Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,473)

Search Parameters:
Keywords = ecological site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3237 KiB  
Article
Evaluating the Trophic Structure of an Artificial Macroalgal Bed of Eisenia bicyclis Using C and N Stable Isotopes
by Dong-Young Lee, Dongyoung Kim, Chan-Kil Chun, Youngkweon Lee, Kyu-Sam Han, Hyun Kyum Kim, Tae Hee Park and Hyun Je Park
J. Mar. Sci. Eng. 2025, 13(8), 1514; https://doi.org/10.3390/jmse13081514 - 6 Aug 2025
Abstract
In this study, we applied a new technique for vegetatively transplanting kelp Eisenia bicyclis to restore macroalgal habitats. We aimed to assess the restoration success of the E. bicyclis bed by comparing the carbon and nitrogen stable isotope ratios of macrobenthic consumers and [...] Read more.
In this study, we applied a new technique for vegetatively transplanting kelp Eisenia bicyclis to restore macroalgal habitats. We aimed to assess the restoration success of the E. bicyclis bed by comparing the carbon and nitrogen stable isotope ratios of macrobenthic consumers and their isotopic niches in artificial and control (barren ground) habitats. Except for the deposit feeding group, no significant differences were observed in isotopic values of the other feeding groups (suspension feeders, herbivores, omnivores, and carnivores) between the two sites. In contrast, our results showed wider isotopic niche indices for all feeding groups at the transplantation site compared to those at the control site, suggesting increased trophic diversity in the artificial habitat. Overall, these results indicate that the macroalgal bed created using the new method can play an ecological role in restoring functional properties of food web structures via trophic support of degraded coastal ecosystems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

10 pages, 1248 KiB  
Brief Report
From Nest to Nest: High-Precision GPS-GSM Tracking Reveals Full Natal Dispersal Process in a First-Year Female Montagu’s Harrier Circus pygargus
by Giampiero Sammuri, Guido Alari Esposito, Marta De Paulis, Francesco Pezzo, Andrea Sforzi and Flavio Monti
Birds 2025, 6(3), 40; https://doi.org/10.3390/birds6030040 - 6 Aug 2025
Abstract
This report presents the first complete natal dispersal trajectory of a female Montagu’s Harrier Circus pygargus, tracked in real time from fledging to first breeding using high-resolution continuous Global Positioning System (GPS) telemetry. The bird’s first flight occurred on 26 July 2024, [...] Read more.
This report presents the first complete natal dispersal trajectory of a female Montagu’s Harrier Circus pygargus, tracked in real time from fledging to first breeding using high-resolution continuous Global Positioning System (GPS) telemetry. The bird’s first flight occurred on 26 July 2024, initiating a 31-day post-fledging dependence phase (PFDP), followed by a 23-day pre-migratory phase (PMP), during which it explored areas up to 280.8 km from the nest and eventually settled ca. 190 km away in the Sirente-Velino Regional Park. From there, autumn migration began on 18 September 2024. The bird reached its first wintering site in Mali by 15 October. It used four wintering areas over 178 days, with a winter home range of 37,615.02 km2. Spring migration started on 11 April 2025 and lasted 21 days, ending with arrival in the Gran Sasso e Monti della Laga National Park (Central Italy) on 2 May. The bird used two main sites during the pre-breeding phase (PRBP) before laying eggs on 2 June 2025. The natal dispersal distance, from birthplace to nest site, was 151.28 km. Over 311 days, it covered a total of 14,522.23 km. These findings highlight the value of advanced telemetry in revealing early-life movement ecology and are useful for understanding species-specific patterns of survival, reproduction, and space use and can inform conservation actions. Full article
(This article belongs to the Special Issue Unveiling the Breeding Biology and Life History Evolution in Birds)
Show Figures

Figure 1

14 pages, 5479 KiB  
Article
Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes
by Jorge-Luis Ramírez-López, Mario Añazco, Hugo Vallejos, Carlos Arcos and Kelly Estrada
Int. J. Plant Biol. 2025, 16(3), 87; https://doi.org/10.3390/ijpb16030087 (registering DOI) - 6 Aug 2025
Abstract
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from [...] Read more.
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from three ecologically distinct provenances: a natural regeneration site (Cuyuja), a pure plantation (Natabuela), and an agroforestry system (Pimampiro). Five phenotypically superior trees were selected from each site, and germination was assessed under controlled nursery conditions over a 150-day period using a completely randomized design. Initial viability tests confirmed the physiological integrity of the seeds across all provenances. Germination onset ranged from day 55 to day 73, with significant differences in germination percentage, speed, and uniformity. The agroforestry provenance showed the highest germination rate (69%) and superior performance in all physiological indices, while natural regeneration had the lowest (15%). Post-trial viability assessments indicated that a substantial proportion of non-germinated seeds from Cuyuja remained dormant or deteriorated. These findings underscore the role of agroforestry systems in enhancing seed physiological quality and support their prioritization for large-scale propagation and ecological restoration initiatives involving Juglans neotropica. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Graphical abstract

