Stability Detection of Canopy RGB Images for Different Underlying Surfaces Based on SVM
Abstract
:1. Introduction
2. Data and Methods
2.1. Overview of the Ecological Station
2.2. Data Source
2.2.1. Site Data
2.2.2. Meteorological Data
2.3. Research Method
2.3.1. Image Segmentation
- K-means algorithm
- 2.
- SVM
- 3.
- NLM filtering
2.3.2. RGB Vegetation Index Calculation and Correlation with Weather, Season, and Time Period Conditions
3. Result Analysis
3.1. Image RGB Channel Analysis
3.2. Analysis of the Influence of the Image Vegetation Index and Different External Conditions
3.2.1. Weather Type
3.2.2. Seasonal Type
3.2.3. Timeline Type
3.3. Analysis of the Influence of the Image Vegetation Index and Different External Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, F.; Cai, H.D.; Su, H.X.; Tong, D.W.; Liang, Y.Y.; Qin, Z.W.; Luo, W.S. The construction of Guangxi Region terrestrial ecosystem positioning observation research network. Hunan For. Sci. Technol. 2023, 50, 75–82. [Google Scholar]
- Zhang, F.H.; Zhang, Y. Strengthen the linkage of ecosystem positioning and observation networks to help Inner Mongolia develop green and high-quality. Inn. Mong. For. 2022, 10, 8–9. [Google Scholar]
- Tian, S.; Wei, B.; Jin, H.; Liu, Y.; Liu, F.; Yin, P.; Jia, B. Soil Properties and Hydrological Indexes of Forest Stands in Xuexiang. For. By-Prod. Spec. China 2023, 6, 7–8+12. [Google Scholar] [CrossRef]
- Chang, Q.Q.; He, H.L.; Niu, Z.E.; Ren, X.L.; Zhang, L.; Sun, W.X.; Zhu, X.B. Spatio-temporal variation of soil moisture and its influencing factors in Chinese typical forest ecosystems. Acta Ecol. Sin. 2021, 41, 490–502. [Google Scholar]
- Chen, R.F.; Yang, H.Y.; Gao, X.H.; Zheng, Z.L. Analysis of Microclimate Characteristics in Xiaolongshan Forest Ecological Station Area. J. Gansu For. Sci. Technol. 2019, 44, 5–8. [Google Scholar]
- Wang, X.Y.; Chen, Y.Q.; Xue, C.W.; Lin, Z.P.; Su, S.F.; Xue, Y. Analysis of Main Nutrient Contents in Leaves of Plants around Wenchang Ecological Station of Hainan. J. Anhui Agric. Sci. 2017, 45, 170–171+197. [Google Scholar]
- Yang, N.; Zhou, M.; Chen, H.; Cao, C.; Du, S.; Huang, Z. Estimation of Wheat Leaf Area Index and Yield Based on UAV RGB Images. J. Triticeae Crops 2023, 43, 920–932. [Google Scholar]
- Gu, H.C. Research on Foggy Image Sharpening Method Based on Dark Channel. Master’s Thesis, Shenyang Ligong University, Shenyang, China, 2023. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Chromatic Framework for Vision in Bad Weather. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000, Hilton Head, SC, USA, 15 June 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 598–605. [Google Scholar]
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles. Phys. Today 1977, 30, 76–77. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Vision and the Atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Shen, H.H.; Zhang, J.Z. A review of image enhancement algorithms. Chin. Opt. 2017, 10, 438–448. [Google Scholar] [CrossRef]
- Min, L.; Gao, K.; Li, W.; Wang, H.; Li, T.; Wu, Q. A Review of the Optical Remote Sensing Image Segmentation Technology. Spacecr. Recovery Remote Sens. 2020, 41, 1–13. [Google Scholar]
