Spatiotemporal Evolution and Influencing Factors of Heat Island Intensity in the Yangtze River Delta Urban Agglomeration Based on GEE
Abstract
:1. Introduction
2. Material and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Calculation of Surface Urban Heat Island Intensity (SUHI) and Heat Island Proportion (PHI)
- (1)
- PHI Calculation
- (2)
- SUHI Calculation
2.3.2. Driving Analysis
2.3.3. Geographical Detector Analysis
3. Results and Discussion
3.1. Temporal and Spatial Patterns and Changing Characteristics
3.1.1. Spatial Variation Characteristics of SUHI
3.1.2. Analysis of Seasonal Changes in SUHI
3.1.3. Analysis of Interannual Changes in SUHI
3.2. Analysis of Driving Factors
3.3. Comparative Analysis of Representative Cities
4. Conclusions
- (1)
- The heat island effect in the Yangtze River Delta urban agglomeration presents a Z-shaped distribution pattern in space. The overall performance is an M-shaped distribution expansion from west to east and a Z-shaped distribution expansion from north to south. The annual average SUHI in the study area from 2001 to 2020 was 0.21 °C, with an upward trend. The urban heat island effect is strongest in the spring and summer, followed by autumn, and weakest in the winter. The areas with a significant heat island effect in the Yangtze River Delta urban agglomeration are consistent with the urban core areas. Most cities show a trend of declining SUHI in the core area, while SUHI in the suburbs significantly enhances. This is associated with urban renewal in core areas and vigorous development of urban greening and ecological environmental protection during the process of urbanization.
- (2)
- The geographical detector results reveal that population density, DEM, and temperature are pivotal driving factors of the heat island effect in the Yangtze River Delta urban agglomeration. The two driving factors with the strongest influence on the SUHI interaction are land cover type and temperature in the spring, autumn, and the winter, and the two driving factors of population density and temperature have the most substantial influence on the SUHI interaction in the summer. The interaction between human interference factors and meteorological elements is particularly strong with significant seasonal changes. The two have the most significant correlation in the summer, and the least impact in the spring. SUHI is closely related to human activities, and rapid urbanization has exacerbated the conversion of a large number of natural surfaces into artificial impervious surfaces. Human interference factors play a dominant role in the summer SUHI.
- (3)
- The PHI and SUHI of the 10 representative cities in the study area exhibit increasing trends to varying degrees. There are substantial variations in the summer SUHI among these cities. The distribution of heat islands is relatively wide in the spring and summer, with minimal differences between cities in the summer and more significant variations in the autumn.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.A.; Feng, Q.L.; Niu, B.W.; Yan, F.Q.; Gao, B.B.; Yang, J.Y.; Gong, J.H.; Liu, J.T. Multi-modal fusion of satellite and street-view images for urban village classification based on a dual-branch deep neural network. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102794. [Google Scholar] [CrossRef]
