Unintended Consequences of Urban Expansion and Gold Mining: Elevated Indoor Radon Levels in Gauteng Communities’ Neighboring Gold Mine Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Sampling
2.2. Inclusion and Ethical Consideration
2.3. Data Collection
2.4. Radon Mapping
2.5. Statistical Analysis
2.6. Annual Effective Dose for Radon Exposure
3. Results
3.1. Participation Rate and Participant Demographic Characteristics
3.2. Description of Surveyed Houses
3.3. Indoor Radon Data Normality Test
3.4. Spatial Distribution of Indoor Radon Concentration
3.5. The Association between House Characteristics and Indoor Radon Levels
3.6. The Association between House Characteristics and WHO Radon Reference Level
3.7. Annual Effective Dose for Radon Exposure
4. Discussion
4.1. Average Volume Activity of Radon (VAR)
4.2. Volume Activity of Radon (VAR) in Relation to WHO Reference Level
4.3. Association between Indoor Radon Concentration (IRC) Levels with Other Factors
4.4. Annual Effective Dose
4.5. Recommendations
4.6. Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kneen, M.A.; Ojelede, M.E.; Annegarn, H.J. Housing and population sprawl near tailings storage facilities in the Witwatersrand: 1952 to current. S. Afr. J. Sci. 2015, 111, 9. [Google Scholar] [CrossRef] [PubMed]
- International Human Rights Clinic, Harvard Law School. The Cost of Gold: Environmental, Health, and Human Rights Consequences of Gold Mining in South Africa’s West and Central Rand; International Human Rights Clinic, Harvard Law School: Harvard, MA, USA, 2016. [Google Scholar]
- Khanyile, S. Development of Human Settlements and Mining Areas: 1956–2013. Gauteng City-Region Observatory (GCRO). 2016. Available online: https://www.gcro.ac.za/outputs/map-of-the-month/detail/development-of-human-settlements-and-mining-areas-1956-2013/ (accessed on 5 April 2024).
- Ongori, J.N.; Lindsay, R.; Newman, R.T.; Maleka, P.P. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation. J. Environ. Radioact. 2015, 140, 16–24. [Google Scholar] [CrossRef]
- Utembe, W.; Faustman, E.; Matatiele, P.; Gulumian, M. Hazards identified and the need for health risk assessment in the South African mining industry. Hum. Exp. Toxicol. 2015, 34, 1212–1221. [Google Scholar] [CrossRef]
- Chanda-Kapata, P. Public health and mining in East and Southern Africa: A desk review of the evidence. In Zambia Ministry of Health with Training and Research Support Centre in the Regional Network for Equity in Health in East and Southern Africa (EQUINET); EQUINET DISCUSSION PAPER 121; April 2020; Available online: https://equinetafrica.org/sites/default/files/uploads/documents/EQ%20Diss121%20Mining%20and%20health%20April2020.pdf (accessed on 23 June 2024).
- Broadhurst, J.; Amaral Filho, J.; Moyo, A.; Nwaila, P.; N’Gandu, H.S.; Shongwe, B.; Sibanda, L.; Stander, H.M.; Harrison, S.T. Resource Efficient and Socially Responsible Approaches for the Integrated Management of Mine Waste: Understanding the Risks, Opportunities, Enablers and Barriers; South African Water Research Commission Report No. 2580/1/19; Department of Chemical Engineering University of Cape Town: Cape Town, South Africa, 2019; ISBN 978-0-6392-0077-4. [Google Scholar]
- Mapanga, W.; Norris, S.A.; Chen, W.C.; Blanchard, C.; Graham, A.; Baldwin-Ragaven, L.; Boyles, T.; Donde, B.; Greef, L.; Huddle, K.; et al. Consensus study on the health system and patient-related barriers for lung cancer management in South Africa. PLoS ONE 2021, 16, e0246716. [Google Scholar] [CrossRef]
- Gulumian, M.; Annegarn, H.; Voyi, K.; Spiers, G.; Mine Health and Safety Council (MHSC). Adverse Health Impacts Associated with Dust Emissions from Gold Mine Tailings. Project Annual Report—Year 1. Available online: https://mhsc.org.za/sites/default/files/public/research_documents/SIM%20100801%20Year%201%20Report_0.pdf (accessed on 15 June 2024).
