Particulate Matter in the Eastern Slovakia Region: Measurement, Monitoring, and Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensors
- 1.
- PM10 Košice-TUKE and PM10 SHMÚ-Štefánikova,
- 2.
- PM2.5 Košice-TUKE and PM2.5 SHMÚ-Štefánikova.
2.2. The Measuring Device
2.3. The Measuring Locations
2.4. Data Analysis
- x, y—measured parameters,
- μx, μy—mean of x and y,
- σx, σy—standard deviation of x and y,
- n—number of values in the set.
- r—Pearson’s correlation coefficient,
- p—p-value,
- X, Y—parameters, between which the correlation is calculated.
- IP—sub-index for pollutant p,
- CP—truncated concentration of pollutant p,
- BPHi—concentration breakpoint ≥ CP,
- BPLo—concentration breakpoint ≤ CP,
- IHi—AQI value corresponding to BPHi,
- ILo—AQI value corresponding to BPLo.
3. Results
3.1. Mass Concentration of PM
3.2. Typical Particle Size
3.3. Air Quality Index
3.4. Correlation between PM and Other Measured Parameters
4. Discussion
- Temperature: The negative correlation indicates that higher temperatures facilitate the dispersion of PM, leading to lower concentrations. Warmer temperatures enhance atmospheric mixing and vertical dispersion, reducing the accumulation of PM near the ground. Colder temperatures contribute to more stable atmospheric conditions, which limit dispersion and increase PM concentrations. From a long-term perspective, colder temperatures in autumn and winter coincide with heating season.
- Humidity: Increased humidity is more common and can lead to the formation of secondary particles through hygroscopic growth, elevating PM concentrations. Additionally, in Central Europe, there is a negative correlation between temperature and humidity [81], so the PM/humidity correlation is expected to have the opposite trend to the PM/temperature correlation.
- Pressure: The mixed correlations (leaning positive) suggest that both high and low pressures can influence PM, depending on the weather. High pressures can trap pollutants near the ground, leading to higher PM concentrations. In contrast, low pressures often bring turbulent weather and increased wind speeds, which can enhance pollutant dispersion and reduce PM levels. However, due to the less dynamic nature of pressure (as opposed to other meteorological factors), it may be worthwhile to investigate the correlation from a longer perspective in future research papers.
- Wind Speed: Higher wind speeds typically enhance the dispersion of pollutants and reduce their concentrations, which explains the negative correlation.
- VOC: The strong positive correlation indicates that sources emitting VOC, such as traffic and industrial activities, also significantly contribute to PM levels. VOC can undergo photochemical reactions in the atmosphere, leading to the formation of secondary organic aerosols, which are a component of PM.
- NOx: NOx is often associated with traffic emissions. The negative correlation suggests that other factors influencing PM concentrations prevail over NOx in the measuring locations.
- CO2: The positive correlation supports the notion that combustion processes are significant contributors to PM levels. Both pollutants are commonly emitted from sources such as residential heating and vehicular emissions. During colder months, the increased use of heating systems leads to higher emissions of both PM and CO2, explaining the observed positive correlation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10) Ozone, Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide. Available online: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1 (accessed on 17 May 2024).