- Montaner-Fernández, D.; Morales-Salinas, L.; Rodriguez, J.S.; Cárdenas-Jirón, L.; Huete, A.; Fuentes-Jaque, G.; Pérez-Martínez, W.; Cabezas, J. Spatio-Temporal Variation of the Urban Heat Island in Santiago, Chile during Summers 2005–2017. Remote Sens. 2020, 12, 3345. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana. Sustainability 2020, 12, 7953. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1183. [Google Scholar] [CrossRef]
- Lin, R.P.; Qi, X.H.; Ye, S.L. Spatial-temporal characteristics of urban heat islands and driving mechanisms in a coastal valley-basin city: A case study of Fuzhou City. Acta Ecol. Sin. 2017, 37, 294. [Google Scholar]
- Pan, Y.; Cul, L.L.; Liu, C.M.; Chen, L.; Zhang, L.F. Spatiotemporal distribution of urban heat island effect based on MODIS data in Chongqing, China. Chin. J. Ecol. 2018, 37, 3736. [Google Scholar]
- Lo, C.P.; Quattrochi, D.A. Land-Use and Land-Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach. Photogramm. Eng. Remote Sens. 2003, 69, 1053–1063. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921. [Google Scholar] [CrossRef]
- Magee, N.; Curtis, J.; Wendler, G. The Urban Heat Island Effect at Fairbanks, Alaska. Theor. Appl. Clim. 1999, 64, 39. [Google Scholar] [CrossRef]
- Dong, Y.; Li, X.M.; Yang, Y.C.; Peng, Y.; Wang, F.Q.; Du, C.L. Distributive characters of urban heat island effect in Xi’an City. J. Arid Land Resour. Environ. 2011, 25, 107. [Google Scholar]
- Giannaros, T.M.; Melas, D.; Daglis, I.A.; Keramitsoglou, I.; Kourtidis, K. Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos. Environ. 2013, 73, 103. [Google Scholar] [CrossRef]
- Nichol, J.E.; To, P.H. Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS J. Photogramm. Remote Sens. 2012, 74, 153. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Wang, H.L.; Yang, B.; Fan, J.W.; Yan, H.P.; Yang, X.Q.; Liu, D.Q. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmos. Chem. Phys. 2017, 17, 5439. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.W.; Zhang, Z.; Tang, M.; Ji, X.Y.; Hou, M.F. Spatio-temporal scale effect and driving mechanism of thermal environment and land surface cover in Nanjing. Ecol. Environ. Sci. 2020, 29, 1403. [Google Scholar]
- Liu, Y.H.; Fang, X.Y.; Zhang, S.; Luan, Q.Z.; Quan, W.J. Research on quantitative evaluations of heat islands for the Beijing-Tianjin-Hebei Urban Agglomeration. Acta Ecol. Sin. 2017, 37, 5818. [Google Scholar]
- Zhang, S.; Liu, Y.H.; Huang, H.T. Research on quantitative evaluations and spatial and temporal distribution of heat islands for the Pearl River Delta agglomeration. Ecol. Environ. Sci. 2017, 26, 1157. [Google Scholar]
- Sun, H.; Ma, L.R.; Cai, C.C.; Huang, T.; Lv, L.T.; Ruan, L.; Chen, W. Evolution of surface temperature and heat island effect in arid areas: A case of city belt along the Yellow River in Ningxia. Arid Land Geogr. 2020, 43, 694. [Google Scholar]
- Li, Y.; Zhou, D.C.; Yan, Z.M. Spatiotemporal variations in atmospheric urban heat island effects and their driving factors in 84 major Chinese cities. Environ. Sci. 2021, 42, 5037. [Google Scholar]
- Wu, R.R.; Xie, M.M.; Liu, Q.; Li, H.T.; Guo, Q.; Li, X.Y. Spatial variability of causative factors of heat islands from the perspective of metropolitan functional blocks. Resour. Sci. 2020, 42, 2463. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, F. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha city. Acta Geogr. Sin. 2020, 75, 2443. [Google Scholar]
