Particulate Matter Emissions at Different Microenvironments Using Low-Cost Sensors in Megacity Dhaka, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Description of the Sampling Sites
2.2. Instrumentation
2.3. Health Risk Assessment
3. Results
3.1. Temporal Variation of Particulate Matter Concentrations
3.2. Daily Variation of PM Concentrations
3.3. Day–Night Comparison of Particulate Matter Concentrations
3.4. Variation of PM2.5 Concentration in Different Microenvironments
3.5. Level of Hazard Quotient in Different Microenvironments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franck, U.; Odeh, S.; Wiedensohler, A.; Wehner, B.; Herbarth, O. The Effect of Particle Size on Cardiovascular Disorders—The Smaller the Worse. Sci. Total Environ. 2011, 409, 4217–4221. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The Role of Ultrafine Particles on Adverse Health Effects of Air Pollution. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hu, R.; Chen, Z.; Li, Q.; Huang, S.; Zhu, Z.; Zhou, L. Fine Particulate Matter (PM2.5): The Culprit for Chronic Lung Diseases in China. Chronic Dis. Transl. Med. 2018, 4, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Krall, J.R.; Mulholland, J.A.; Russell, A.G.; Balachandran, S.; Winquist, A.; Tolbert, P.E.; Waller, L.A.; Sarnat, S.E. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four US Cities. Environ. Health Perspect. 2017, 125, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Spector, D.; Colome, S.; Turpin, B. Determinants of Indoor and Personal Exposure to PM2.5 of Indoor and Outdoor Origin during the RIOPA Study. Atmos. Environ. 2009, 43, 5750–5758. [Google Scholar] [CrossRef]
- Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R.V.; Dentener, F.; van Dingenen, R.; Estep, K.; Amini, H.; Apte, J.S. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol. 2016, 50, 79–88. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (Ed.) Outdoor Air Pollution; IARC monographs on the evaluation of carcinogenic risks to humans; International Agency for Research on Cancer; World Health Organization: Lyon, France, 2016; ISBN 978-92-832-0147-2. [Google Scholar]
- Baccarelli, A.A.; Zheng, Y.; Zhang, X.; Chang, D.; Liu, L.; Wolf, K.R.; Zhang, Z.; McCracken, J.P.; Díaz, A.; Bertazzi, P.A. Air Pollution Exposure and Lung Function in Highly Exposed Subjects in Beijing, China: A Repeated-Measure Study. Part. Fibre Toxicol. 2014, 11, 51. [Google Scholar] [CrossRef]
- Sears, C.G.; Braun, J.M.; Ryan, P.H.; Xu, Y.; Werner, E.F.; Lanphear, B.P.; Wellenius, G.A. The Association of Traffic-Related Air and Noise Pollution with Maternal Blood Pressure and Hypertensive Disorders of Pregnancy in the HOME Study Cohort. Environ. Int. 2018, 121, 574–581. [Google Scholar] [CrossRef]
- Zwack, L.M.; Paciorek, C.J.; Spengler, J.D.; Levy, J.I. Characterizing Local Traffic Contributions to Particulate Air Pollution in Street Canyons Using Mobile Monitoring Techniques. Atmos. Environ. 2011, 45, 2507–2514. [Google Scholar] [CrossRef]
- Morrison, B.; Heath, B. The Smokestack Effect: Toxic Air and America’s Schools. USA Today 2008, 2008, 2009. [Google Scholar]
- Suglia, S.F.; Gryparis, A.; Schwartz, J.; Wright, R.J. Association between Traffic-Related Black Carbon Exposure and Lung Function among Urban Women. Environ. Health Perspect. 2008, 116, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Mohai, P.; Kweon, B.-S.; Lee, S.; Ard, K. Air Pollution around Schools Is Linked to Poorer Student Health and Academic Performance. Health Aff. 2011, 30, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Sass-Kortsak, A.; Purdham, J.T.; Dales, R.E.; Brook, J.R. Sources of Personal Exposure to Fine Particles in Toronto, Ontario, Canada. J. Air Waste Manag. Assoc. 2005, 55, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Zaman, S.U.; Joy, K.S.; Jeba, F.; Kumar, P.; Salam, A. Impact of Fine Particulate Matter and Toxic Gases on the Health of School Children in Dhaka, Bangladesh. Environ. Res. Commun. 2023, 5, 025004. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying Human Exposure to Air Pollution—Moving from Static Monitoring to Spatio-Temporally Resolved Personal Exposure Assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E.; Semple, S.; Twigg, M.M.; Braban, C.F.; Leeson, S.R.; Heal, M.R.; Harrison, D.; Lin, C. Personal Exposure Monitoring of PM2.5 in Indoor and Outdoor Microenvironments. Sci. Total Environ. 2015, 508, 383–394. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sens. 2018, 1, 5096540. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The Rise of Low-Cost Sensing for Managing Air Pollution in Cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Levy Zamora, M.; Xiong, F.; Gentner, D.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environ. Sci. Technol. 2018, 53, 838–849. [Google Scholar] [CrossRef]