25 pages, 2682 KiB  
Article
A Semi-Automated, Hybrid GIS-AI Approach to Seabed Boulder Detection Using High Resolution Multibeam Echosounder
by Eoin Downing, Luke O’Reilly, Jan Majcher, Evan O’Mahony and Jared Peters
Remote Sens. 2025, 17(15), 2711; https://doi.org/10.3390/rs17152711 - 5 Aug 2025
Abstract
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, [...] Read more.
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, but the growing availability of high-resolution multibeam echosounder (MBES) data offers a cost-effective alternative. This study presents a semi-automated, hybrid GIS-AI approach that combines bathymetric position index filtering and a Random Forest classifier to detect boulders and delineate boulder fields from MBES data. The method was tested on a 0.24 km2 site in Long Island Sound using 0.5 m resolution data, achieving 83% recall, 73% precision, and an F1-score of 77—slightly outperforming the average of expert manual picks while offering a substantial improvement in time-efficiency. The workflow was validated against a consensus-based master dataset and applied across a 79 km2 study area, identifying over 75,000 contacts and delineating 89 contact clusters. The method enables objective, reproducible, and scalable boulder detection using only MBES data. Its ability to reduce reliance on SSS surveys while maintaining high accuracy and offering workflow customization makes it valuable for geohazard assessment, benthic habitat mapping, and offshore infrastructure planning. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 1388 KiB  
Article
Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications
by Larisa Golovatyuk, Timur Kanapatskiy, Olga Samylina, Nikolay Pimenov, Larisa Nazarova and Anna Kallistova
Water 2025, 17(15), 2330; https://doi.org/10.3390/w17152330 - 5 Aug 2025
Abstract
The taxonomic composition and structure of invertebrate assemblages in five lakes from the Kulunda steppe, located in an arid region of southwestern Siberia (Russia), were studied. The lakes varied greatly in their total salinity (5 to 304 g L−1) and carbonate [...] Read more.
The taxonomic composition and structure of invertebrate assemblages in five lakes from the Kulunda steppe, located in an arid region of southwestern Siberia (Russia), were studied. The lakes varied greatly in their total salinity (5 to 304 g L−1) and carbonate alkalinity (0.03 to 4.03 mol-eq L−1). The invertebrate fauna was characterized by low diversity. Only five taxa of macrozoobenthos and two taxa of planktonic invertebrates were identified. As water salinity increased, the taxonomic diversity of the studied lakes decreased, and at salinities > 276 g L−1, monodominant assemblages were formed. The high numbers and biomass of aquatic organism provide a rich food supply for native and migratory waterfowl. The low taxonomic diversity of the invertebrate assemblages of the lakes makes them vulnerable to any negative external impact. The climate in the Kulunda steppe demonstrates a long-term aridization trend. If this continues in the future, then over time, this may lead to the gradual salinization of lakes and a further decrease in the taxonomic diversity of hydrobiological assemblages. This emphasizes the ecological importance of the studied territory and the necessity for its inclusion in the list of sites protected by the Ramsar Convention. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
by Ruizhao Jia, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang and Xiang Li
Biology 2025, 14(8), 1000; https://doi.org/10.3390/biology14081000 - 5 Aug 2025
Abstract
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns [...] Read more.
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 2022 KiB  
Article
A Practical Method for Ecological Flow Calculation to Support Integrated Ecological Functions of the Lower Yellow River, China
by Xinyuan Chen, Lixin Zhang and Lei Tang
Water 2025, 17(15), 2326; https://doi.org/10.3390/w17152326 - 5 Aug 2025
Abstract
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the [...] Read more.
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the Yellow River. In this paper, we selected the Huayuankou hydrological station in the lower Yellow River as our study site and assessed the ecological flow using several methodologies including the monthly frequency calculation method, the sediment transportation method, the habitat simulation method, and the improved annual distribution method. Based on the seasonal applicability of the four methods across months of the year, we established an ecological flow calculation method that considers the integrated ecological functions of the lower Yellow River. In this method, ecological flow in the lower Yellow River during the dry season (November to March) can be determined by using the improved annual distribution method, ecological flow in the fish spawning period (April to June) can be calculated using the habitat simulation method, and the ecological flow during the flood season (July to October) can be calculated using the sediment transportation method. The optimal ecological flow regime for the Huayuankou section was determined using the established method. The ecological flow regimes derived in our study ranged from 310 m3/s to 1532 m3/s. However, we also observed that the ecological flow has a relatively low assurance rate during the flood season in the lower Yellow River, with the assurance rate not exceeding 63%. This highlights the fact that more attention should be given in reservoir regulations to facilitating sediment transport downstream. Full article
Show Figures

