Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai
Abstract
:1. Introduction
2. Methods
2.1. Measurement Site and Instrumentation
2.2. ISORROPIA II
3. Results and Discussion
3.1. Long-Term Variations in the Nitrate-to-Sulfate Ratio
3.2. Variation Trend in Aerosol pH
3.2.1. Annual Variations in Aerosol pH
3.2.2. Seasonal Variations in Aerosol pH
3.2.3. Diurnal Variation in Aerosol pH
3.3. Quantitative Analysis of pH Drivers
3.3.1. Effect of Alkaline Buffers on Interannual pH Variations
3.3.2. Effects of Meteorological Parameters and Chemical Composition on Diurnal pH Variations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karydis, V.A.; Tsimpidi, A.P.; Pozzer, A.; Lelieveld, J. How alkaline compounds control atmospheric aerosol particle acidity. Atmos. Chem. Phys. 2021, 21, 14983–15001. [Google Scholar] [CrossRef]
- Wang, W.; Liu, M.; Wang, T.; Song, Y.; Zhou, L.; Cao, J.; Hu, J.; Tang, G.; Chen, Z.; Li, Z.; et al. Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nat. Commun. 2021, 12, 1993. [Google Scholar] [CrossRef]
- Zhang, S.; Li, D.; Ge, S.; Wu, C.; Xu, X.; Liu, X.; Li, R.; Zhang, F.; Wang, G. Elucidating the Mechanism on the Transition-Metal Ion-Synergetic-Catalyzed Oxidation of SO2 with Implications for Sulfate Formation in Beijing Haze. Environ. Sci. Technol. 2024, 58, 2912–2921. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Meskhidze, N. Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophys. Res. Lett. 2003, 30, 2085. [Google Scholar] [CrossRef]
- Oakes, M.; Ingall, E.D.; Lai, B.; Shafer, M.M.; Hays, M.D.; Liu, Z.G.; Russell, A.G.; Weber, R.J. Iron solubility related to particle sulfur content in source emission and ambient fine particles. Environ. Sci. Technol. 2012, 46, 6637–6644. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Guo, H.; Zeng, L.; Verma, V.; Nenes, A.; Weber, R.J. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environ. Sci. Technol. 2017, 51, 2611–2620. [Google Scholar] [CrossRef]
- Song, X.; Wu, D.; Chen, X.; Ma, Z.; Li, Q.; Chen, J. Toxic Potencies of Particulate Matter from Typical Industrial Plants Mediated with Acidity via Metal Dissolution. Environ. Sci. Technol. 2024, 58, 6736–6743. [Google Scholar] [CrossRef]
- Jang, M.; Czoschke, N.M.; Lee, S.; Kamens, R.M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, J.; Froyd, K.D.; Roberts, J.M.; Veres, P.R.; Hayes, P.L.; Jimenez, J.L.; Nenes, A.; Weber, R.J. Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmos. Chem. Phys. 2017, 17, 5703–5719. [Google Scholar] [CrossRef]
- Yao, Y.; Ye, X.; Chen, Y.; Zhou, Y.; Lv, Z.; Wang, R.; Zheng, H.; Chen, J. Gas-particle partitioning of low-molecular-weight organic acids in suburban Shanghai: Insight into measured Henry’s law constants dependent on relative humidity. Sci. Total Environ. 2024, 939, 173636. [Google Scholar] [CrossRef]
- Ding, A.J.; Huang, X.; Nie, W.; Chi, X.G.; Xu, Z.; Zheng, L.F.; Xu, Z.N.; Xie, Y.N.; Qi, X.M.; Shen, Y.C.; et al. Significant reduction of PM2.5 in eastern China due to regional-scale emission control: Evidence from SORPES in 2011–2018. Atmos. Chem. Phys. 2019, 19, 11791–11801. [Google Scholar] [CrossRef]
- Wang, Y.H.; Gao, W.K.; Wang, S.; Song, T.; Gong, Z.Y.; Ji, D.S.; Wang, L.L.; Liu, Z.R.; Tang, G.Q.; Huo, Y.F.; et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, J.; Che, F.; Wang, Y.; Lin, P.; Zhang, Y. Decade-long trends in chemical component properties of PM2.5 in Beijing, China (2011−2020). Sci. Total Environ. 2022, 832, 154664. [Google Scholar] [CrossRef]
- Liu, M.; Song, Y.; Zhou, T.; Xu, Z.; Yan, C.; Zheng, M.; Wu, Z.; Hu, M.; Wu, Y.; Zhu, T. Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett. 2017, 44, 5213–5221. [Google Scholar] [CrossRef]