- Tikader, M.; Mukhopadhyay, D.; Islam, M.Z. Role of Remote Sensing and GIS in mitigating Particulate Matters that intensify Air pollution in India: A Review. Bull. Environ. Pharmacol. Life Sci. 2023, 12, 402–418. [Google Scholar]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-Particulate Air Pollution and Life Expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef]
- Gehring, U.; Gruzieva, O.; Agius, R.M.; Beelen, R.; Custovic, A.; Cyrys, J.; Eeftens, M.; Flexeder, C.; Fuertes, E.; Heinrich, J.; et al. Air Pollution Exposure and Lung Function in Children: The ESCAPE Project. Environ. Health Perspect. 2013, 121, 1357–1364. [Google Scholar] [CrossRef]
- Götschi, T.; Heinrich, J.; Sunyer, J.; Künzli, N. Long-Term Effects of Ambient Air Pollution on Lung Function: A Review. Epidemiology 2008, 19, 690–701. [Google Scholar] [CrossRef]
- Dominici, F.; Wang, Y.; Correia, A.W.; Ezzati, M.; Pope, C.A., III; Dockerye, D.W. Chemical Composition of Fine Particulate Matter and Life Expectancy in 95 US Counties Between 2002 and 2007. Epidemology 2015, 26, 556–564. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Kyung, S.Y.; Jeong, S.H. Particulate-Matter Related Respiratory Diseases. Tuberc. Respir. Dis. 2020, 83, 116–121. [Google Scholar] [CrossRef]
- Brook, R.D. Cardiovascular Effects of Air Pollution. Clin. Sci. 2008, 115, 175–187. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The Health Effects of Ultrafine Particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [PubMed]
- Jo, E.J.; Lee, W.S.; Jo, H.Y.; Kim, C.H.; Eom, J.S.; Mok, J.H.; Kim, M.H.; Lee, K.; Kim, K.U.; Lee, M.K.; et al. Effects of particulate matter on respiratory disease and the impact of meteorologival factors in Busan, Korea. Respir. Med. 2017, 124, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 30 May 2022).
- Vignal, C.; Pichavant, M.; Alleman, L.Y.; Djouina, M.; Dingreville, F.; Perdrix, E.; Waxin, C.; Alami, A.O.; Gower-Rousseau, C.; Desreumaux, P.; et al. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part. Fibre Toxicol. 2017, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Pambianchi, E.; Pecorelli, A.; Valacchi, G. Gastrointestinal tissue as a “new” target of pollution exposure. IUBMB Life 2022, 74, 62–73. [Google Scholar] [CrossRef]
- Tianyu, L.; Yang, Y.; Zhiwei, S.; Junchao, D. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part. Fibre Toxicol. 2022, 19, 67. [Google Scholar] [CrossRef]
- Abhinandan, K.; Pallavi, S.; Saurabh, S.; Srivastava, A. Human health impacts attributable to inhalation exposure of particulate matter (PM10 and PM2.5) during the Holi festival. Inhal. Toxicol. 2024, 12, 228–239. [Google Scholar] [CrossRef]
- Guo, S.-E.; Chi, M.-C.; Hwang, S.-L.; Lin, C.-M.; Lin, Y.-C. Effects of Particulate Matter Education on Self-Care Knowledge Regarding Air Pollution, Symptom Changes, and Indoor Air Quality among Patients with Chronic Obstructive Pulmonary Diseased. Int. J. Environ. Res. Public Health 2020, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Šarkan, B.; Gnap, J.; Loman, M.; Harantová, V. Examining the Amount of Particulate Matter (PM) Emissions in Urban Areas. Appl. Sci. 2023, 13, 1845. [Google Scholar] [CrossRef]
- Oguge, O.; Nyamondo, J.; Adera, N.; Okolla, L.; Okoth, B.; Anyango, S.; Afulo, A.; Kumie, A.; Samet, J.; Berhane, K. Fine particulate matter air pollution and health implications for Nairobi, Kenya. Environ. Epidemiol. 2024, 8, e307. [Google Scholar] [CrossRef]
- Permana, B.H.; Thiravetyan, P.; Treesubsuntorn, C. Exogenous of different elicitors: Proline and ornithine on Sansevieria trifasciata under particulate matter (PM) and volatile organic compounds (VOC). Environ. Sci. Pollut. Res. 2024, 31, 34028–34037. [Google Scholar] [CrossRef]
- Hester, R.E. Airborne Particulate Matter: Sources, Atmospheric Processes and Health; Royal Society of Chemistry: Cambridge, UK, 2016. [Google Scholar]
- Air Pollution in the Slovak Republic. 2021. Available online: https://www.shmu.sk/File/oko/rocenky/2021_Sprava_o_KO_v_SR_v2.pdf (accessed on 24 May 2024). (In Slovak).
- Air Pollution in the Slovak Republic. 2022. Available online: https://www.shmu.sk/File/oko/rocenky/2022_Sprava_o_KO_SR_v2.pdf (accessed on 24 May 2024). (In Slovak).
- Annual Reports on Air Quality in Slovakia. Available online: https://www.shmu.sk/sk/?page=1&id=oko_roc_s (accessed on 15 June 2024). (In Slovak).