- Liang, H.W.; Kasimu, A.; Zhang, X.L.; Zhao, Y.Y.; Reheman, R. Spatio-temporal change and influencing factors of land surface temperature in oasis urban agglomeration in arid region: A case study in the urban agglomeration on the northern slope of Tianshan Mountains. Acta Ecol. Sin. 2023, 43, 3650. [Google Scholar]
- Levermore, G.; Parkinson, J.; Lee, K.; Laycock, P.; Lindley, S. The increasing trend of the urban heat island intensity. Urban Clim. 2018, 24, 360. [Google Scholar] [CrossRef]
- Huang, Q.F.; Lu, Y.Q. Long-term Trend of Urban Heat Island Intensity and Climatological Affecting Mechanism in Bejing City. Sci. Geogr. Sin. 2018, 38, 1715. [Google Scholar]
- Hu, N.L.; Ren, Z.B.; Dong, Y.L.; Fu, Y.; Guo, Y.J.; Mao, Z.X.; Chang, X.Y. Spatio temporal evolution of heat island effect and its driving factors in urban agglomerations of China. Sci. Geogr. Sin. 2022, 42, 1534. [Google Scholar]
- Fang, C.L.; Yu, D.L. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126. [Google Scholar] [CrossRef]
- Liu, Y.H.; Fang, X.Y.; Xu, Y.M.; Zhang, S.; Luan, Q.Z. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2017, 133, 473–488. [Google Scholar] [CrossRef]
- Sun, Y.W.; Gao, C.; Li, J.L.; Wang, R.; Liu, J. Evaluating urban heat island intensity and its associated determinants of towns and cities continuum in the Yangtze River Delta Urban Agglomerations. Sustain. Cities Soc. 2019, 50, 101659. [Google Scholar] [CrossRef]
- Deng, Y.J.; Du, Y.D.; Wang, J.C. Spatiotemporal characteristics and driving factors of urban heat islands in Guangdong-Hong Kong Macao Greater Bay Area. Chin. J. Ecol. 2020, 39, 2671–2677. [Google Scholar]
- Yan, Z.M.; Zhou, D.C.; Zhang, L.X. Contrasting surface thermal environmental effects of urban and agricultural lands in three major urban agglomerations in China. Acta Ecol. Sin. 2021, 41, 8870–8881. [Google Scholar]
- Lin, Z.L.; Xu, H.Q.; Chen, H. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China’s eastern coastal region. Res. Environ. Sci. 2018, 31, 1695–1704. [Google Scholar]
- Du, H.Y.; Wang, D.D.; Wang, Y.Y.; Zhao, X.L.; Qin, F.; Jiang, H.; Cai, Y.L. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Meng, Q.; Allam, M.; Hu, D.; Zhang, L.L.; Menenti, M. Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecol. Indic. 2021, 128, 107845. [Google Scholar] [CrossRef]
- Fang, Y.L.; Su, X.Q.; Huang, Z.F.; Cheng, X.L. Spatial spillover effect of urban resilience on tourism economy: A case study of the Yangtze River Delta urban agglomeration. Prog. Geogr. 2022, 41, 214. [Google Scholar] [CrossRef]
- Song, X.W.; Hao, Y.P.; Zhu, X.D. Research on vehicular pollutants emission control in the Yangtze River Delta urban agglomeration based on scenario analysis. Ecol. Environ. Sci. 2019, 28, 2245. [Google Scholar]
- Zhang, X.; Wang, X.H.; Zheng, Y.R.; Cui, S.Y.; Yang, X.; Jiang, Z.Q. Effects of aerosol optical depth and impervious suace percentage on urban heat island intensity: A case study in Guanzhong Region. Acta Ecol. Sin. 2021, 41, 8965. [Google Scholar]
- Piao, S.L.; Mohammat, A.; Fang, J.Y.; Cai, Q.; Feng, J.M. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340. [Google Scholar] [CrossRef]
- Wang, X.L.; Hou, X.Y. Variation of Normalized Difference Vegetation Index and its response to extreme climate in coastal China during 1982–2014. Geogr. Res. 2019, 38, 807. [Google Scholar]
- Peng, J.; Xie, P.; Liu, Y.X.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145. [Google Scholar] [CrossRef]