- Kengni, B.; Nkosi, V. Analysis of the current legal framework protecting the health of communities near gold mine tailings in South Africa. S. Afr. Public Law 2023, 37, 19. [Google Scholar] [CrossRef]
- The Bench Marks Foundation. Policy Gap 12 Soweto Report: “Waiting to Inhale” A Survey of Household Health in Four Mine-Affected Communities. 2016. Available online: https://media.business-humanrights.org/media/documents/files/documents/Benchmarks_policy_gap_12.pdf (accessed on 11 February 2022).
- Liefferink, M. Rehabilitation of Mine Contaminated Eco-Systems: A Contribution to a Just Transition to a Low Carbon Economy to Combat Unemployment and Climate Change; Federation for a Sustainable Environment: Sandton, South Africa, 2017. [Google Scholar]
- Liefferink, M. Selected extracts from South Africa’s environmental legislation: Challenges with the management of gold tailings within the Witwatersrand gold fields and case studies. In Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings, Crawley, WA, Australia, 8 May 2019; Australian Centre for Geomechanics: Crawley WA, Australia, 2019; pp. 53–67. Available online: https://papers.acg.uwa.edu.au/p/1910_0.04_Liefferink/ (accessed on 15 May 2024).
- Stassen, W. Gauteng’s Mine dumps Brimming with Radioactive Uranium. Health E-News. 15 October 2015. Available online: https://health-e.org.za/2015/10/15/gautengs-mine-dumps-brimming-with-radioactive-uranium/ (accessed on 22 February 2022).
- Zupunski, L.; Street, R.; Ostroumova, E.; Winde, F.; Sachs, S.; Geipel, G.; Nkosi, V.; Bouaoun, L.; Haman, T.; Schüz, J.; et al. Environmental exposure to uranium in a population living in close proximity to gold mine tailings in South Africa. J. Trace Elem. Med. Biol. 2023, 77, 127141. [Google Scholar] [CrossRef] [PubMed]
- Radebe, M.; Mathuthu, M. An Overview of Radon Emanation Measurement System for South African Communities. In Rare Earth Elements—Emerging Advances, Technology Utilization, and Resource Procurement; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Moreno, M.E.; Acosta-Saavedra, L.C.; Meza-Figueroa, D.; Vera, E.; Cebrian, M.E.; Ostrosky-Wegman, P.; Calderon-Aranda, E.S. Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: A pilot study. Int. J. Hyg. Environ. Health 2010, 213, 252–258. [Google Scholar] [CrossRef]
- Mpanza, M.; Adam, E.; Moolla, R. Dust Deposition Impacts at a Liquidated Gold Mine Village: Gauteng Province in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 4929. [Google Scholar] [CrossRef]
- Winde, F.; Erasmus, E.; Geipel, G. Uranium contaminated drinking water linked to leukaemia—Revisiting a case study from South Africa taking alternative exposure pathways into account. Sci. Total Environ. 2017, 574, 400–421. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M.J. Determination of radon in mine dwellings of gauteng province of South Africa using AlphaGUARD radon professional monitor. J. Environ. Toxicol. Stud. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Moshupya, P.; Abiye, T.; Mouri, H.; Levin, M.; Strauss, M.; Strydom, R. Assessment of Radon Concentration and Impact on Human Health in a Region Dominated by Abandoned Gold Mine Tailings Dams: A Case from the West Rand Region, South Africa. Geosciences 2019, 9, 466. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. An assessment of radiological hazards from gold mine tailings in the Province of Gauteng in South Africa. Int. J. Environ. Res. Public Health 2016, 13, 138. [Google Scholar] [CrossRef]
- Njinga, R.L.; Tshivhase, V.M. Lifetime cancer risk due to gamma radioactivity in soils from Tudor Shaft mine environs, South Africa. J. Radiat. Res. Appl. Sci. 2016, 9, 310–315. [Google Scholar] [CrossRef]
- Winde, F.; Geipel, G.; Espina, C.; Schüz, J. Human exposure to uranium in South African gold mining areas using barber-based hair sampling. PLoS ONE 2019, 14, e0219059. [Google Scholar] [CrossRef]
- Moshupya, P.M.; Mohuba, S.C.; Abiye, T.A.; Korir, I. Evaluation of Indoor Radon Activity Concentrations and Controls in Dwellings Surrounding the Gold Mine Tailings in Gauteng Province of South Africa. Int. J. Environ. Res. Public Health 2023, 20, 7010. [Google Scholar] [CrossRef] [PubMed]
- Winde, F.; de Villiers, A.B. The nature and extent of uranium contamination from tailings dams in the Witwatersrand gold mining area (South Africa). In Proceedings of the Uranium in the Aquatic Environment: Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium Freiberg, Berlin, Germany, 15–21 September 2002; Springer: Berlin/Heidelberg, Germany, 2022; pp. 889–898. [Google Scholar]
- Smit, H.; Bezuidenhout, J. Influence of climate and weather on the mitigation of radon exposure in two towns of the Western Cape, South Africa. J. Radiat. Res. Appl. Sci. 2021, 14, 236–245. [Google Scholar] [CrossRef]
- Kootbodien, T.; Iyaloo, S.; Wilson, K.; Naicker, N.; Kgalamono, S.; Haman, T.; Mathee, A.; Rees, D. Environmental silica dust exposure and pulmonary tuberculosis in Johannesburg, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 1867. [Google Scholar] [CrossRef]
- Uzoegbo, H.C.; Li, K. Mineinduced seismic events and its effect on nearby settlements in South Africa. Retrieved 2002, 5, 1–16. [Google Scholar]
- Think Hazard. Gauteng, South Africa. Report Generated on 24 September 2020. Available online: https://thinkhazard.org/en/report/2708-south-africa-gauteng (accessed on 12 June 2024).