- Air Pollution in the Slovak Republic 2022: Air Quality Assessment in Agglomeration Bratislava and Zone Bratislava Region. Available online: https://www.shmu.sk/File/oko/rocenky/2022_Priloha_BA_v1.pdf (accessed on 24 May 2024). (In Slovak).
- Air Pollution in the Slovak Republic 2021: Air Quality Assessment in Agglomeration Bratislava and Zone Bratislava Region. Available online: https://www.shmu.sk/File/oko/rocenky/2021_Priloha_BA_v2.pdf (accessed on 24 May 2024). (In Slovak).
- Air Pollution in the Slovak Republic 2022: Air Quality Assessment in Agglomeration Košice and Zone Košice Region. Available online: https://www.shmu.sk/File/oko/rocenky/2022_Priloha_KE_v1.pdf (accessed on 24 May 2024). (In Slovak).
- Air Pollution in the Slovak Republic 2021: Air Quality Assessment in Agglomeration Košice and Zone Košice Region. Available online: https://www.shmu.sk/File/oko/rocenky/2021_Priloha_KE_v2.pdf (accessed on 24 May 2024). (In Slovak).
- Emission and Fuel Consumptions Inventory for Medium and Large Stationary Sources in Slovak Republic. Available online: https://neisrep.shmu.sk/main_gui.php (accessed on 24 May 2024). (In Slovak).
- Kibble, A.; Harrison, R. Point sources of air pollution. Occup. Med. 2005, 55, 425–431. [Google Scholar] [CrossRef]
- World’s Air Pollution: Real-Time Air Quality Index. Available online: https://waqi.info (accessed on 15 May 2024).
- World-Wide Air Quality Monitoring Data Coverage. Available online: https://aqicn.org/sources/ (accessed on 17 June 2024).
- Air Quality Forecast in South America. Available online: https://aqicn.org/faq/2015-05-30/air-quality-forecast-in-south-america/ (accessed on 17 June 2024).
- Air Quality Forecasting—How Accurate Can It Be? Available online: https://aqicn.org/faq/2015-03-23/air-quality-forecasting-how-accurate-can-it-be/ (accessed on 17 June 2024).
- Air Quality Forecasting in Northern India. Available online: https://aqicn.org/faq/2016-02-28/air-quality-forecasting-in-northern-india/ (accessed on 17 June 2024).
- Yawootti, A.; Wimonthanasit, P.; ChaithanuSate, K.; Sampattagul, S. Comparison of Particulate Matter Monitoring Using Beta Attenuation Monitor and Light Scattering Method in Bangkok Thailand. In Proceedings of the 33rd International Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Bangkok, Thailand, 4–7 July 2018; pp. 498–501. [Google Scholar]
- Yi, E.E.P.N.; Nway, N.C.; Aung, W.Y.; Thant, Z.; Wai, T.H.; Hlain, K.K.; Maung, C.; Yagishita, M.; Ishigaki, Y.; Win-Shwe, T.T.; et al. Preliminary monitoring of concentration of particulate matter (PM2.5) in seven townships of Yangon City, Myanmar. Environ. Health Prev. Med. 2018, 23, 53. [Google Scholar] [CrossRef]
- Wang, W.C.V.; Lin, T.H.; Liu, C.H.; Su, C.W.; Lung, S.C.C. Fusion of environmental sensing on PM2.5 and deep learning on vehicle detecting for acquiring roadside PM2.5 concentration increments. Sensors 2020, 20, 4679. [Google Scholar] [CrossRef] [PubMed]
