 × 10−5 | 2.70 × 10−5 | 2.30 × 10−5 | 2.14 × 10−5 | |
Cu | Ingestion | 3.30 × 10−4 | 4.33 × 10−5 | 3.39 × 10−4 | 4.45 × 10−4 | 2.07 × 10−4 | 2.72 × 10−5 |
Inhalation | 9.22 × 10−9 | 6.36 × 10−9 | 9.48 × 10−10 | 6.54 × 10−9 | 5.79 × 10−9 | 3.99 × 10−9 | |
Dermal | 9.24 × 10−9 | 1.72 × 10−9 | 9.50 × 10−9 | 1.78 × 10−9 | 5.81 × 10−9 | 1.08 × 10−9 | |
Zn | Ingestion | 1.82 × 10−3 | 2.38 × 10−4 | 1.24 × 10−3 | 1.63 × 10−4 | 1.00 × 10−3 | 1.32 × 10−4 |
Inhalation | 5.09 × 10−8 | 3.51 × 10−8 | 3.49 × 10−8 | 2.40 × 10−8 | 2.81 × 10−8 | 1.94 × 10−8 | |
Dermal | 5.10 × 10−8 | 9.52 × 10−9 | 3.49 × 10−8 | 6.53 × 10−9 | 2.82 × 10−8 | 5.26 × 10−9 | |
Cd | Ingestion | 2.50 × 10−2 | 1.66 × 10−2 | 1.32 × 10−1 | 8.60 × 10−3 | 1.22 × 10−2 | 8.00 × 10−3 |
Inhalation | 6.00 × 10−6 | 1.90 × 10−5 | 4.20 × 10−6 | 1.50 × 10−5 | 2.50 × 10−6 | 8.50 × 10−6 | |
Dermal | 5.50 × 10−6 | 5.20 × 10−6 | 4.20 × 10−6 | 4.00 × 10−6 | 2.00 × 10−6 | 2.30 × 10−6 | |
Pb | Ingestion | 7.14 × 10−3 | 4.75 × 10−3 | 3.77 × 10−3 | 2.50 × 10−3 | 2.90 × 10−3 | 1.95 × 10−3 |
Inhalation | 3.19 × 10−3 | 1.10 × 10−1 | 1.65 × 10−2 | 5.71 × 10−2 | 1.42 × 10−2 | 4.87 × 10−2 | |
Dermal | 2.21 × 10−2 | 2.06 × 10−2 | 1.15 × 10−2 | 1.07 × 10−2 | 1.05 × 10−2 | 9.87 × 10−3 |
Heavy Metals | Industrial Area | Capital City Area | Peri-Urban Area | |||
---|---|---|---|---|---|---|
Child | Adult | Child | Adult | Child | Adult | |
Zn | 0.00001 | 0.016 | 0.132 | 0.008 | 0.012 | 0.008 |
Mn | 0.011 | 0.004 | 0.0059 | 0.002 | 0.008 | 0.0034 |
Cr | 0.202 | 0.459 | 0.0385 | 0.087 | 0.125 | 0.283 |
Pb | 0.032 | 0.135 | 0.0317 | 0.0703 | 0.028 | 0.061 |
Ni | 0.001 | 0.550 | 0.001 | 0.006 | 0.0008 | 0.0006 |
Cu | 0.0003 | 0.00004 | 0.0003 | 0.0004 | 0.0002 | 0.00003 |
Co | 0.0006 | 0.001 | 0.0005 | 0.001 | 0.0006 | 0.0013 |
Cd | 0.00001 | 0.017 | 0.132 | 0.008 | 0.012 | 0.008 |
Heavy Metal | Pathways | Industrial Area | Capital City Area | Peri-Urban Area |
---|---|---|---|---|
Ingestion | 1.16 × 10−4 | 1.84 × 10−7 | 9.86 × 10−7 | |
Cr | Inhalation | 5.96 × 10−4 | 1.13 × 10−4 | 3.67 × 10−4 |
Ingestion | n/a | n/a | n/a | |
Co | Inhalation | 6.37 × 10−6 | 5.74 × 10−6 | 7.40 × 10−6 |
Ingestion | n/a | n/a | n/a | |
Ni | Inhalation | 2.28 × 10−6 | 2.16 × 10−6 | 1.70 × 10−6 |
Ingestion | 1.98 × 10−5 | 9.15 × 10−6 | 8.84 × 10−6 | |
Cd | Inhalation | 1.53 × 10−6 | 1.17 × 10−6 | 6.86 × 10−7 |
Ingestion | 3.56 × 10−7 | 1.11 × 10−7 | 1.70 × 10−7 | |
Pb | Inhalation | n/a | n/a | n/a |
Heavy Metals | Industrial Area | Capital City Area | Peri-Urban Area |
---|---|---|---|
Cr | 7.12 × 10−4 | 1.132 × 10−4 | 3.68 × 10−4 |
Co | 6.37 × 10−6 | 5.74 × 10−6 | 7.40 × 10−6 |
Ni | 2.28 × 10−6 | 2.16 × 10−6 | 1.70 × 10−6 |
Cd | 2.13 × 10−5 | 1.03 × 10−5 | 9.53 × 10−6 |
Pb | 3.56 × 10−7 | 1.11 × 10−7 | 1.7 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, M.S.; Wang, Q.; Wang, W.; Enyoh, C.E.; Islam, M.R.; Isobe, Y.; Kabir, M.H. Sources, Distribution, and Health Implications of Heavy Metals in Street Dust across Industrial, Capital City, and Peri-Urban Areas of Bangladesh. Atmosphere 2024, 15, 1088. https://doi.org/10.3390/atmos15091088
Rana MS, Wang Q, Wang W, Enyoh CE, Islam MR, Isobe Y, Kabir MH. Sources, Distribution, and Health Implications of Heavy Metals in Street Dust across Industrial, Capital City, and Peri-Urban Areas of Bangladesh. Atmosphere. 2024; 15(9):1088. https://doi.org/10.3390/atmos15091088
Chicago/Turabian StyleRana, Md. Sohel, Qingyue Wang, Weiqian Wang, Christian Ebere Enyoh, Md. Rezwanul Islam, Yugo Isobe, and Md Humayun Kabir. 2024. "Sources, Distribution, and Health Implications of Heavy Metals in Street Dust across Industrial, Capital City, and Peri-Urban Areas of Bangladesh" Atmosphere 15, no. 9: 1088. https://doi.org/10.3390/atmos15091088
APA StyleRana, M. S., Wang, Q., Wang, W., Enyoh, C. E., Islam, M. R., Isobe, Y., & Kabir, M. H. (2024). Sources, Distribution, and Health Implications of Heavy Metals in Street Dust across Industrial, Capital City, and Peri-Urban Areas of Bangladesh. Atmosphere, 15(9), 1088. https://doi.org/10.3390/atmos15091088