Phase-Locking of El Niño and La Niña Events in CMIP6 Models
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase-Locking Performance of El Niño and La Niña Events in CMIP6 Models
3.2. Comparision of the Phase-Locking Simulations between El Niño and La Niña Events
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.J.; Reason, C.J.C.; Lindesay, J.A.; Ansell, T.J. Protracted’ ENSO episodes and their impacts in the Indian Ocean region. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2331–2347. [Google Scholar] [CrossRef]
- Atems, B.; Maresca, M.; Ma, B.; McGraw, E. The impact of El Nio-Southern Oscillation on U.S. food and agricultural stock returns. Water Resour. Econ. 2020, 32, 100157. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Chen, C.; Cane, M.A.; Wittenberg, A.T.; Chen, D. ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J. Clim. 2017, 30, 775–801. [Google Scholar] [CrossRef]
- Hansen, J.W.; Hodges, A.W.; Jones, J.W. ENSO Influences on Agriculture in the Southeastern United States. J. Clim. 1998, 11, 404–411. [Google Scholar] [CrossRef]
- Kim, H.J.; Hyeong, K.; Park, J.Y.; Jeong, J.H.; Jeon, D.; Kim, E.; Kim, D. Influence of Asian monsoon and ENSO events on particle fluxes in the western subtropical Pacific. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2014, 90, 139–151. [Google Scholar]
- Mcphaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in Earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Philander, S.G.H. El Niño Southern Oscillation phenomena. Nature 1983, 302, 295–301. [Google Scholar] [CrossRef]
- Wang, C.; Picaut, J. Understanding Enso Physics—A Review. Earth’s Clim. 2004, 147, 21–48. [Google Scholar]
- Harrison, D.E.; Vecchi, G.A. On the termination of El Niño. Geophys. Res. Lett. 1999, 26, 1593–1596. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Tziperman, E.; Cane, M.A.; Zebiak, S.E.; Xue, Y. Blumenthal, B Locking of El Niño’s Peak Time to the End of the Calendar Year in the Delayed Oscillator Picture of ENSO. J. Clim. 1998, 11, 2191–2199. [Google Scholar] [CrossRef]
- Tziperman, E.; Zebiak, S.E.; Cane, M.A. Mechanisms of Seasonal—ENSO Interaction. J. Atmos. Sci. 1997, 54, 61–71. [Google Scholar] [CrossRef]
- An, S.; Jin, F. Linear solutions for the frequency and amplitude modulation of ENSO by the annual cycle. Tellus 2011, 63, 238–243. [Google Scholar] [CrossRef]
- Brönnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T.M.; Hansen, G.; Svenøe, T. Extreme climate of the global troposphere and stratosphere in 1940–1942 related to El Niño. Nature 2004, 431, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.S.; Yu, J.Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Qiangen, Z.; Tiehan, Z. Monsoon circulation related to enso phase-locking. Adv. Atmos. Sci. 1998, 15, 267–276. [Google Scholar]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, 112, C11. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Li, T. Atmosphere–Warm Ocean Interaction and Its Impacts on Asian–Australian Monsoon Variation. J. Clim. 2003, 16, 1195–1211. [Google Scholar] [CrossRef]
- Xie, S.P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the Summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Andrews, M.B. Historical simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model Earth Syst. 2020, 12, e2019MS001995. [Google Scholar] [CrossRef]
- Bayr, T.; Dommenget, D.; Latif, M. Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations. Clim. Dyn. 2020, 54, 2831–2846. [Google Scholar] [CrossRef]
