PT-ESM: A Parameter-Testing and Integration Framework for Earth System Models Oriented towards High-Performance Computing
Abstract
:1. Introduction
2. Related Work
3. Methodology
4. Experiments and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HPC | High-Performance Computing |
ESM | Earth System Model |
SCAM | Single Column Atmosphere Model |
SA | Sensitivity Analysis |
References
- Li, Y.; Duan, X.; Gan, L.; Wan, W.; Chen, Y.; Xu, K.; Yang, J.; Liu, W.; Xue, W.; Fu, H.; et al. Enabling Large-Scale Simulation of CAM on the Sunway TaihuLight Supercomputer. IEEE Trans. Comput. 2022, 71, 824–837. [Google Scholar] [CrossRef]
- Gao, P.; Duan, X.; Schmidt, B.; Wan, W.; Guo, J.; Zhang, W.; Gan, L.; Fu, H.; Xue, W.; Liu, W.; et al. Redesign and Accelerate the AIREBO Bond-Order Potential on the New Sunway Supercomputer. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 3117–3132. [Google Scholar] [CrossRef]
- Gao, P.; Duan, X.; Schmidt, B.; Zhang, W.; Gan, L.; Fu, H.; Xue, W.; Liu, W.; Yang, G. Optimization of Reactive Force Field Simulation: Refactor, Parallelization, and Vectorization for Interactions. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 359–373. [Google Scholar] [CrossRef]
- Wan, W.; Gan, L.; Wang, W.; Yin, Z.; Tian, H.; Zhang, Z.; Wang, Y.; Hua, M.; Liu, X.; Xiang, S.; et al. 69.7-PFlops Extreme Scale Earthquake Simulation with Crossing Multi-faults and Topography on Sunway. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2023, Denver, CO, USA, 12–17 November 2023; Arnold, D., Badia, R.M., Mohror, K.M., Eds.; ACM: New York, NY, USA, 2023; pp. 10:1–10:15. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Shi, X.; Song, J.; Liu, X.; Gan, L.; Guo, C.; Fu, H.; Gao, J.; Chen, D.; et al. Lifetime-Based Optimization for Simulating Quantum Circuits on a New Sunway Supercomputer. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, PPoPP 2023, Montreal, QC, Canada, 25 February–1 March 2023; Dehnavi, M.M., Kulkarni, M., Krishnamoorthy, S., Eds.; ACM: New York, NY, USA, 2023; pp. 148–159. [Google Scholar] [CrossRef]
- Juckes, M.; Taylor, K.E.; Durack, P.J.; Lawrence, B.; Sénési, S. The CMIP6 Data Request (DREQ, version 01.00.31). Geosci. Model Dev. 2020, 13, 201–224. [Google Scholar] [CrossRef]
- Balaji, V.; Taylor, K.E.; Juckes, M.; Lawrence, B.N.; Durack, P.J.; Lautenschlager, M.; Blanton, C.; Cinquini, L.; Denvil, S.; Elkington, M. Requirements for a global data infrastructure in support of CMIP6. Geosci. Model Dev. 2018, 11, 3659–3680. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Vojacek, L.; Podhoranyi, M. Hpc Based Smart Remote Execution Solution for Modelling Environmental Issues. In Proceedings of the International Cognitive Cities Conference, Okinawa, Japan, 7–9 August 2018. [Google Scholar]
- Liu, L.; Yang, A.; Chen, L.; Xiong, W.; Jing, N. HiGIS—When GIS Meets HPC. In Proceedings of the 12th International Conference on GeoComputation, Wuhan, China, 23–25 May 2013. [Google Scholar]
- Guo, J.; Lai, Y.; Zhang, J.; Zheng, J.; Fu, H.; Gan, L.; Hu, L.; Xu, G.; Che, X. C3DA: A Universal Domain Adaptation Method for Scene Classification From Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2024, 21, 6006705. [Google Scholar] [CrossRef]
- Liu, T. The Computer Information Technology Application of Big Data Era in Urban Planning and Design. In Cyber Security Intelligence and Analytics: Proceedings of the 2020 International Conference on Cyber Security Intelligence and Analytics (CSIA 2020); Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Guo, J.; Xu, Y.; Fu, H.; Xue, W.; Gan, L.; Tan, M.; Wu, T.; Shen, Y.; Wu, X.; Hu, L.; et al. GEO-WMS: An improved approach to geoscientific workflow management system on HPC. CCF Trans. High Perform. Comput. 2023, 5, 360–373. [Google Scholar] [CrossRef]