- Benà, E.; Ciotoli, G.; Ruggiero, L.; Coletti, C.; Bossew, P.; Massironi, M.; Mazzoli, C.; Mair, V.; Morelli, C.; Galgaro, A.; et al. Evaluation of tectonically enhanced radon in fault zones by quantification of the radon activity index. Sci. Rep. 2022, 12, 21586. [Google Scholar] [CrossRef]
- Wysocka, M.; Nowak, S.; Chałupnik, S.; Bonczyk, M. Radon Concentrations in Dwellings in the Mining Area—Are There Observed Effects of the Coal Mine Closure? Int. J. Environ. Res. Public Health 2022, 19, 5214. [Google Scholar] [CrossRef] [PubMed]
- Eidy, M.; Regina, A.C.; Tishkowski, K. Radon Toxicity. [Updated 26 January 2024]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562321/ (accessed on 13 June 2023).
- Keith, S.; Doyle, J.R.; Harper, C.; Mumtaz, M.; Tarrago, O.; Wohlers, D.W.; Diamond, G.L.; Citra, M.; Barber, L.E. Toxicological Profile for Radon; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/handle/10665/44149 (accessed on 1 February 2023).
- International Atomic Energy Agency (IAEA). Design and Conduct of Indoor Radon Surveys; Safety Reports Series No. 98, Austria. 2019. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1848_web.pdf (accessed on 13 February 2023).
- Karam, A.; Venter, N. Affordable housing on contaminated land in Johannesburg. Acta Structilia J. Phys. Dev. Sci. 2007, 14, 35–37. [Google Scholar]
- Lorenzo-González, M.; Ruano-Ravina, A.; Peón, J.; Piñeiro, M.; Barros-Dios, J.M. Residential radon in Galicia: A cross-sectional study in a radon-prone area. J. Radiol. Prot. 2017, 37, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, J.-F.; Solomon, S.; Takala, J.; Jung, T.; Strand, P.; Murith, C.; Kiselev, S.; Zhuo, W.; Shannoun, F.; Janssens, A. ICRP publication 126: Radiological protection against radon exposure. Ann. ICRP 2014, 43, 5–73. [Google Scholar] [CrossRef] [PubMed]
- Haakonde, T.; Yabe, J.; Choongo, K.; Chongwe, G.; Nchima, G. Uranium exposure and health risk implications: A preliminary study among the residents living around uranium mining sites in the Southern Province of Zambia. Environ. Adv. 2021, 5, 100098. [Google Scholar] [CrossRef]
- Yazzie, S.A.; Davis, S.; Seixas, N.; Yost, M.G. Assessing the Impact of Housing Features and Environmental Factors on Home Indoor Radon Concentration Levels on the Navajo Nation. Int. J. Environ. Res. Public Health 2020, 17, 2813. [Google Scholar] [CrossRef]
- Ruano-Ravina, A.; Kelsey, K.T.; Fernández-Villar, A.; Barros-Dios, J.M. Action levels for indoor radon: Different risks for the same lung carcinogen? Eur. Respir. J. 2017, 50, 1701609. [Google Scholar] [CrossRef]
- Leuschner, A.H.; Steyn, A.; Strydom, R.; De Beer, G.P. Indoor Radon Concentrations in South African Homes; International Radiation Protection Association: Montreal, BC, Canada, 1992. [Google Scholar]
- Leuchner, A.H.; Van As, D.; Grundling, A.; Steyn, A. A survey of indoor radon exposure in South Africa. Clean Air J. 1989, 7, 7. [Google Scholar] [CrossRef]
- Mphaga, K.V.; Utembe, W.; Rathebe, P.C. Radon exposure risks among residents proximal to gold mine tailings in Gauteng Province, South Africa: A cross-sectional preliminary study protocol. Front. Public Health 2024, 12, 1328955. [Google Scholar] [CrossRef] [PubMed]
- Ansre, C.Y. Dose Assessment of Radon Levels in the South-Dayi District of the Volta Region, Ghana. Doctoral Dissertation, University of Ghana, Accra, Ghana, 2015. [Google Scholar]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Qualitative overview of indoor radon surveys in Europe. J. Environ. Radioact. 2019, 204, 163–174. [Google Scholar] [CrossRef]