- Qiao, Z.; Huang, N.Y.; Xu, X.L.; Sun, Z.Y.; Wu, C.; Yang, J. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017. Acta Geogr. Sin. 2019, 74, 475. [Google Scholar]
- Sun, Y.; Zhang, X.B.; Ren, G.Y.; Zwiers, F.W.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016, 6, 706. [Google Scholar] [CrossRef]
- Xu, H.Q. Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors. Acta Ecol. Sin. 2011, 31, 3890. [Google Scholar]
- Ye, C.H.; Liu, Y.H.; Liu, W.D.; Liu, C.; Quan, W.J. Research on Urban Surface Heat Environment Monitoring Indexes and Its Application. Meteorol. Sci. Technol. 2011, 39, 95. [Google Scholar]
- Zhou, D.C.; Zhao, S.Q.; Liu, S.G.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116. [Google Scholar]
- Yang, Z.W.; Chen, Y.B.; Wu, Z.F.; Zheng, Z.H.; Li, J.J. Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay area. Resour. Sci. 2019, 41, 1154. [Google Scholar]
- Xiang, Y.; Zhou, Z.X. Analysis of driving factors of urban heat island based on geographical detector: Taking Wuhan city as an example. Resour. Environ. Yangtze Basin 2020, 29, 1768–1779. [Google Scholar]
- Fang, Y.B.; Zhan, W.F.; Huang, F.; Gao, L.; Quan, J.L.; Zou, Z.X. Hourly variation of surface urban heat island over the Yangtze River Delta urban agglomeration. Adv. Earth Sci. 2017, 32, 187. [Google Scholar]
- Wang, D.D.; Wan, A.G. Research on Seasonal Spatial–Temporal Change of Urban Heat Island Effect in Nanjing City Based on Landsat Data. Jiangxi Sci. 2021, 39, 683. [Google Scholar]
- Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteorol. 1995, 34, 745. [Google Scholar] [CrossRef]
- Wang, W.; Shu, J. Urban renewal can mitigate urban heat islands. Geophys. Res. Lett. 2020, 47, e2019GL085948. [Google Scholar] [CrossRef]
- Yin, Y.X.; Zhang, H.; An, H.M.; Lei, J.P.; Li, M.; Song, J.Y.; Han, W.H. Heat island characteristics and influencing factors of urban agglomerations in the Yangtze River Economic Zone based on GEE. Chin. J. Ecol. 2023, 42, 160. [Google Scholar]
- Shi, T.; Yang, Y.J.; Ma, J.; Zhang, L.; Luo, S.F. Spatial-temporal characteristics of urban heat island in typical cities of Anhui province based on MODIS. J. Appl. Meteorol. Sci. 2013, 24, 484. [Google Scholar]
- Song, X.B.; Huang, H.; Guo, J.; Xiong, M.M. Research on the impact of urban morphology on thermal environment in summer: A case of Tianjin central city. Ecol. Environ. Sci. 2021, 30, 2165. [Google Scholar]
- Li, Z.; Hu, X. Evolution of heat island pattern and its relationship with NDVI in Chengdu. Environ. Ecol. 2022, 4, 71–75. [Google Scholar]
- Sun, Q.Q.; Wu, Z.F.; Tan, J.J. The Relationship Between Urban Heat Island and Land Use /Cover Changes in Guangzhou City. Remote Sens. Land Resour. 2010, 25, 67–70. [Google Scholar] [CrossRef]
- Liu, S.H.; Cao, Y.G.; Jia, Y.H.; Zhou, S.H.; Zhou, T.X. Analysis on the characteristics and causes of heat island in Haidian District of Beijing. Resour. Ind. 2020, 22, 86–95. [Google Scholar]
- Li, X.M.; Wen, L.; Wang, L.X. Urban heat island effect and its influencing factors based on Landsat remote sensing data: A case of Xiangyang city. Hubei Agric. Sci. 2019, 58, 41–48. [Google Scholar]