- Deelman, E.; Peterka, T.; Altintas, I.; Carothers, C.D.; Van Dam, K.K.; Moreland, K.; Parashar, M.; Ramakrishnan, L.; Taufer, M.; Vetter, J. The future of scientific workflows. Int. J. High Perform. Comput. Appl. 2018, 32, 159–175. [Google Scholar] [CrossRef]
- Tian, L.; Sedona, R.; Mozaffari, A.; Kreshpa, E.; Paris, C.; Riedel, M.; Schultz, M.G.; Cavallaro, G. End-to-End process orchestration of earth observation data workflows with apache airflow on high performance computing. In Proceedings of the IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 711–714. [Google Scholar] [CrossRef]
- Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Da Silva, R.F.; Livny, M.; et al. Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [Google Scholar] [CrossRef]
- Barseghian, D.; Altintas, I.; Jones, M.B.; Crawl, D.; Potter, N.; Gallagher, J.; Cornillon, P.; Schildhauer, M.; Borer, E.T.; Seabloom, E.W. Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecol. Inform. 2010, 5, 42–50. [Google Scholar] [CrossRef]
- Nan, D.; Wei, X.; Xu, J.; Haoyu, X.; Zhenya, S. CESMTuner: An Auto-tuning Framework for the Community Earth System Model. In Proceedings of the 2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), Paris, France, 20–22 August 2014; pp. 282–289. [Google Scholar]
- Hazeleger, W.; Severijns, C.; Semmler, T.; Stefanescu, S.; Willen, U. EC-Earth: A Seamless Earth-System Prediction Approach in Action. Bull. Am. Meteorol. Soc. 2010, 91, 1357–1363. [Google Scholar] [CrossRef]
- Long, B.H.; Duong, P.X.; Minh-Thu, P. Using Regional Ocean Modeling System (ROMS) for hydrodynamic regime in Binh Cang-Nha Trang bay, Vietnam. J. Mar. Sci. 2019, 1, 1–6. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions - 1. Model description and validation. J. Geophys. Res.-Oceans 1999, 104, 7649–7666. [Google Scholar]
- Ayik, A.; Ijumba, N.; Kabiri, C.; Goffin, P. Preliminary assessment of small hydropower potential using the Soil and Water Assessment Tool model: A case study of Central Equatoria State, South Sudan. Energy Rep. 2023, 9, 2229–2246. [Google Scholar] [CrossRef]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the hype (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. Int. J. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Strebel, L.; Goergen, K.; Naz, B.; Bogena, H.; Vereecken, H.; Franssen, H.H. Modeling of a Forested Study Site with the Community Land Model Version 5 Using Climate Projections for the 21st Century; Copernicus Meetings: Barcelona, Spain, 2020. [Google Scholar]
- Jia-Wen, Z.; Fang, L.; Xiang, S. Preliminary Assessment of the Common Land Model Coupled with the IAP Dynamic Global Vegetation Model. Atmos. Ocean. Sci. Lett. 2014, 7, 505–509. [Google Scholar] [CrossRef]
- Hourdin, F.; Mauritsen, T.; Gettelman, A.; Golaz, J.C.; Balaji, V.; Duan, Q.; Folini, D.; Ji, D.; Klocke, D.; Qian, Y. The art and science of climate model tuning. Bull. Am. Meteorol. Soc. 2017, 98, 589–602. [Google Scholar] [CrossRef]
- Yang, B.; Wang, M.; Zhang, G.J.; Guo, Z.; Qian, Y.; Huang, A.; Zhang, Y. Simulated Precipitation Diurnal Variation With a Deep Convective Closure Subject to Shallow Convection in Community Atmosphere Model Version 5 Coupled With CLUBB. J. Adv. Model. Earth Syst. 2020, 12, 1–22. [Google Scholar] [CrossRef]
- He, F.; Posselt, D.J. The Sensitivity of Simulated Tropical Cyclones to Tunable Physical Parameters in Community Atmosphere Model. In AGU Fall Meeting Abstracts; NASA: Washington, DC, USA, 2014. [Google Scholar]