- Velea, L.; Udriștioiu, M.T.; Puiu, S.; Motișan, R.; Amarie, D. A Community-Based Sensor Network for Monitoring the Air Quality in Urban Romania. Atmosphere 2023, 14, 840. [Google Scholar] [CrossRef]
- Alonso-Pérez, S.; López-Solano, J. Long-Term Analysis of Aerosol Concentrations Using a Low-Cost Sensor: Monitoring African Dust Outbreaks in a Suburban Environment in the Canary Islands. Sensors 2023, 23, 7768. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Byun, G.; Lee, J.-T. The Effects of Particulate Matter Alert on Urban Park Visitation in Seoul, Korea: Using Segmented Regression. Int. J. Environ. Res. Public Health 2022, 19, 15372. [Google Scholar] [CrossRef] [PubMed]
- Shihab, A.S. Meteorological effects on particulate matter PM10, PM2.5 concentrations with diurnal and seasonal variations in cities neighboring desert lands. Nat. Hazards 2024. [Google Scholar] [CrossRef]
- Volná, V.; Hladký, D.; Seibert, R.; Krejčí, B. Transboundary Air Pollution Transport of PM10 and Benzo[a]pyrene in the Czech–Polish Border Region. Atmosphere 2022, 13, 341. [Google Scholar] [CrossRef]
- Niedobová, B.; Badawy, W.M.; Dmitriev, A.Y.; Jančík, P.; Chepurchenko, O.E.; Bulavin, M.V.; Belova, M.O. Neutron Activation Analysis of PM10 for Air Quality of an Industrial Region in the Czech Republic: A Case Study. Atmosphere 2022, 13, 479. [Google Scholar] [CrossRef]
- Zareba, M.; Dlugosz, H.; Danek, T.; Weglinska, E. Big-Data-Driven Machine Learning for Enhancing Spatiotemporal Air Pollution Pattern Analysis. Atmosphere 2023, 14, 760. [Google Scholar] [CrossRef]
- Zareba, M.; Cogiel, S.; Danek, T.; Weglinska, E. Machine Learning Techniques for Spatio-Temporal Air Pollution Prediction to Drive Sustainable Urban Development in the Era of Energy and Data Transformation. Energies 2024, 17, 2738. [Google Scholar] [CrossRef]
- Harr, L.; Sinsel, T.; Simon, H.; Esper, J. Seasonal Changes in Urban PM2.5 Hotspots and Sources from Low-Cost Sensors. Atmosphere 2022, 13, 694. [Google Scholar] [CrossRef]
- Makeš, O.; Schwarz, J.; Vodička, P.; Engling, G.; Ždímal, V. Determination of PM1 Sources at a Prague Background Site during the 2012–2013 Period Using PMF Analysis of Combined Aerosol Mass Spectra. Atmosphere 2022, 13, 20. [Google Scholar] [CrossRef]
- Linda, J.; Pospíšil, J.; Köbölová, K.; Ličbinský, R.; Huzlík, J.; Karel, J. Conditions Affecting Wind-Induced PM10 Resuspension as a Persistent Source of Pollution for the Future City Environment. Sustainability 2022, 14, 9186. [Google Scholar] [CrossRef]
- Bílek, J.; Bílek, O.; Maršolek, P.; Buček, P. Ambient Air QualityMeasurement with Low-Cost Optical and Electrochemical Sensors: An Evaluation of Continuous Year-Long Operation. Environments 2021, 8, 114. [Google Scholar] [CrossRef]
- Hladký, D.; Krejčí, B. Identification of Causes of Air Pollution in a Specific Industrial Part of the Czech City of Ostrava in Central Europe. Atmosphere 2024, 15, 177. [Google Scholar] [CrossRef]
- Emissions Report. 2024. Available online: https://oeab.shmu.sk/app/cmsFile.php?disposition=i&ID=238%27,%20%27Ro%C4%8Denka%202024%27 (accessed on 25 May 2024). (In Slovak).