- Lorenzo-González, M.; Ruano-Ravina, A.; Torres-Durán, M.; Kelsey, K.T.; Provencio, M.; Parente-Lamelas, I.; Leiro-Fernández, V.; Vidal-García, I.; Castro-Añón, O.; Martínez, C.; et al. Lung cancer and residential radon in never-smokers: A pooling study in the Northwest of Spain. Environ. Res. 2019, 172, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Gariazzo, C.; Binazzi, A.; Alfò, M.; Massari, S.; Stafoggia, M.; Marinaccio, A. Predictors of lung cancer risk: An ecological study using mortality and environmental data by municipalities in Italy. Int. J. Environ. Res. Public Health 2021, 18, 1896. [Google Scholar] [CrossRef] [PubMed]
- Torres-Durán, M.; Ruano-Ravina, A.; Parente-Lamelas, I.; Leiro-Fernández, V.; Abal-Arca, J.; Montero-Martínez, C.; Pena-Álvarez, C.; González-Barcala, F.J.; Castro-Añón, O.; Golpe-Gómez, A.; et al. Lung cancer in never-smokers: A case–control study in a radon-prone area (Galicia, Spain). Eur. Respir. J. 2014, 44, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Yitshak-Sade, M.; Blomberg, A.J.; Zanobetti, A.; Schwartz, J.D.; Coull, B.A.; Kloog, I.; Dominici, F.; Koutrakis, P. County-level radon exposure and all-cause mortality risk among Medicare beneficiaries. Environ. Int. 2019, 130, 104865. [Google Scholar] [CrossRef]
- Turner, M.C.; Krewski, D.; Chen, Y.; Pope, C.A.; Gapstur, S.M.; Thun, M.J. Radon and COPD mortality in the American Cancer Society Cohort. Eur. Respir. J. 2012, 39, 1113–1119. [Google Scholar] [CrossRef]
- Zlobina, A.; Farkhutdinov, I.; Carvalho, F.P.; Wang, N.; Korotchenko, T.; Baranovskaya, N.; Farkhutdinov, A. Impact of environmental radiation on the incidence of cancer and birth defects in regions with high natural radioactivity. Int. J. Environ. Res. Public Health 2022, 19, 8643. [Google Scholar] [CrossRef] [PubMed]
- Oancea, S.C.; Rundquist, B.C.; Simon, I.; Swartz, S.; Zheng, Y.; Zhou, X.; Sens, M.A.; Schwartz, G.G. County level incidence rates of chronic lymphocytic leukemia are associated with residential radon levels. Futur. Oncol. 2017, 13, 1873–1881. [Google Scholar] [CrossRef]
- Maheso, A.M.; Bezuidenhout, J.; Newman, R.T. Indoor Radon Levels in Homes and Schools in the Western Cape, South Africa—Results from a Schools Science Outreach Initiative and Corresponding Model Predictions. Int. J. Environ. Res. Public Health 2023, 20, 1350. [Google Scholar] [CrossRef]
- Iyaloo, S.; Kootbodien, T.; Naicker, N.; Kgalamono, S.; Wilson, K.S.; Rees, D. Respiratory Health in a Community Living in Close Proximity to Gold Mine Waste Dumps, Johannesburg, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 2240. [Google Scholar] [CrossRef]
- Nkosi, V.; Wichmann, J.; Voyi, K. Mine dumps, wheeze, asthma, and rhinoconjunctivitis among adolescents in South Africa: Any association? Int. J. Environ. Health Res. 2015, 25, 583–600. [Google Scholar] [CrossRef]
- Nkosi, V.; Wichmann, J.; Voyi, K. Chronic respiratory disease among the elderly in South Africa: Any association with proximity to mine dumps? Environ. Health 2015, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Statistics South Africa. Mid-Year Population Estimates. 2022. Available online: https://www.statssa.gov.za/publications/P0302/MidYear2022.pdf (accessed on 21 May 2023).