- Guo, J.; Zheng, J.; Xu, Y.; Fu, H.; Xue, W.; Wang, L.; Gan, L.; Gao, P.; Wan, W.; Wu, X.; et al. LB-SCAM: A learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM). Geosci. Model Dev. 2024, 17, 3975–3992. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Mitchell, H.L. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon. Weather Rev. 2001, 129, 123–137. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, X. A Multigrid Nonlinear Least-squares Four-dimensional Variational Data Assimilation Scheme with Advanced Research WRF (ARW). J. Geophys. Res. Atmos. 2018, 123, 5116–5129. [Google Scholar] [CrossRef]
- Veronika, E.; Sandrine, B.; Meehl, G.A.; Senior, C.A.; Bjorn, S.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar]
- Eichler, T.P. The impacts of a warming climate on winter mid-latitude cyclones in the NARCCAP model suite. Clim. Dyn. 2020, 54, 4379–4398. [Google Scholar] [CrossRef]
- Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environ. Model. Softw. 2019, 114, 29–39. [Google Scholar] [CrossRef]
- Bogenschutz, P.A.; Gettelman, A.; Morrison, H.; Larson, V.E.; Schanen, D.P.; Meyer, N.R.; Craig, C. Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev. 2012, 5, 1407–1423. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Goffart, J.; Rabouille, M.; Mendes, N. Uncertainty and sensitivity analysis applied to hygrothermal simulation of a brick building in a hot and humid climate. J. Build. Perform. Simul. 2015, 10, 37–57. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Plischke, E.; Borgonovo, E.; Smith, C.L. Global sensitivity measures from given data. Eur. J. Oper. Res. 2013, 226, 536–550. [Google Scholar] [CrossRef]
- Pianosi, F.; Wagener, T. Distribution-based sensitivity analysis from a generic input-output sample. Environ. Model. Softw. 2018, 108, 197–207. [Google Scholar] [CrossRef]
- Li, G.; Rabitz, H.; Yelvington, P.E.; Oluwole, O.O.; Bacon, F.; Kolb, C.E.; Schoendorf, J. Global Sensitivity Analysis for Systems with Independent and/or Correlated Inputs. J. Phys. Chem. A 2010, 2, 7587–7589. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Liao, J.; Yang, J.; Wang, L.; Song, Z.; Huang, X.; Yang, C.; Xue, W.; Liu, F.; Qiao, F.; et al. The Sunway TaihuLight supercomputer: System and applications. Sci. China Inf. Sci. 2016, 59, 072001. [Google Scholar] [CrossRef]
- Gao, P.; Duan, X.; Guo, J.; Wang, J.; Song, Z.; Cui, L.; Meng, X.; Liu, X.; Zhang, W.; Ma, M.; et al. LMFF: Efficient and scalable layered materials force field on heterogeneous many-core processors. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St. Louis, MO, USA, 14–19 November 2021; de Supinski, B.R., Hall, M.W., Gamblin, T., Eds.; ACM: New York, NY, USA, 2021; p. 42. [Google Scholar] [CrossRef]
- Gao, P.; Duan, X.; Zhang, T.; Zhang, M.; Schmidt, B.; Zhang, X.; Sun, H.; Zhang, W.; Gan, L.; Xue, W.; et al. Millimeter-Scale and Billion-Atom Reactive Force Field Simulation on Sunway Taihulight. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2954–2967. [Google Scholar] [CrossRef]
- Herman, J.; Usher, W. SALib: An open-source Python library for Sensitivity Analysis. J. Open Source Softw. 2017, 2, 97. [Google Scholar] [CrossRef]
- Stančin, I.; Jović, A. An overview and comparison of free Python libraries for data mining and big data analysis. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 977–982. [Google Scholar] [CrossRef]
- Qian, Y.; Yan, H.; Hou, Z.; Johannesson, G.; Klein, S.; Lucas, D.; Neale, R.; Rasch, P.; Swiler, L.; Tannahill, J. Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. J. Adv. Model. Earth Syst. 2015, 7, 382–411. [Google Scholar] [CrossRef]
- Bogenschutz, P.A.; Tang, S.; Caldwell, P.M.; Xie, S.; Lin, W.; Chen, Y.S. The E3SM version 1 single-column model. Geosci. Model Dev. 2020, 13, 4443–4458. [Google Scholar] [CrossRef]