- Chen, Y.L.; Fang, S.B.; Mo, J.F.; Liu, Z.P. Characteristic of Typical Vegetation Growth in Karst Area based on Ground-based Visible Images. Remote Sens. Technol. Appl. 2023, 38, 518–526. [Google Scholar]
- Liu, S.Y.; Li, L.; Te, R.; Li, Z.; Ma, J.; Zhu, R. Threshold segmentation algorithm based on histogram region growing for remote sensing images. Bull. Surv. Mapp. 2021, 2, 25–29. [Google Scholar]
- Chen, L.; Ding, G.H.; Guo, L. Image thresholding based on mutual recognition of histogram. J. Infrared Millim. Waves 2011, 30, 80–84. [Google Scholar] [CrossRef]
- Li, J.; Jiang, N.; Baoyin, B.; Zhang, F.; Zhang, W.J.; Wang, W. Spatial Color Clustering Algorithm and Its Application in Image Feature Extraction. J. Jilin Univ. Sci. Ed. 2020, 58, 627–633. [Google Scholar]
- Ren, J.; Li, Z.N.; Fu, Y.P. Edge detection of color images based on wavelet and reduced dimensionality model of RGB. J. Zhejiang Univ. Eng. Sci. 2004, 38, 856–859, 892. [Google Scholar]
- Ma, X.; Qi, L.; Zhang, X.C. Segmentation Technology of Exserochilum Turcicum Image Based on Fuzzy Clustering Analysis. J. Agric. Mech. Res. 2008, 12, 24–26. [Google Scholar]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Ma, Y.P.; Bian, M.B.; Fan, Y.G.; Chen, Z.C.; Yang, G.J.; Feng, H.K. Estimation of Potassium Content in Potato Leaves Based on Canopy Spectrum and Coverage. Trans. Chin. Soc. Agric. Mach. 2023, 54, 226–233+252. [Google Scholar]
- Wang, C.Y.; Guo, X.Y.; Wen, W.L.; Du, J.J.; Xiao, B.X. Application of hemispherical photography on analysis of maize canopy structural parameters under natural light. Trans. Chin. Soc. Agric. Eng. 2016, 32, 157–162. [Google Scholar]
- You, M.; Liu, J.; Zhang, J.; Xv, M.; He, D. A novel chicken meat quality evaluation method based on color card localization and color correction. IEEE Access 2020, 8, 170093–170100. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhao, C. Survey on K-Means clustering algorithm. Comput. Eng. Appl. 2019, 55, 7–14. [Google Scholar]
- Mazzoni, D.; Garay, M.J.; Davies, R.; Nelson, D. An Operational MISR Pixel Classifier Using Support Vector Machines. Remote Sens. Environ. 2007, 107, 149–158. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, J.W. New progress in the application of support vector machines in remote sensing data classification. Adv. Earth Sci. 2009, 24, 555–562. [Google Scholar]
- Long, Y.F.; Qiao, W.Y.; Sun, J. Change Detection of Remote Sensing Images in Datun Mining Area Based on Support Vector Machine. Geomat. Spat. Inf. Technol. 2020, 43, 107–110. [Google Scholar]
- He, L.J. Research on Weeds Identification Based on K-Means Feature Learning. Master’s Thesis, Northwest A&F University, Xianyang, China, 2016. [Google Scholar]
- Li, L.H.; Guo, H.F.; Yu, P.; Liu, L.; Lu, X.H. Improved Non-Local Means Filtering Algorithm of Mine Remote Monitoring Image. Met. Mine 2022, 10, 165–169. [Google Scholar]
- Qi, W.; Jia, C.X.; Li, J. Application of Improved Non-local Mean Filtering in Image Denoising. J. Taiyuan Univ. (Nat. Sci. Ed.) 2023, 41, 59–64. [Google Scholar] [CrossRef]