- Tao, Y.; Murphy, J.G. The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmos. Chem. Phys. 2019, 19, 9309–9320. [Google Scholar] [CrossRef]
- Shi, G.; Xu, J.; Peng, X.; Xiao, Z.; Chen, K.; Tian, Y.; Guan, X.; Feng, Y.; Yu, H.; Nenes, A.; et al. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environ. Sci. Technol. 2017, 51, 4289–4296. [Google Scholar] [CrossRef]
- Sharma, B.; Jia, S.G.; Polana, A.J.; Ahmed, M.S.; Haque, R.R.; Singh, S.; Mao, J.Y.; Sarkar, S. Seasonal variations in aerosol acidity and its driving factors in the eastern Indo-Gangetic Plain: A quantitative analysis. Chemosphere 2022, 305, 135490. [Google Scholar] [CrossRef]
- Fu, Z.H.; Cheng, L.B.; Ye, X.N.; Ma, Z.; Wang, R.Y.; Duan, Y.; Juntao, H.; Chen, J.M. Characteristics of aerosol chemistry and acidity in Shanghai after PM2.5 satisfied national guideline: Insight into future emission control. Sci. Total Environ. 2022, 827, 154319. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, G.; Wang, X.; Chen, J.; Chen, Y.; Tang, G.; Wang, L.; Ge, S.; Xue, G.; Wang, Y.; et al. Nitrate-dominated PM2.5 and elevation of particle pH observed in urban Beijing during the winter of 2017. Atmos. Chem. Phys. 2020, 20, 5019–5033. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, P.; Su, J.; Dong, Q.; Du, X.; Zhang, Y. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 2019, 19, 7939–7954. [Google Scholar] [CrossRef]
- Fu, X.; Guo, H.; Wang, X.; Ding, X.; He, Q.; Liu, T.; Zhang, Z. PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007–2012. J. Hazard. Mater. 2015, 286, 484–492. [Google Scholar] [CrossRef]
- Song, S.J.; Nenes, A.; Gao, M.; Zhang, Y.Z.; Liu, P.F.; Shao, J.Y.; Ye, D.C.; Xu, W.Q.; Lei, L.; Sun, Y.L.; et al. Thermodynamic modeling suggests declines in water uptake and acidity of inorganic aerosols in Beijing winter haze events during 2014/2015–2018/2019. Environ. Sci. Technol. Lett. 2019, 6, 752–760. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, G.; Wang, H.; Qiao, L.; Zhu, S.; Huang, D.; An, J.; Lou, S.; Tao, S.; Wang, Q.; et al. Long-term trends and drivers of aerosol pH in eastern China. Atmos. Chem. Phys. 2022, 22, 13833–13844. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, Z.; Chang, Y.; Zhang, Y.; Wang, X.; Yang, X. Source assessment of atmospheric fine particulate matter in a Chinese megacity: Insights from long-term, high-time resolution chemical composition measurements from Shanghai flagship monitoring supersite. Chemosphere 2020, 251, 126598. [Google Scholar] [CrossRef]
- Tao, Y.; Ye, X.; Jiang, S.; Yang, X.; Chen, J.; Xie, Y.; Wang, R. Effects of amines on particle growth observed in new particle formation events. J. Geophys. Res. Atmos. 2016, 121, 324–335. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Hennigan, C.J.; Izumi, J.; Sullivan, A.P.; Weber, R.J.; Nenes, A. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 2015, 15, 2775–2790. [Google Scholar] [CrossRef]
- Song, S.; Gao, M.; Xu, W.; Shao, J.; Shi, G.; Wang, S.; Wang, Y.; Sun, Y.; McElroy, M.B. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 2018, 18, 7423–7438. [Google Scholar] [CrossRef]
- Malm, W.C.; Day, D.E. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ. 2001, 35, 2845–2860. [Google Scholar] [CrossRef]
- Ye, S.; Duan, Y.; Li, Q. The trend of acidity and ion compositions of precipitation during 2000–2019 in Shanghai. Environ. Chem. 2021, 40, 3672–3680. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Levy Zamora, M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef]