- Kirešová, S.; Guzan, M.; Galajda, P. Measuring Particulate Matter (PM) using SPS30. In 32nd International Conference Radioelektronika; IEEE: Košice, Slovakia, 2022; pp. 160–165. [Google Scholar]
- Kirešová, S.; Guzan, M. Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng 2022, 3, 343–363. [Google Scholar] [CrossRef]
- Kirešová, S.; Guzan, M.; Sobota, B. Using Low-Cost Sensors for Measuring and Monitoring Particulate Matter with a Focus on Fine and Ultrafine Particles. Atmosphere 2023, 14, 324. [Google Scholar] [CrossRef]
- Kirešová, S.; Guzan, M.; Rusyn, V. Particulate Matter PM2.5 and PM10 and Its Impact on Air Quality in Urban and Rural Areas. In Proceedings of the ITTAP’2022: 2nd International Workshop on Information Technologies: Theoretical and Applied Problems, Ternopil, Ukraine, 22–24 November 2022; Volume 3309, pp. 329–337. [Google Scholar]
- Kirešová, S.; Rusyn, V.; Guzan, M.; Vorobets, G.; Sobota, B.; Vorobets, O. Utilizing low-cost optical sensor for the measurement of particulate matter and calculating Pearson’s correlation coefficient. In Proceedings of the SPIE 12938, Sixteenth International Conference on Correlation Optics, Chernivtsi, Ukraine, 18–21 September 2023. [Google Scholar] [CrossRef]
- Khavas, Z.R. A Review on trust in human-robot interaction. arXiv 2021, arXiv:2105.10045v1. [Google Scholar] [CrossRef]
- Lasota, P.A.; Song, T.; Shah, J.A. A Survey of Methods for Safe Human-Robot Interaction. Now Found. Trends 2017, 5, 261–349. [Google Scholar] [CrossRef]
- Sobota, B.; Guzan, M.; Kírešová, S.; Korečko, Š. Towards Real-World Data Supported XR Training of Trustworthy Human-Robot Interaction in a Risky Environment. In Proceedings of the 2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI), Stará Lesná, Slovakia, 25–27 January 2024; pp. 365–369, ISBN 979-8-3503-1720-6. [Google Scholar]
- Alami, R.; Albu-Schaeffer, A.; Bicchi, A.; Bischoff, R.; Chatila, R.; De Luca, A.; De Santis, A.; Giralt, G.; Guiochet, J.; Hirzinger, G.; et al. Safe and dependable physical human-robot interaction in anthropic domains: State of the art and challenges. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006. [Google Scholar]
- Datasheet SEN5x: Environmental Sensor Node for HVAC and Air Quality Applications. Available online: https://sensirion.com/media/documents/6791EFA0/62A1F68F/Sensirion_Datasheet_Environmental_Node_SEN5x.pdf (accessed on 20 May 2024).
- Kirešová, S.; Guzan, M. Measurement of Particulate Matter: Principles and Options of Measurement at Present. Acta Electrotech. Et Inform. 2022, 22, 8–18. [Google Scholar] [CrossRef]
- MS5611-01BA03: Barometric Pressure Sensor with Stainless Steel Cap. Available online: https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7FMS5611-01BA03%7FB3%7Fpdf%7FEnglish%7FENG_DS_MS5611-01BA03_B3.pdf%7FCAT-BLPS0036 (accessed on 20 May 2024).
- SCD4x: Breaking the Size Barrier in CO2 Sensing. Available online: https://sensirion.com/media/documents/48C4B7FB/64C134E7/Sensirion_SCD4x_Datasheet.pdf (accessed on 20 May 2024).
- Weather Sensor Assembly p/n 80422. Available online: https://www.argentdata.com/files/80422_datasheet.pdf (accessed on 20 May 2024).
- Correlation. Available online: https://statistikapspp.sk/korelacia/ (accessed on 17 May 2024). (In Slovak).
- Munk, M. Computer Data Analysis; Constantine the Philosopher University in Nitra: Nitra, Slovakia, 2011; ISBN 978-80-8094-895-5. (In Slovak) [Google Scholar]
- Kirešová, S.; Guzan, M.; Sobota, B.; Fedák, V.; Bača, R.; Bakši, D. The Use of Time Series Database in Measurements. In Proceedings of the International Conference on Electrical Drives and Power Electronics (EDPE), The High Tatras, Slovakia, 25–27 September 2023; pp. 1–8. [Google Scholar] [CrossRef]
- The Biggest Sources of Air Pollution in the Slovak Republic. Available online: http://www.air.sk/emissions.php (accessed on 21 May 2024). (In Slovak).
- Correlation coefficient—MATLAB. Available online: https://www.mathworks.com/help/matlab/ref/corrcoef.html (accessed on 16 May 2024).
- Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). Available online: https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf (accessed on 17 May 2024).
- Final Updates to the Air Quality Index (AQI) for Particulate Matter Fact Sheet and Common Questions. Available online: https://www.epa.gov/system/files/documents/2024-02/pm-naaqs-air-quality-index-fact-sheet.pdf (accessed on 15 June 2024).