- Bayr, T.; Wengel, C.; Latif, M.; Dommenget, D.; Lübbecke, J.; Park, W. Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim. Dyn. 2019, 53, 155–172. [Google Scholar] [CrossRef]
- Bellenger, H.; Guilyardi, E.; Leloup, J.; Lengaigne, M.; Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 2014, 42, 1999–2018. [Google Scholar] [CrossRef]
- Brown, J.R. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Clim. Past 2020, 16, 1777–1805. [Google Scholar] [CrossRef]
- Chen, H.-C.; Jin, F.-F. Dynamics of ENSO Phase–Locking and Its Biases in Climate Models. Geophys. Res. Lett. 2022, 49, e2021GL097603. [Google Scholar] [CrossRef]
- Chen, H.-C.; Jin, F.-F. Fundamental Behavior of ENSO Phase Locking. J. Clim. 2020, 33, 1953–1968. [Google Scholar] [CrossRef]
- Chen, H.C.; Jin, F.F.; Zhao, S.; Wittenberg, A.T.; Xie, S. ENSO dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 climate models. J. Clim. 2022, 34, 9365–9384. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kug, J.-S. ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Clim. Dyn. 2014, 43, 305–318. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kug, J.S.; Kim, D.; Kim, Y.H.; Kim, D.H. What controls phase-locking of ENSO to boreal winter in coupled GCMs? Clim. Dyn. 2013, 40, 1551–1568. [Google Scholar] [CrossRef]
- Hirst, A. Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci. 1986, 43, 606–632. [Google Scholar] [CrossRef]
- Kallummal, R.; Kirtman, B. Validity of a linear stochastic view of ENSO in an ACGCM. J. Atmos. Sci. 2008, 65, 3860–3879. [Google Scholar] [CrossRef]
- Liao, H.; Cai, Z.; Guo, J.; Song, Z. Effects of ITCZ Poleward Location Bias on ENSO Seasonal Phase-Locking Simulation in Climate Models. J. Clim. 2023, 36, 5233–5249. [Google Scholar] [CrossRef]
- Liao, H.; Wang, C.; Song, Z. ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep-Sea Res. II 2021, 189, 104943. [Google Scholar] [CrossRef]
- Liu, M.; Ren, H.L.; Zhang, R.; Ineson, S.; Wang, R. ENSO phase-locking behavior in climate models: From CMIP5 to CMIP6. Environ. Res. Commun. 2021, 3, 031004. [Google Scholar] [CrossRef]
- Stein, K.; Schneider, N.; Timmermann, A.; Jin, F.F. Seasonal Synchronization of ENSO Events in a Linear Stochastic Model. J. Clim. 2010, 23, 5629–5643. [Google Scholar] [CrossRef]
- Stein, K.; Timmermann, A.; Schneider, N.; Jin, F.F.; Stuecker, M.F. ENSO Seasonal Synchronization Theory. J. Clim. 2014, 27, 5285–5310. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Timmermann, A.; Jin, F.F.; McGregor, S.; Ren, H.L. A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci. 2013, 6, 540–544. [Google Scholar] [CrossRef]
- Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T. Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias. Clim. Dyn. 2018, 50, 901–919. [Google Scholar] [CrossRef]
- Wittenberg, A.T.; Rosati, A.; Lau, N.C.; Ploshay, J.J. GFDL’s CM2 Global Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO. J. Clim. 2006, 19, 698–722. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, D.Z.; Wu, L.; Wang, F. Western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci. 2013, 30, 940–953. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, F.; Sun, D.Z. Weak ENSO asymmetry due to weak nonlinear air–sea interaction in CMIP5 climate models. Adv. Atmos. Sci. 2016, 33, 352–364. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Timmermann, A. El Niño–Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, D.-Z. ENSO Asymmetry in CMIP6 Models. J. Clim. 2022, 35, 5555–5572. [Google Scholar] [CrossRef]