- Lung, S.-C.C.; Thi Hien, T.; Cambaliza, M.O.L.; Hlaing, O.M.T.; Oanh, N.T.K.; Latif, M.T.; Lestari, P.; Salam, A.; Lee, S.-Y.; Wang, W.-C.V. Research Priorities of Applying Low-Cost PM2.5 Sensors in Southeast Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 1522. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D.M. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. Int. J. Environ. Res. Public Health 2017, 14, 909. [Google Scholar] [CrossRef]
- Wang, Z.; Delp, W.W.; Singer, B.C. Performance of Low-Cost Indoor Air Quality Monitors for PM2.5 and PM10 from Residential Sources. Build. Environ. 2020, 171, 106654. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.L.; Chapman, L.; Johnston, S.; Kidd, C.; Illingworth, S.; Foody, G.; Overeem, A.; Leigh, R.R. Crowdsourcing for Climate and Atmospheric Sciences: Current Status and Future Potential. Int. J. Climatol. 2015, 35, 3185–3203. [Google Scholar] [CrossRef]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M. Community Air Sensor Network (CAIRSENSE) Project: Evaluation of Low-Cost Sensor Performance in a Suburban Environment in the Southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Austin, E.; Novosselov, I.; Seto, E.; Yost, M.G. Laboratory Evaluation of the Shinyei PPD42NS Low-Cost Particulate Matter Sensor. PLoS ONE 2015, 10, e0137789. [Google Scholar]
- Wu, J.; Xiao, X.; Li, Y.; Yang, F.; Yang, S.; Sun, L.; Ma, R.; Wang, M.C. Personal Exposure to Fine Particulate Matter (PM2.5) of Pregnant Women during Three Trimesters in Rural Yunnan of China. Environ. Pollut. 2020, 256, 113055. [Google Scholar] [CrossRef]
- Available online: www.worldmeters.info (accessed on 9 April 2024).
- Available online: www.macrotrends.net/global-metrics/ (accessed on 9 April 2024).
- Sinaga, D.; Setyawati, W.; Cheng, F.Y.; Lung, S.-C.C. Investigation on Daily Exposure to PM2.5 in Bandung City, Indonesia Using Low-Cost Sensor. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 1001–1012. [Google Scholar] [CrossRef]
- Lung, S.-C.C.; Wang, W.-C.V.; Wen, T.-Y.J.; Liu, C.-H.; Hu, S.-C. A Versatile Low-Cost Sensing Device for Assessing PM2.5 Spatiotemporal Variation and Quantifying Source Contribution. Sci. Total Environ. 2020, 716, 137145. [Google Scholar] [CrossRef]
- Pavel, M.R.S.; Zaman, S.U.; Jeba, F.; Islam, M.S.; Salam, A. Long-Term (2003–2019) Air Quality, Climate Variables, and Human Health Consequences in Dhaka, Bangladesh. Front. Sustain. Cities 2021, 3, 681759. [Google Scholar] [CrossRef]
- Lemly, A.D. Evaluation of the Hazard Quotient Method for Risk Assessment of Selenium. Ecotoxicol. Environ. Saf. 1996, 35, 156–162. [Google Scholar] [CrossRef]
- Dacunto, P.J.; Cheng, K.C.; Acevedo-Bolton, V.; Jiang, R.T.; Klepeis, N.E.; Repace, J.L.; Ott, W.R.; Hildemann, L.M. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources. Environ. Sci. Process. Impacts 2013, 15, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chillrud, S.N.; Yang, Q.; Pitiranggon, M.; Ross, J.; Perera, F.; Ji, J.; Spira, A.; Breysse, P.N.; Rodes, C.E. Characterizing Peak Exposure of Secondhand Smoke Using a Real-time PM2.5 Monitor. Indoor Air 2020, 30, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Li, X.; Liu, J.; Li, Y.; Yu, X.; Deng, B.; Wan, T.; Zhang, G.; Huang, Y.; He, W.; et al. Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci. Total Environ. 2006, 368, 916–925. [Google Scholar] [CrossRef]
- Zaman, S.U.; Yesmin, M.; Pavel, M.R.S.; Jeba, F.; Salam, A. Indoor air quality indicators and toxicity potential at the hospitals’ environment in Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 37727–37740. [Google Scholar] [CrossRef]
- Chen, Y.; Lv, D.; Li, X.; Zhu, T. PM2.5-bound phthalates in indoor and outdoor air in Beijing: Seasonal distributions and human exposure via inhalation. Environ. Pollut. 2018, 241, 369–377. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. USPEA Exposure Factors Handbook; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Available online: www.worlddata.info (accessed on 9 April 2024).