- Liu, H.; Li, Q.; Yu, D.; Gu, Y. Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl. Sci. 2019, 9, 4069. [Google Scholar] [CrossRef]
- Hien, P.; Bac, V.; Tham, H.; Nhan, D.; Vinh, L. Influence of meteorological conditions on PM2.5 and PM10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos. Environ. 2002, 36, 3473–3484. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Lin, Y.; Wang, Q.; Fu, J.S.; Zhang, R.; Li, J.; Deng, C.; Fu, Q. Impact of anthropogenic emission on air quality over a megacity—Revealed from an intensive atmospheric campaign during the Chinese Spring Festival. Atmos. Chem. Phys. 2012, 12, 11631–11645. [Google Scholar] [CrossRef]
- Xing, Q.; Sun, M. Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere 2022, 13, 1120. [Google Scholar] [CrossRef]
- Kazi, Z.; Filip, S.; Kazi, L. Predicting PM2.5, PM10, SO2, NO2, NO and CO Air Pollutant Values with Linear Regression in R Language. Appl. Sci. 2023, 13, 3617. [Google Scholar] [CrossRef]
- Dulac, F.; Hamonou, E.; Sauvage, S.; Kanakidou, M.; Beekmann, M.; Desboeufs, K.; Formenti, P.; Becagli, S.; Di Biagio, C.; Borbon, A.; et al. Summary of recent progress and recommendations for future research regarding air pollution sources, processes, and impacts in the Mediterranean Region. Environ. Monit. Assess. 2022, 543–571. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Nieto, R.; Gimeno, L.; Azorin-Molina, C.; Drumond, A.; El Kenawy, A.; Dominguez-Castro, F.; Tomas-Burguera, M.; Peña-Gallardo, M. Recent changes of relative humidity: Regional connections with land and ocean processes. Earth Syst. Dyn. 2018, 9, 915–937. [Google Scholar] [CrossRef]
Sensor | Parameter | Accuracy |
---|---|---|
SEN5x | PM1, PM2.5 | ±(5 µg/m3 + 5%) a), ± 10% b) |
PM4, PM10 | ±25 µg/m3 a), ± 25% b) | |
Temperature | ±0.7 °C | |
Humidity | ±6% | |
Additional T-dependent mass precision limit drift | ±0.5%/°C | |
MS5611 | Pressure | ±2.5 hPa |
Temperature | ±0.8 °C | |
SCD41 | CO2 | ±(50 ppm + 2.5%) c), ±(50 ppm + 3%) d), ±(40 ppm + 5%) e) |
Temperature | ±9% | |
Humidity | ±1.5 °C |
Location | Type | Placement | Surroundings | Point Sources | Start | End |
---|---|---|---|---|---|---|
Habura | rural | outside, on a windowsill, 1st floor of a family house | other family houses, low-traffic side road (10 m), forest (200 m) | 7.5 km (Bytenerg, Medzilaborce) | 15/10/22 | 31/12/23 * |
Snina | urban | balcony, 3rd floor of an apartment block | main road (20 m) | 2 km (BEKY, Snina) | 28/02/23 | 31/12/23 * |
Michalovce | suburban | outside of a family house | other family houses, side roads (40 m), main road (120 m) | 1.8 km (Syráreň Bel, Michalovce) | 04/10/23 | 31/12/23 * |
Prešov | suburban | outside of a family house | other family houses, main road (30 m) | 8 km (Lomy, Fintice) | 16/10/22 | 31/12/23 * |
Fintice | rural | outside of a family house | other family houses, main road (40 m) | 1 km (Lomy, Fintice) | 01/03/23 | 31/12/23 * |
SNV | suburban | in the garden, outside of a family house (10 m) | other family houses, side road (20 m), forest (50 m) | - | 01/09/23 | 31/12/23 * |
Iliašovce | rural | balcony, 1st floor of a family house | other family houses, side road (10 m), main road (40 m) | - | 01/09/23 | 31/12/23 * |