- Saphymo GmbH. AlphaE Hand-Held Device for Radon Concentration & Personal Radon Exposure: User Manual 07/2016. Germany. 2016. Available online: https://www.radonshop.com/mediafiles/Anleitungen/Radon/Bertin_AlphaE/Bertin_AlphaE_ManualEN.pdf (accessed on 10 September 2023).
- Bertin Technologies. AlphaE User Manual: Hand-Held Device for Radon Concentration & Personal Radon Exposure; Bertin Instruments: Paris, France, 2020. [Google Scholar]
- Dimitrova, I.; Georgiev, S.; Mitev, K.; Todorov, V.; Dutsov, C.; Sabot, B. Study of the performance and time response of the RadonEye Plus2 continuous radon monitor. Measurement 2023, 207, 112409. [Google Scholar] [CrossRef]
- Kitson-Mills, D.; Sovoe, S.; Opoku-Ntim, I.; Kyei, K.A.; Marnotey, S.N.; Anim-Sampong, S.; Kwabeng, M.A.; Otoo, F.; Baiden, F. An assessment of indoor radon level in a suburb of Ghana. Environ. Res. Commun. 2019, 1, 061002. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Short- versus long-term tests of indoor radon for risk assessment by Monte-Carlo method towards effective measurement strategy. Indoor Air 2022, 32, e13166. [Google Scholar] [CrossRef] [PubMed]
- Kovler, K.; Tsapalov, A. A challenging path to rational and harmonised international regulation of indoor radon. Radiat. Prot. Dosim. 2023, 199, 1047–1055. [Google Scholar] [CrossRef]
- Dehkordi, A.N. Assessment of radiation doses to the West Rand public due to inhalation of 222Rn and its daughter products. In Faculty of Science; University of Witwatersrand: Johannesburg, South Africa, 2012. [Google Scholar]
- Mlay, G.M.; Makundi, I.N. Assessment of indoor radon-222 concentrations in the vicinity of Manyoni uranium deposit, Singida. Tanzan. J. Sci. 2018, 44, 191–206. [Google Scholar]
- Mohammed, N.; Focus, E. Indoor radon concentration levels and annual effective doses for residence of houses near uranium deposit in Bahi district, Dodoma, Tanzania. Tanzan. J. Sci. 2018, 44, 159–168. [Google Scholar]
- Kobal, I.; Vaupotič, J.; Gregorič, A.; Uralbekov, B. Comparison of approaches in Slovenia and Kazakhstan in managing exposure to radon. In Uranium-Past and Future Challenges: Proceedings of the 7th International Conference on Uranium Mining and Hydrogeology; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 689–698. [Google Scholar]
- Ivanova, K.; Badulin, V. Indoor Radon Measurement in Former Uranium Mining Regions in Bulgaria. Invited Papers 2012, 255–258. [Google Scholar] [CrossRef]
- Grzywa-Celińska, A.; Krusiński, A.; Mazur, J.; Szewczyk, K.; Kozak, K. Radon—The Element of Risk. The Impact of Radon Exposure on Human Health. Toxics 2020, 8, 120. [Google Scholar] [CrossRef]
- Baeza, A.; García-Paniagua, J.; Guillén, J.; Montalbán, B. Influence of architectural style on indoor radon concentration in a radon prone area: A case study. Sci. Total Environ. 2018, 610–611, 258–266. [Google Scholar] [CrossRef]