- Guo, W.; Rage, K.U.; Ninomiya, S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agric. 2013, 96, 58–66. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Colour indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, E.G.; Neto, C.J. Verification of colour vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.; Burgos-Artizzu, X.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2010, 75, 75–83. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral Considerations for Modeling Yield of Canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Douglas, E.K.; Michael, D.R. Quantifying Turfgrass Colour Using Digital Image Analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar]
- Wu, H.; Wang, S.Y. Abnormal Data Recognition Algorithm for GNSS Deformation Monitoring Based on Laida Criterion. Sci-Tech Innov. Product. 2019, 1, 30–34. [Google Scholar] [CrossRef]
- Wu, H.; Bai, J.; Li, J.L.; Jiapaer, G.; Bao, A.M. Study of spatio-temporal variation in fractional vegetation cover and its influencing factors in Xinjiang, China. Chin. J. Plant Ecol. 2024, 48, 41–55. [Google Scholar]
- Garía-Mateos, G.; Hernández-Hernández, J.L.; Escarabajal-Henarejos, D.; Jaén-Terrones, S.; Molina-Martínez, J.M. Study and comparison of color models for automatic image analysis in irrigation management applications. Agric. Water Manag. 2015, 151, 158–166. [Google Scholar] [CrossRef]
- Jin, F.J. Research on Feature Extraction and Recognition Method of Weed Image Based on Machine Vision. Ph.D. Thesis, Zhenjiang Jiangsu University, Zhenjiang, China, 2007. [Google Scholar]
- Chen, L.J. Research on Image Enhancement Algorithm in Complex Weather Environment. Master’s Thesis, Xiamen University, Xiamen, China, 2022. [Google Scholar] [CrossRef]
- Yang, C.; Zhan, P.; He, L.; Hu, W.; Wei, Y. Visual detection of moisture content of mulberry leaf based on hyperspectral imaging technology. Acta Sericol. Sin. 2023, 49, 430–437. [Google Scholar] [CrossRef]
- Li, G.S.; Liu, J.B.; Liu, P.G.; Zhao, C.J.; Zhang, B.; Tong, Q.X. Analysis on Influence of Seasonal Changes and Terrain Undulation on Image Matching Guidance. Radio Eng. 2010, 12, 27–30. [Google Scholar]
- Liu, L.Y.; Wang, J.H.; Huang, W.J.; Zhao, C.J. Improving winter wheat yield prediction by novel spectral index. Trans. Chin. Soc. Agric. Eng. 2004, 20, 172–175. [Google Scholar]
- Jia, K.L.; Zhang, J.H. Prediction of the salinity information of Takyr Solonetzs based on the spectral characteristics of rice Canopy Indexes. Chin. J. Soil Sci. 2012, 43, 281–285. [Google Scholar]
- Ma, Y.P.; Bian, M.B.; Fan, Y.G.; Chen, Z.; Yang, G.; Feng, H. Estimation of potassium content in potato plants based on UAV RGB images. Trans. Chin. Soc. Agric. Mach. 2023, 54, 196–203. [Google Scholar]
Ecological Station | Time |
---|---|
Sugarcane | 12 January 2020–31 December 2022 |
Forest | 8 March 2021–30 June 2022 |
Karst | 1 January 2021–31 May 2021, 4 November 2021–20 May 2022 |
Weather | Rainfall (mm) | Cloud Cover Extent | Visibility (m) |
---|---|---|---|
Sunny or cloudy | <1 | Covers less than half of the sky | >15,000 |
Rain | >20 | Cover more than half of the sky | 1000–5000 |
Drizzle | 10~20 | Cover more than half of the sky | 5000–15,000 |