Henclová | rural | outside of the family house | other family houses, low-traffic road (5 m), forest (80 m) | - | 03/02/23 | 31/12/23 * |
Košice-TUKE | urban | outside, on a windowsill, 1st floor of a university building | low-traffic side road, university campus, park behind which there is main road (200 m) | 11 km (U. S. Steel, Košice-Šaca) | 01/10/22 | 31/12/23 * |
Košice-West | urban | balcony, 5th floor of an apartment block | facing toward a park, away from main road | 8.5 km(U. S. Steel, Košice-Šaca) | 07/10/22 | 31/12/23 * |
Zdoba | rural | outside of a family house | other family houses, driveway (50 m) | 11.8 km (U. S. Steel, Košice-Šaca) | 13/11/22 | 30/12/22 |
Valaliky | rural | outside of a family house | other family houses, side road (40 m) | 6.4 km (U. S. Steel, Košice-Šaca) | 08/11/22 | 30/01/23 |
Füzérkomlós | rural | in the garden, outside of a family house (35 m) | other family houses, side road (50 m) | - | 21/11/22 | 31/12/23 * |
Location | PM a) | VOC Index | NOx Index | CO2 | Temperature | RH | Pressure | WS |
---|---|---|---|---|---|---|---|---|
Habura b) | X | X | - | - | X | X | X | - |
Snina b) | X | X | - | - | X | X | X | - |
Michalovce b) | X | X | - | - | X | X | X | - |
Prešov b) | X | X | - | - | X | X | X | - |
Fintice b) | X | X | - | - | X | X | X | - |
SNV c) | X | X | X | - | X | X | X | - |
Iliašovce b) | X | X | - | - | X | X | X | - |
Henclová b) | X | X | - | - | X | X | X | - |
Košice-TUKE c) | X | X | X | X | X | X | X | X |
Košice-West c) | X | X | X | - | X | X | X | - |
Zdoba b) | X | X | - | - | X | X | X | X |
Valaliky b) | X | X | - | - | X | X | X | X |
Füzérkomlós c) | X | X | X | X | X | X | X | X |
Air Quality | AQI | PM2.5 (μg/m3) (before 7 February 2024) | PM2.5 (μg/m3) (after 7 February 2024) | PM10 (μg/m3) |
---|---|---|---|---|
Good | 0–50 | 0.0–12.0 | 0.0–9.0 | 0–54 |
Moderate | 51–100 | 21.1–35.4 | 9.1–35.4 | 55–154 |
Unhealthy for Sensitive Groups * | 100–150 | 35.5–55.4 | 35.5–55.4 | 155–254 |
Unhealthy | 150–200 | 55.5–150.4 | 55.5–125.4 | 255–354 |
Very Unhealthy | 200–300 | 150.5–250.4 | 125.5–225.4 | 355–424 |
Hazardous | 300–500 | 250.4–500.4 | 225.5+ | 425–604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirešová, S.; Guzan, M.; Sobota, B.; Vince, T.; Korečko, Š.; Dziak, J.; Molnár, J.; Jacko, P.; Bereš, M. Particulate Matter in the Eastern Slovakia Region: Measurement, Monitoring, and Evaluation. Atmosphere 2024, 15, 802. https://doi.org/10.3390/atmos15070802
Kirešová S, Guzan M, Sobota B, Vince T, Korečko Š, Dziak J, Molnár J, Jacko P, Bereš M. Particulate Matter in the Eastern Slovakia Region: Measurement, Monitoring, and Evaluation. Atmosphere. 2024; 15(7):802. https://doi.org/10.3390/atmos15070802
Chicago/Turabian StyleKirešová, Simona, Milan Guzan, Branislav Sobota, Tibor Vince, Štefan Korečko, Jozef Dziak, Ján Molnár, Patrik Jacko, and Matej Bereš. 2024. "Particulate Matter in the Eastern Slovakia Region: Measurement, Monitoring, and Evaluation" Atmosphere 15, no. 7: 802. https://doi.org/10.3390/atmos15070802
APA StyleKirešová, S., Guzan, M., Sobota, B., Vince, T., Korečko, Š., Dziak, J., Molnár, J., Jacko, P., & Bereš, M. (2024). Particulate Matter in the Eastern Slovakia Region: Measurement, Monitoring, and Evaluation. Atmosphere, 15(7), 802. https://doi.org/10.3390/atmos15070802