- Villalba Espinosa, P.; Hidalgo García, D.; Arco Díaz, J.; Villalba Moreno, J. Study of Radon concentrations in a single-family home and their relationship with the ventilation system. Rev. Construcción 2020, 19, 443–456. [Google Scholar] [CrossRef]
- Ghany, H.A.A. The Association between Indoor Radon and Tobacco Smoke. Indoor Built Environ. 2006, 15, 289–293. [Google Scholar] [CrossRef]
- Jasaitis, D.; Girgždys, A. The investigation of tobacco smoke influence on the changes of indoor radon and its short-lived decay products volumetric activities. J. Environ. Eng. Landsc. Manag. 2013, 21, 59–66. [Google Scholar] [CrossRef]
- Sherafat, S.; Mansour, S.N.; Mosaferi, M.; Aminisani, N.; Yousefi, Z.; Maleki, S. First indoor radon mapping and assessment excess lifetime cancer risk in Iran. MethodsX 2018, 6, 2205–2216. [Google Scholar] [CrossRef]
- Otoo, F.; Darko, E.; Garavaglia, M.; Giovani, C.; Pividore, S.; Andam, A.; Amoako, J.; Adukpo, O.; Tandoh, J.; Inkoom, S. Seasonal indoor radon studies in buildings of Accra Metropolis of Greater Accra region of Ghana. Radioprotection 2018, 53, 199–206. [Google Scholar] [CrossRef]
- Yassin, S.; Al Sersawi, M.; Abuzerr, S.; Darwish, M. Indoor radon levels in the dwellings of the Gaza governorate neighborhoods’, Palestine. Int. J. Radiat. Res. 2019, 17, 541–548. [Google Scholar]
- Brenner, D. Protection against radon-222 at home and at work. ICRP Publication 65. Int. J. Radiat. Biol. 1994, 66, 413. [Google Scholar] [CrossRef]
- Ajayi, O.S.; Olubi, O.E. Investigation of indoor radon levels in some dwellings of southwestern Nigeria. Environ. Forens. 2016, 17, 275–281. [Google Scholar] [CrossRef]
Riverlea n = 166 (50.2%) | Orlando East n = 165 (49.8%) | ||
---|---|---|---|
House age | Less than 10 years | 10 (6%) | 5 (3%) |
11–20 Years | 9 (5.4%) | 7 (4.2%) | |
21–40 Years | 14 (8.4%) | 14 (8.5%) | |
More than 41 | 133 (80.1%) | 139 (84.2%) | |
House type | Shed/Wendy house | 0 (0%) | 2 (1.2%) |
Shack | 0 (0%) | 4 (2.4%) | |
Brick house | 166 (100.0%) | 159 (96.4%) | |
Roof type | Metal roofing | 27 (16.3%) | 152 (92.1%) |
Asbestos | 129 (77.7%) | 4 (2.4%) | |
Concrete tile | 10 (6.0%) | 7 (4.3%) | |
Other | 0 (0.0%) | 2 (1.2%) | |
Foundation | Concrete slab | 156 (94.5%) | 164 (99.4%) |
Stones and mortar | 9 (5.5%) | 0 (0.0%) | |
Wood | 0 (0.0%) | 1 (0.6%) | |
Rooms | One room | 0 (0.0%) | 5 (3.0%) |
Two to three rooms | 58 (34.9%) | 21 (12.7%) | |
Four rooms and above | 108 (65.1%) | 139 (84.2%) | |
Cracks or openings | Yes | 102 (61.8%) | 77 (47.2%) |
No | 63 (38.2%) | 86 (52.8%) | |
Number of occupants | One | 7 (4.3%) | 7 (4.3%) |
Two to three | 40 (24.5%) | 40 (24.4%) | |
More than four | 116 (71.2%) | 117 (71.3%) | |
Water supply | Municipal supply | 165 (100.0%) | 164 (100.0%) |
Other | 0 (0.0%) | 0 (0.0%) | |
Energy source | Electricity | 166 (100%) | 162 (98.2%) |
Solar | 0 (0%) | 1 (0.6%) | |
Wood | 0 (0.0%) | 1 (0.6%) | |
Other | 0 (0.0%) | 1 (0.6%) | |
Ventilation | Daily | 149 (89.8%) | 107 (64.85) |
More than once a week | 15 (9.0%) | 30 (18.2%) | |