Microenvironment Sites | Description |
---|---|
Residence | Very densely populated and polluted area in Bashabo, Dhaka |
Shopping mall (AC) | Multi-storied air-conditioned shopping malls |
Shopping market (non-AC) | Highly dense and congested markets, e.g., Mouchak, Anarkoli, and Nilkhet Book Market |
Car | Four-wheel drive in urban and highway routes |
Public Bus | Overloaded with passengers that move around the city |
Restaurants | Various restaurants with kitchens inside in Central Dhaka |
University Research Laboratory | Enclosed room with few people |
Parameters | Residence | Public Transport | Laboratory | Car | Restaurant | Shopping Mall (AC) | Shopping Market (Non-AC) |
---|---|---|---|---|---|---|---|
C (µg/m3) | 62.35 | 59.06 | 42.01 | 22.63 | 78.87 | 20.08 | 59.51 |
IR (m3/day) | 21.03 | 21.03 | 21.03 | 21.03 | 21.03 | 21.03 | 21.03 |
EF (days) | 365 | 365 | 210 | 312 | 150 | 60 | 156 |
ED (year) | 15 | 15 | 4 | 15 | 15 | 15 | 15 |
AT (days) | 5475 | 5475 | 840 | 4680 | 2250 | 900 | 2340 |
BW (kg) | 53.5 | 53.5 | 53.5 | 53.5 | 53.5 | 53.5 | 53.5 |
FADD (µg/kg/day) | 24.51 | 23.22 | 16.51 | 8.89 | 31 | 7.89 | 23.39 |
SADD (µg/kg/day) | 25.55 | 25.55 | 25.55 | 25.55 | 25.55 | 25.55 | 25.88 |
HQ | 0.96 | 0.91 | 0.64 | 0.35 | 1.21 | 0.31 | 1.01 |
Hazard Level | Low | Low | Low | Low | Moderate | Low | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayeem, M.A.I.; Roy, S.; Zaman, S.U.; Salam, A. Particulate Matter Emissions at Different Microenvironments Using Low-Cost Sensors in Megacity Dhaka, Bangladesh. Atmosphere 2024, 15, 897. https://doi.org/10.3390/atmos15080897
Nayeem MAI, Roy S, Zaman SU, Salam A. Particulate Matter Emissions at Different Microenvironments Using Low-Cost Sensors in Megacity Dhaka, Bangladesh. Atmosphere. 2024; 15(8):897. https://doi.org/10.3390/atmos15080897
Chicago/Turabian StyleNayeem, Md. Asif Iqbal, Shatabdi Roy, Shahid Uz Zaman, and Abdus Salam. 2024. "Particulate Matter Emissions at Different Microenvironments Using Low-Cost Sensors in Megacity Dhaka, Bangladesh" Atmosphere 15, no. 8: 897. https://doi.org/10.3390/atmos15080897
APA StyleNayeem, M. A. I., Roy, S., Zaman, S. U., & Salam, A. (2024). Particulate Matter Emissions at Different Microenvironments Using Low-Cost Sensors in Megacity Dhaka, Bangladesh. Atmosphere, 15(8), 897. https://doi.org/10.3390/atmos15080897