- Liu, Y.; Li, T.; Yu, L. Urban heat island mitigation and hydrology performance of innovative permeable pavement: A pilot-scale study. J. Clean. Prod. 2019, 244, 118938. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, S. Synergies or trade-offs between surface urban heat island and hot extreme: Distinct responses in urban environments. Sustain Cities Soc. 2024, 101, 105093. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Liu, Q.Y.; Liu, Y.X.; Hu, Y.N.; Li, Y.R.; Yue, Y.M. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Wang, R.; Guo, Q.H.; Gao, C. Estimation of the Urban Heat Island Intensity Change and Its Relationships with Driving Factors Across China Based on the Human Settlement Scale. Environ. Sci. 2021, 42, 501. [Google Scholar]
Data Name | Data Source | Resolution | Time |
---|---|---|---|
Surface temperature data | http://earthengine.google.com/ accessed on 13 February 2024 | 1 km | 2001–2020 |
Vegetation index data | http://earthengine.google.com/ accessed on 15 February 2024 | 1 km | 2001–2020 |
Land use data | http://earthengine.google.com/ accessed on 15 February 2024 | 500 m | 2001–2020 |
DEM data | http://www.gscloud.cn/ accessed on 16 February 2024 | 30 m | 2000 |
Population density data | https://hub.worldpop.org accessed on 18 February 2024 | 1 km | 2020 |
GDP data | https://www.resdc.cn/ accessed on 22February 2024 | 1 km | 2020 |
Other meteorological data | https://www.resdc.cn/ accessed on 22 February 2024 | 1 km | 2020 |
Grade Value | SUHI (°C) | Meaning |
---|---|---|
1 | SUHI ≤ −5 | Strong cold island |
2 | −5 ≤ SUHI ≤ −3 | Moderate cold island |
3 | −3 ≤ SUHI ≤ −1 | Weak cold island |
4 | −1 ≤ SUHI ≤ 1 | No-heat island |
5 | 1 ≤ SUHI ≤ 3 | Weak heat island |
6 | 3 ≤ SUHI ≤ 5 | Moderate heat island |
7 | SUHI > 5 | Strong heat island |
Factor Category | Index | Spring (q Value) | Summer (q Value) | Autumn (q Value) | Winter (q Value) |
---|---|---|---|---|---|
Human Interference | Population Density (POP) | 0.141 ** | 0.256 ** | 0.152 ** | 0.068 ** |
Gross Domestic Product (GDP) | 0.135 ** | 0.249 ** | 0.134 ** | 0.045 ** | |
Impervious Surface (USI) | 0.086 ** | 0.157 ** | 0.092 ** | 0.044 ** | |
Surface Feature | Digital Elevation Model (DEM) | 0.104 ** | 0.145 ** | 0.222 ** | 0.142 ** |
Normalized Difference Vegetation Index (NDVI) | 0.125 ** | 0.174 ** | 0.149 ** | 0.103 ** | |
Land Cover Type (LUCC) | 0.174 ** | 0.170 ** | 0.154 ** | 0.135 ** | |
Meteorological Element | Wind Speed (WIN) | 0.042 ** | 0.044 ** | 0.051 ** | 0.064 ** |
Precipitation (PRE) | 0.063 ** | 0.069 ** | 0.089 ** | 0.044 ** | |
Evapotranspiration (EVP) | 0.052 ** | 0.070 ** | 0.108 ** | 0.090 ** | |
Temperature (TEM) | 0.108 ** | 0.167 ** | 0.262 ** | 0.200 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Qi, L.; Li, H.; Yang, X.; Liu, J. Spatiotemporal Evolution and Influencing Factors of Heat Island Intensity in the Yangtze River Delta Urban Agglomeration Based on GEE. Atmosphere 2024, 15, 1080. https://doi.org/10.3390/atmos15091080
Meng F, Qi L, Li H, Yang X, Liu J. Spatiotemporal Evolution and Influencing Factors of Heat Island Intensity in the Yangtze River Delta Urban Agglomeration Based on GEE. Atmosphere. 2024; 15(9):1080. https://doi.org/10.3390/atmos15091080
Chicago/Turabian StyleMeng, Fei, Lifan Qi, Hongda Li, Xinyue Yang, and Jiantao Liu. 2024. "Spatiotemporal Evolution and Influencing Factors of Heat Island Intensity in the Yangtze River Delta Urban Agglomeration Based on GEE" Atmosphere 15, no. 9: 1080. https://doi.org/10.3390/atmos15091080
APA StyleMeng, F., Qi, L., Li, H., Yang, X., & Liu, J. (2024). Spatiotemporal Evolution and Influencing Factors of Heat Island Intensity in the Yangtze River Delta Urban Agglomeration Based on GEE. Atmosphere, 15(9), 1080. https://doi.org/10.3390/atmos15091080