Less than once a week | 0 (0.0%) | 12 (7.3%) | |
Only during certain activities | 1 (0.6%) | 14 (8.5%) | |
Do not ventilate at all | 1 (0.6%) | 2 (1.2%) | |
Hours indoors | Less than 5 h | 17 (10.2%) | 0 (0.0%) |
6–10 h | 17 (10.2%) | 12 (7.3%) | |
11–15 h | 21 (12.7%) | 35 (21.2%) | |
16–20 h | 24 (14.5%) | 61 (37.0%) | |
21–24 h | 87 (52.4%) | 57 (34.5%) | |
Tested for radon in the past | Yes | 3 (1.8%) | 3 (1.8%) |
No | 163 (98.2%) | 162 (98.2%) | |
Temperature | <17.54 °C >17.55 °C | 65 (39.4%) 100 (60.4%) | 68 (41.2%) 97 (58.8%) |
Variables | n (%) | Range | Average (SD) | ||
---|---|---|---|---|---|
Min | Max | ||||
House location | Riverlea | 165 (50%) | 11.07 | 1078.85 | 103.30 (94.91) |
Orlando East | 165 (50%) | 0 | 379.13 | 65.19 (47.83) | |
House type | Shed/Wendy house | 2 (0.6%) | 50.58 | 69.37 | 59.98 (13.29) |
Shack | 4 (1.2%) | 17.27 | 92.97 | 54.67 (31.04 | |
Brick house | 324 (98.2%) | 0 | 1078.85 | 84.76 (77.99) | |
House Age | 1–5 years old | 6 (2%) | 50.81 | 142.05 | 87.53 (30.24) |
6–10 years old | 9 (3%) | 10.07 | 379.13 | 103.88 (112.44) | |
11–20 years old | 16 (5%) | 0 | 1078.85 | 157.70 (257.99) | |
21–40 years old | 28 (9%) | 12.40 | 204.04 | 59.99 (46.98) | |
Older than 40 years | 271 (82%) | 0 | 277.25 | 81.69 (50.94) | |
Roof-type | Corrugated Iron/zinc | 181 (54.8%) | 0 | 1078.85 | 75.57 (91.20) |
Asbestos | 130 (40%) | 12.23 | 277.25 | 96.19 (55.34) | |
Tile | 17 (5.2%) | 11.07 | 179.25 | 83.25 (51.02) | |
House foundation | Concrete slab | 319 (97%) | 0 | 1078.85 | 84.09 (78.29) |
Stone and mortar | 9 (2.7%) | 25.35 | 184.74 | 85.65 (53.23) | |
Wood | 1 (0.3%) | 99.48 | 99.48 | 99.48 (-) | |
Floor-type | Wood | 5 (1.5%) | 28.62 | 193.21 | 89.14 (68.30) |
PVC flooring | 8 (2.4%) | 21.38 | 111.34 | 69.50 (31.04) | |
Tiles | 294 (89.1%) | 0 | 1078.85 | 84.71 (80.38) | |
Concrete slab | 19 (5.8%) | 13.12 | 204.25 | 84.58 (48.40) | |
Stones | 4 (1.2%) | 24.06 | 142.68 | 71.97 (55.00) | |
Cracks on the floor | No | 148 (54.7%) | 0 | 1078.85 | 91.60 (100.11) |
Yes | 179 (45.3%) | 1.19 | 379.13 | 78.54 (51.97) | |
Temperature | <17.54 °C | 133 (40.30%) | 0 | 1078.85 | 90.81 (104.55) |
>17.55 °C | 197 (59.70%) | 0 | 289.96 | 79.81 (51.50) |
Dwelling Characteristics | Average Radon Reading | ||
---|---|---|---|
<100 Bq/m3 | >100 Bq/m3 | ||
Dwelling location | Riverlea | 97 (42.0%) | 68 (68.7%) |
Orlando East | 134 (58.0%) | 31 (31.3%) | |
House age | Less than 10 years | 11 (4.7%) | 4 (4.0%) |
11–20 Years | 10 (4.3%) | 6 (6.1%) | |
21–40 Years | 23 (10.0%) | 5 (5.0%) | |
More than 41 | 187 (81.0%) | 84 (84.9%) | |
House type | Shed/Wendy house | 2 (0.9%) | 0 (0.0%) |
Shack | 4 (1.7%) | 0 (0.0%) | |
Brick house | 225 (97.4%) | 99 (100.0%) | |
Roof type | Metal roofing | 138 (59.7%) | 41 (41.4%) |
Asbestos | 80 (34.6%) | 52 (52.5%) | |
Concrete tile | 13 (5.7%) | 6 (6.1%) | |
Other | 2 (0.8%) | 0 (0%) | |
Foundation | Concrete slab | 225 (97.4%) | 94 (95.9%) |
Stone and mortar | 5 (2.2%) | 4 (4.1%) | |