Figure 1

17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

31 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

12 pages, 1209 KiB  
Article
Contribution to Morphometrics and Ecology of Snow Trout (Schizothorax eurycephalus) and Stone Loach (Triplophysa ferganaensis)
by Erkin Karimov, Otabek Omonov, Pieterjan Verhelst, Bakhtiyor K. Karimov, Martin Schletterer and Daniel S. Hayes
Fishes 2025, 10(8), 377; https://doi.org/10.3390/fishes10080377 - 4 Aug 2025
Viewed by 24
Abstract
The mountainous rivers of Central Asia host diverse ichthyofauna threatened by increasing anthropogenic pressures, particularly water pollution, abstraction, and hydropower development. This study provides valuable morphometric and ecological data for Schizothorax eurycephalus (snow trout) and Triplophysa ferganaensis (stone loach) in the Shakhimardan River [...] Read more.
The mountainous rivers of Central Asia host diverse ichthyofauna threatened by increasing anthropogenic pressures, particularly water pollution, abstraction, and hydropower development. This study provides valuable morphometric and ecological data for Schizothorax eurycephalus (snow trout) and Triplophysa ferganaensis (stone loach) in the Shakhimardan River basin, Uzbekistan. S. eurycephalus exhibited positive allometric growth, while T. ferganaensis showed negative near-isometric growth. The mean Fulton’s Condition Factor was 1.0 for S. eurycephalus and 0.7 for T. ferganaensis, with site-specific variations. Strong correlations among morphometric parameters, particularly length–height relationships, support non-invasive monitoring techniques. Dietary analysis revealed S. eurycephalus was predominantly herbivorous, with around 70% algae consumption. Early sexual maturity was observed in S. eurycephalus males, whereas T. ferganaensis showed no clear maturity signs, but swollen bellies suggested ongoing or recent reproductive activity. These baseline morphometric and ecological data establish a solid foundation for future ecological assessments, conservation strategies, and the design and monitoring of mitigation measures to address anthropogenic impacts in this vulnerable region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 52
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

20 pages, 1773 KiB  
Article
Make Acetylcholine Great Again! Australian Skinks Evolved Multiple Neurotoxin-Proof Nicotinic Acetylcholine Receptors in Defiance of Snake Venom
by Uthpala Chandrasekara, Marco Mancuso, Glenn Shea, Lee Jones, Jacek Kwiatkowski, Dane Trembath, Abhinandan Chowdhury, Terry Bertozzi, Michael G. Gardner, Conrad J. Hoskin, Christina N. Zdenek and Bryan G. Fry
Int. J. Mol. Sci. 2025, 26(15), 7510; https://doi.org/10.3390/ijms26157510 - 4 Aug 2025
Viewed by 200
Abstract
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the [...] Read more.
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the evolution of neurotoxin resistance in Australian skinks, focusing on mutations in the muscle nicotinic acetylcholine receptor (nAChR) α1 subunit’s orthosteric site that prevent pathophysiological binding by α-neurotoxins. We sampled a broad taxonomic range of Australian skinks and sequenced the nAChR α1 subunit gene. Key resistance-conferring mutations at the toxin-binding site (N-glycosylation motifs, proline substitutions, arginine insertions, changes in the electrochemical state of the receptor, and novel cysteines) were identified and mapped onto the skink organismal phylogeny. Comparisons with other venom-resistant taxa (amphibians, mammals, and reptiles) were performed, and structural modelling and binding assays were used to evaluate the impact of these mutations. Multiple independent origins of α-neurotoxin resistance were found across diverse skink lineages. Thirteen lineages evolved at least one resistance motif and twelve additional motifs evolved within these lineages, for a total of twenty-five times of α-neurotoxic venoms resistance. These changes sterically or electrostatically inhibit neurotoxin binding. Convergent mutations at the orthosteric site include the introduction of N-linked glycosylation sites previously known from animals as diverse as cobras and mongooses. However, an arginine (R) substitution at position 187 was also shown to have evolved on multiple occasions in Australian skinks, a modification previously shown to be responsible for the Honey Badger’s iconic resistance to cobra venom. Functional testing confirmed this mode of resistance in skinks. Our findings reveal that venom resistance has evolved extensively and convergently in Australian skinks through repeated molecular adaptations of the nAChR in response to the enormous selection pressure exerted by elapid snakes subsequent to their arrival and continent-wide dispersal in Australia. These toxicological findings highlight a remarkable example of convergent evolution across vertebrates and provide insight into the adaptive significance of toxin resistance in snake–lizard ecological interactions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