Fog | 1~10 | Cover more than half of the sky | <500 |
Vegetation Index | Calculation Formula | Source |
---|---|---|
ExG | 2g – r − b | [32] |
ExR | 1.4r − g | [33] |
ExGR | ExG − 1.4r – g | [34] |
NDYI | (g − b)/(g + b) | [35] |
MGRVI | (g2 − r2)/(g2 + r2) | [36] |
DGCI | [(HUE−60)/60 + (1 − S) + (1 − B)]/3 | [37] |
Base Station | Index | Weather Condition | ||||||
---|---|---|---|---|---|---|---|---|
Sunny or Cloudy | Foggy | Drizzle | Rainy | Average | Standard Deviation | |||
Sugarcane | Before filtering | Qseg | 84.01% | 74.87% | 83.24% | 77.94% | 80.02% | 3.78% |
Sr | 86.98% | 76.35% | 85.06% | 80.12% | 82.13% | 4.17% | ||
After filtering | Qseg | 84.89% | 75.24% | 83.98% | 78.43% | 80.64% | 3.98% | |
Sr | 87.66% | 77.11% | 85.62% | 80.83% | 82.81% | 4.12% | ||
Forest | Before filtering | Qseg | 82.63% | 75.01% | 78.90% | 80.20% | 79.19% | 2.76% |
Sr | 86.70% | 78.12% | 80.36% | 84.89% | 82.52% | 3.43% | ||
After filtering | Qseg | 83.35% | 75.77% | 79.65% | 80.86% | 79.91% | 2.74% | |
Sr | 87.65% | 78.94% | 81.19% | 85.48% | 83.32% | 3.43% | ||
Karst | Before filtering | Qseg | 75.48% | 76.11% | 79.99% | 80.45% | 78.01% | 2.23% |
Sr | 77.73% | 78.79% | 80.70% | 80.11% | 78.33% | 2.33% | ||
After filtering | Qseg | 76.14% | 76.71% | 80.68% | 81.13% | 78.67% | 2.25% | |
Sr | 78.32% | 79.58% | 81.37% | 80.75% | 80.01% | 1.17% |
ExG | ExR | ExGR | NDYI | GMRVI | DGCI | ||
---|---|---|---|---|---|---|---|
Sugarcane | Weather classification | 0.105 ** | 0.138 ** | 0.153 ** | −0.002 | 0.120 ** | 0.025 |
Season classification | 0.047 * | −0.080 ** | 0.047 * | −0.051 * | −0.060 ** | −0.172 ** | |
Time classification | 0.009 | −0.043 * | 0.031 | −0.025 | −0.041 * | 0.009 | |
Forest | Weather classification | 0.398 ** | 0.087 ** | 0.395 ** | 0.328 ** | 0.118 ** | 0.274 ** |
Season classification | 0.008 | 0.106 ** | 0.002 | 0.032 | 0.035 | 0.014 | |
Time classification | −0.031 | 0.087 ** | −0.048 | 0.012 | 0.083 ** | −0.052 * | |
Karst | Weather classification | −0.005 | −0.057 | −0.051 | −0.009 | −0.065 | −0.097 ** |
Season classification | −0.105 ** | −0.115 ** | −0.141 ** | −0.073 * | −0.110 ** | 0.084 * | |
Time classification | −0.024 | −0.035 | −0.017 | −0.018 | −0.015 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Chen, Y.; Huang, L.; Jing, K.; Cheng, Z. Stability Detection of Canopy RGB Images for Different Underlying Surfaces Based on SVM. Atmosphere 2024, 15, 943. https://doi.org/10.3390/atmos15080943
Tao W, Chen Y, Huang L, Jing K, Cheng Z. Stability Detection of Canopy RGB Images for Different Underlying Surfaces Based on SVM. Atmosphere. 2024; 15(8):943. https://doi.org/10.3390/atmos15080943
Chicago/Turabian StyleTao, Wei, Yanli Chen, Lu Huang, Kun Jing, and Zhenhua Cheng. 2024. "Stability Detection of Canopy RGB Images for Different Underlying Surfaces Based on SVM" Atmosphere 15, no. 8: 943. https://doi.org/10.3390/atmos15080943
APA StyleTao, W., Chen, Y., Huang, L., Jing, K., & Cheng, Z. (2024). Stability Detection of Canopy RGB Images for Different Underlying Surfaces Based on SVM. Atmosphere, 15(8), 943. https://doi.org/10.3390/atmos15080943