Wood | 1 (0.4%) | 0 (0.0%) | |
Floor | Wood | 3 (1.3%) | 2 (2.0%) |
PVC flooring | 6 (2.6%) | 2 (2.0%) | |
Tiles | 207 (89.6%) | 87 (87.9%) | |
Concrete slab | 12 (5.2%) | 7 (7.1%) | |
Stones | 3 (1.3%) | 1 (1.0%) | |
Rooms | One room | 4 (1.7%) | 1 (1.0%) |
Two to three rooms | 54 (23.4%) | 24 (24.2%) | |
Four rooms and above | 173 (74.9%) | 74 (74.8%) | |
Cracks or openings | Yes | 128 (56.1%) | 51 (51.5%) |
No | 100 (43.9%) | 48 (48.5%) | |
Number of occupants | One | 10 (4.4%) | 4 (4.1%) |
Two to three | 57 (24.9%) | 22 (22.7%) | |
More than four | 162 (70.7%) | 71 (73.2%) | |
Ventilation | Daily | 173 (74.8%) | 83 (83.8%) |
More than once a week | 35 (15.2%) | 9 (9.1%) | |
Less than once a week | 11 (4.8%) | 1 (1.0%) | |
Only during certain activities | 11 (4.8%) | 4 (4.0%) | |
Do not ventilate at all | 11 (4.8%) | 4 (4.0%) | |
Temperature | 0.01–17.54 °C | 106 (45.9%) | 46 (46.5%) |
17.55 °C and above | 125 (54.1%) | 53 (52.5%) | |
Room tested | Living room | 189 (87.5%) | 80 (83.3%) |
Bedroom | 27 (12.5%) | 16 (16.7%) |
Housing Characteristics Variable | Bivariate Logistic Model OR (95% CI) ≥100 Bq/m3 | Multivariate Logistic Model OR (95% CI) ≥100 Bq/m3 | p Value |
---|---|---|---|
Dwelling location | 3.03 (0.20–0.54) | 4.23 (2.14–8.38) | 0.00 |
House age | 1.07 (0.80–1.43) | 1.19 (0.86–1.63) | 0.27 |
Roof type | 1.36 (0.97–1.91) | 0.89 (0.55–1.43) | 0.64 |
Floor type | 1.04 (0.73–1.50) | 0.95 (0.63–1.43) | 0.86 |
Number of rooms | 1.02 (0.62–1.68) | 1.17 (0.66–2.05) | 0.57 |
Cracks or openings | 1.20 (0.75–1.93) | 1.59 (0.94–2.70) | 0.08 |
Number of occupants | 1.09 (0.70–1.69) | 1.18 (0.74–1.87) | 0.46 |
Ventilation | 0.86 (0.63–1.17) | 1.15 (0.82–1.60) | 0.39 |
Smoking indoors | 1.24 (0.75–2.04) | 1.56 (0.91–2.70) | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mphaga, K.V.; Utembe, W.; Shezi, B.; Mbonane, T.P.; Rathebe, P.C. Unintended Consequences of Urban Expansion and Gold Mining: Elevated Indoor Radon Levels in Gauteng Communities’ Neighboring Gold Mine Tailings. Atmosphere 2024, 15, 881. https://doi.org/10.3390/atmos15080881
Mphaga KV, Utembe W, Shezi B, Mbonane TP, Rathebe PC. Unintended Consequences of Urban Expansion and Gold Mining: Elevated Indoor Radon Levels in Gauteng Communities’ Neighboring Gold Mine Tailings. Atmosphere. 2024; 15(8):881. https://doi.org/10.3390/atmos15080881
Chicago/Turabian StyleMphaga, Khathutshelo Vincent, Wells Utembe, Busisiwe Shezi, Thokozani P. Mbonane, and Phoka C. Rathebe. 2024. "Unintended Consequences of Urban Expansion and Gold Mining: Elevated Indoor Radon Levels in Gauteng Communities’ Neighboring Gold Mine Tailings" Atmosphere 15, no. 8: 881. https://doi.org/10.3390/atmos15080881
APA StyleMphaga, K. V., Utembe, W., Shezi, B., Mbonane, T. P., & Rathebe, P. C. (2024). Unintended Consequences of Urban Expansion and Gold Mining: Elevated Indoor Radon Levels in Gauteng Communities’ Neighboring Gold Mine Tailings. Atmosphere, 15(8), 881. https://doi.org/10.3390/atmos15080881