Case | Full Name | Lat | Lon | Date | Type |
---|---|---|---|---|---|
ARM95 | ARM Southern Great Plains | 36 | −97 | July 1995 | Land convection |
ARM97 | ARM Southern Great Plains | 36 | −97 | June 1997 | Land convection |
GATEIII | GATE Phase III | 9 | −24 | August 1974 | Tropical convection |
TOGAII | Tropical W. Pacific Convection | −12 | 131 | December 1992 | Tropical convection |
TWP06 | Tropical Ocean Global Atmosphere | −2 | 154 | January 2006 | Tropical convection |
Name of Method | Abbr. | Reference |
---|---|---|
Morris sensitivity analysis | Morris | Morris [38] |
Delta moment-independent measure | Delta | Plischke et al. [39] |
Sobol’ sensitivity analysis | Sobol | Saltelli et al. [36] |
PAWN sensitivity analysis | PAWN | Pianosi and Wagener [40] |
High-dimensional model representation | HDMR | Li et al. [41] |
Random balance designs Fourier amplitude sensitivity test | RBD-FAST | Goffart et al. [37] |
Abbr. | Name | Description | Low Range | Default | High Range | Category |
---|---|---|---|---|---|---|
pz1 | c0_lnd | Deep convection precipitation efficiency over land | 0.00295 | 0.0059 | 0.00885 | zmconv_ |
pz2 | c0_ocn | Deep convection precipitation efficiency over ocean | 0.0225 | 0.045 | 0.0675 | zmconv_ |
pz3 | dmpdz | Parcel fractional mass entrainment rate | −0.002 | −0.001 | −0.0002 | zmconv_ |
pz4 | tau | Time scale for consumption rate deep CAPE | 1800 | 3600 | 5400 | zmconv_ |
pz5 | capelmt | Threshold value for CAPE | 35 | 70 | 105 | zmconv_ |
pz6 | alfa | Maximum cloud downdraft mass flux fraction | 0.05 | 0.1 | 0.15 | zmconv_ |
pu1 | rpen | Penetrative updraft entrainment efficiency | 2.5 | 5.0 | 7.5 | uwschu_ |
pu2 | kevp | Evaporative efficiency | 1 × 10 | 2 × 10 | 3 × 10 | uwschu_ |
pu3 | rkm | Updraft lateral mixing efficiency | 7 | 14 | 21 | uwschu_ |
pc1 | rhminh | Threshold relative humidity for stratiform high clouds | 0.7 | 0.8 | 0.9 | cldfrc_ |
pc2 | rhminl | Threshold relative humidity for stratiform low clouds | 0.7975 | 0.8975 | 0.9975 | cldfrc_ |
Name | Description | Unit |
---|---|---|
PRECT | Total precipitation rate | m/s |
PRECZ | Deep convective precipitation rate | m/s |
PRECSH | Shallow convective precipitation rate | m/s |
PRECL | Large-scale precipitation rate | m/s |
CLDTOT | Vertically-integrated total cloud | Percentage |
CLDLOW | Vertically-integrated low cloud | Percentage |
CLDMED | Vertically-integrated mid-level cloud | Percentage |
CLDHGH | Vertically-integrated high cloud | Percentage |
SHFLX | Surface sensible heat flux | W/m2 |
LHFLX | Surface latent heat flux | W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Hu, L.; Xu, G.; Hu, J.; Che, X. PT-ESM: A Parameter-Testing and Integration Framework for Earth System Models Oriented towards High-Performance Computing. Atmosphere 2024, 15, 935. https://doi.org/10.3390/atmos15080935
Guo J, Hu L, Xu G, Hu J, Che X. PT-ESM: A Parameter-Testing and Integration Framework for Earth System Models Oriented towards High-Performance Computing. Atmosphere. 2024; 15(8):935. https://doi.org/10.3390/atmos15080935
Chicago/Turabian StyleGuo, Jiaxu, Liang Hu, Gaochao Xu, Juncheng Hu, and Xilong Che. 2024. "PT-ESM: A Parameter-Testing and Integration Framework for Earth System Models Oriented towards High-Performance Computing" Atmosphere 15, no. 8: 935. https://doi.org/10.3390/atmos15080935
APA StyleGuo, J., Hu, L., Xu, G., Hu, J., & Che, X. (2024). PT-ESM: A Parameter-Testing and Integration Framework for Earth System Models Oriented towards High-Performance Computing. Atmosphere, 15(8), 935. https://doi.org/10.3390/atmos15080935