17 pages, 7833 KiB  
Article
Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe
by Václav Zumr, Oto Nakládal and Jiří Remeš
Fire 2025, 8(8), 305; https://doi.org/10.3390/fire8080305 - 2 Aug 2025
Viewed by 268
Abstract
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire [...] Read more.
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire across different forest types in Central Europe. The research was conducted following a large forest fire (ca. 1200 ha) that occurred in 2022. Data were collected over two years (2023 and 2024), from April to September. The research was conducted in coniferous forests and included six pairwise study types: burnt and unburnt dead spruce (bark beetle affected), burnt and unburnt clear-cuts, and burnt and unburnt healthy stands. In total, 96 traps were deployed each year. Across both years, 220,348 invertebrates were recorded (1.Y: 128,323; 2.Y: 92,025), representing 24 taxonomic groups. A general negative trend in abundance following forest fire was observed in the groups Acari, Auchenorhyncha, Blattodea, Dermaptera, Formicidae, Chilopoda, Isopoda, Opiliones, and Pseudoscorionida. Groups showing a neutral response included Araneae, Coleoptera, Collembola, Diplopoda, Heteroptera, Psocoptera, Raphidioptera, Thysanoptera, and Trichoptera. Positive responses, indicated by an increase in abundance, were recorded in Hymenoptera, Orthoptera, Lepidoptera, and Diptera. However, considerable differences among management types (clear-cut, dead spruce, and healthy) were evident, as their distinct characteristics largely influenced invertebrate abundance in both unburnt and burnt variants of the types across all groups studied. Forest fire primarily creates favorable conditions for heliophilous, open-landscape, and floricolous invertebrate groups, while less mobile epigeic groups are strongly negatively affected. In the second year post-fire, the total invertebrate abundance in burnt sites decreased to 59% of the first year’s levels. Conclusion: Forest fire generates a highly heterogeneous landscape from a regional perspective, creating unique ecological niches that persist more than two years after fire. For many invertebrates, successional return toward pre-fire conditions is delayed or incomplete. Full article
Show Figures

Figure 1

38 pages, 4692 KiB  
Review
Progress and Challenges in the Process of Using Solid Waste as a Catalyst for Biodiesel Synthesis
by Zhaolin Dong, Kaili Dong, Haotian Li, Liangyi Zhang and Yitong Wang
Molecules 2025, 30(15), 3243; https://doi.org/10.3390/molecules30153243 - 1 Aug 2025
Viewed by 174
Abstract
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various [...] Read more.
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various methods for preparing biodiesel catalysts from solid waste. These methods not only enhance the utilization rate of waste but also reduce the production costs and environmental impact of biodiesel. Finally, the limitations of waste-based catalysts and future research directions are discussed. Research indicates that solid waste can serve as a catalyst carrier or active material for biodiesel production. Methods such as high-temperature calcination, impregnation, and coprecipitation facilitate structural modifications to the catalyst and the formation of active sites. The doping of metal ions not only alters the catalyst’s acid-base properties but also forms stable metal bonds with functional groups on the carrier, thereby maintaining catalyst stability. The application of microwave-assisted and ultrasound-assisted methods reduces reaction parameters, making biodiesel production more economical and sustainable. Overall, this study provides a scientific basis for the reuse of solid waste and ecological protection, emphasizes the development potential of waste-based catalysts in biodiesel production, and offers unique insights for innovation in this field, thereby accelerating the commercialization of biodiesel. Full article
Show Figures

Graphical abstract

Back to TopTop