- Rayner, N.A.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Liang, J.; Yang, X.Q.; Sun, D.Z. The effect of ENSO events on the Tropical Pacific Mean Climate: Insights from an Analytical Model. J. Clim. 2012, 25, 7590–7606. [Google Scholar] [CrossRef]
- Liang, J.; Yang, X.Q.; Sun, D.Z. Rectification of El Nino-Southern Oscillation into Climate Anomalies of Decadal and Longer Time-scales: Results from Forced Ocean GCM Experiments. J. Clim. 2014, 27, 2545–2561. [Google Scholar]
Number | Model Name | Model Center, Country |
---|---|---|
1 | ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia |
2 | ACCESS-ESM1-5 | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia |
3 | BCC-CSM2-MR | Beijing Climate Center (BCC), China |
4 | BCC-ESM1 | Beijing Climate Center (BCC), China |
5 | CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada |
6 | CAS-ESM2-0 | Chinese Academy of Sciences (CAS), China |
7 | CESM2 | National Center for Atmospheric Research (NCAR,) USA |
8 | CESM2-WACCM | National Center for Atmospheric Research (NCAR), USA |
9 | CMCC-ESM2 | Centro Euro-Mediterraneo sui Cambiamenti Climatici(CMCC),Italy |
10 | CNRM-CM6-1 | Centre National de Recherches Météorologiques |
11 | E3SM-1-0 | U.S. Department of Energy (DOE), USA |
12 | E3SM-2-0 | U.S. Department of Energy (DOE), USA |
13 | FGOALS-f3-L | Chinese Academy of Sciences (IAP/CAS), China |
14 | FGOALS-g3 | Chinese Academy of Sciences (IAP/CAS), China |
15 | GFDL-CM4 | National Oceanic and Atmospheric Administration (NOAA), USA |
16 | GFDL-ESM4 | National Oceanic and Atmospheric Administration (NOAA), USA |
17 | GISS-E2-1-H | National Aeronautics and Space Administration (NASA), USA |
18 | GISS-E2-2-H | National Aeronautics and Space Administration (NASA), USA |
19 | HadGEM3-GC31-LL | Met Office Hadley Centre (MOHC), UK |
20 | HadGEM3-GC31-MM | Met Office Hadley Centre (MOHC), UK |
21 | INM-CM4-8 | Institute for Numerical Mathematics, Russian Academy of Sciences (INM RAS), Russian |
22 | INM-CM5-0 | Institute for Numerical Mathematics, Russian Academy of Sciences (INM RAS), Russian |
23 | IPSL-CM6A-LR | Institute Pierre Simon Laplace (IPSL), France |
24 | KIOST-ESM | Korea Institute of Ocean Science & Technology (KIOST), South Korea |
25 | MCM-UA-1-0 | Department of Geosciences, University of Arizona |
26 | MIROC6 | Model for Interdisciplinary Research on Climate |
27 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology (MPI), Germany |
28 | MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan |
29 | NESM3 | Nanjing University of Information Science and Technology (NUIST), China |
30 | NorCPM1 | Norwegian Climate Center (NCC), Norway |
31 | NorESM2-LM | Norwegian Climate Center (NCC), Norway |
32 | NorESM2-MM | Norwegian Climate Center (NCC), Norway |
33 | SAM0-UNICON | Seoul National University (SNU), South Korea |
34 | TaiESM1 | National Taiwan University (AS-RCEC), China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Sun, D.-Z. Phase-Locking of El Niño and La Niña Events in CMIP6 Models. Atmosphere 2024, 15, 882. https://doi.org/10.3390/atmos15080882
Yan Y, Sun D-Z. Phase-Locking of El Niño and La Niña Events in CMIP6 Models. Atmosphere. 2024; 15(8):882. https://doi.org/10.3390/atmos15080882
Chicago/Turabian StyleYan, Yu, and De-Zheng Sun. 2024. "Phase-Locking of El Niño and La Niña Events in CMIP6 Models" Atmosphere 15, no. 8: 882. https://doi.org/10.3390/atmos15080882
APA StyleYan, Y., & Sun, D. -Z. (2024). Phase-Locking of El Niño and La Niña Events in CMIP6 Models. Atmosphere, 15(8), 882. https://doi.org/10.3390/atmos15080882