- Guo, H.; Sullivan, A.P.; Campuzano-Jost, P.; Schroder, J.C.; Lopez-Hilfiker, F.D.; Dibb, J.E.; Jimenez, J.L.; Thornton, J.A.; Brown, S.S.; Nenes, A.; et al. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. J. Geophys. Res. Atmos. 2016, 121, 10,355–10,376. [Google Scholar] [CrossRef]
- Tao, M.M.; Xu, Y.; Gong, J.X.; Liu, Q.Y. Estimation of aerosol acidity at a suburban site of Nanjing using machine learning method. J. Atmos. Chem. 2022, 79, 141–151. [Google Scholar] [CrossRef]
- Zheng, M.M.; Xu, K.; Yuan, L.X.; Chen, N.; Cao, M.H. Fine particle pH and its impact on PM2.5 control in a megacity of central China. Aerosol Air Qual. Res. 2022, 22, 210394. [Google Scholar] [CrossRef]
- Jia, S.G.; Chen, W.H.; Zhang, Q.; Krishnan, P.; Mao, J.Y.; Zhong, B.Q.; Huang, M.J.; Fan, Q.; Zhang, J.P.; Chang, M.; et al. A quantitative analysis of the driving factors affecting seasonal variation of aerosol pH in Guangzhou, China. Sci. Total Environ. 2020, 725, 138228. [Google Scholar] [CrossRef]
- Guo, H.; Xu, L.; Bougiatioti, A.; Cerully, K.M.; Capps, S.L.; Hite, J.R.; Carlton, A.G.; Lee, S.H.; Bergin, M.H.; Ng, N.L.; et al. Fine-particle water and pH in the southeastern United States. Atmos. Chem. Phys. 2015, 15, 5211–5228. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Nikolaou, P.; Stavroulas, I.; Kouvarakis, G.; Weber, R.; Nenes, A.; Kanakidou, M.; Mihalopoulos, N. Particle water and pH in the eastern Mediterranean: Source variability and implications for nutrient availability. Atmos. Chem. Phys. 2016, 16, 4579–4591. [Google Scholar] [CrossRef]
- Murphy, J.G.; Gregoire, P.K.; Tevlin, A.G.; Wentworth, G.R.; Ellis, R.A.; Markovic, M.Z.; VandenBoer, T.C. Observational constraints on particle acidity using measurements and modelling of particles and gases. Faraday Discuss. 2017, 200, 379–395. [Google Scholar] [CrossRef]
- Guo, H.Y.; Otjes, R.; Schlag, P.; Kiendler-Scharr, A.; Nenes, A.; Weber, R.J. Effectiveness of ammonia reduction on control of fine particle nitrate. Atmos. Chem. Phys. 2018, 18, 12241–12256. [Google Scholar] [CrossRef]
- Paglione, M.; Decesari, S.; Rinaldi, M.; Tarozzi, L.; Manarini, F.; Gilardoni, S.; Facchini, M.C.; Fuzzi, S.; Bacco, D.; Trentini, A.; et al. Historical Changes in Seasonal Aerosol Acidity in the Po Valley (Italy) as Inferred from Fog Water and Aerosol Measurements. Environ. Sci. Technol. 2021, 55, 7307–7315. [Google Scholar] [CrossRef]
- Masiol, M.; Squizzato, S.; Formenton, G.; Khan, M.B.; Hopke, P.K.; Nenes, A.; Pandis, S.N.; Tositti, L.; Benetello, F.; Visin, F.; et al. Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley. Sci. Total Environ. 2020, 704, 135287. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
No. | Location | SO42− | NO3− | NH4+ | NH3 | pH | Reference |
---|---|---|---|---|---|---|---|
1 | Shanghai, CN | 8.3 ± 6.6 | 8.5 ± 10.8 | 5.6 ± 5.7 | 5.4 ± 3.7 | 3.1 ± 0.6 | This study |
2 | Nanjing, CN | 23.2 ± 0.7 | 16.9 ± 1.7 | 5.3 ± 0.6 | / | 3.3 ± 0.1 | [35] |
3 | Wuhan, CN | 10.1 ± 6.1 | 10.2 ± 9.2 | 8.0 ± 5.9 | 9.9 ± 5.4 | 3.0 ± 1.0 | [36] |
4 | Guangzhou, CN | 9.9 ± 5.9 | 4.0 ± 4.3 | 3.8 ± 3.0 | 8.7 ± 5.8 | 2.5 ± 0.7 | [37] |
5 | Beijing, CN | 7.7 ± 7.5 | 13.6 ± 16.1 | 7.4 ± 7.8 | 18.3 ± 7.8 | 4.2 ± 0.4 | [22] |
6 | Tianjin, CN | 8.9 ± 1.3 | 10.7 ± 2.8 | 6.9 ± 1.8 | / | 4.9 ± 1.4 | [18] |
7 | Alabama, US | 1.7 ± 1.2 | 0.1 ± 0.1 | 0.5 ± 0.3 | 0.4 ± 0.3 | 1.0 ± 0.5 | [38] |
8 | Pasadena, US | 1.9 ± 0.7 | 3.7 ± 1.5 | 1.8 ± 0.7 | 0.8 ± 0.6 | 2.7 ± 0.3 | [11] |
9 | Crete, GR | 2.3 ± 1.6 | 0.1 ± 0.1 | 0.8 ± 0.6 | / | 1.3 ± 1.1 | [39] |
10 | Harrow, CA | 7.2 ± 1.1 | 0.5 ± 0.4 | 2.0 ± 0.2 | 1.7 ± 0.2 | 2.5 ± 1.5 | [40] |
11 | Indo-Gangetic Plain, India | 18.6 ± 5.8 | 1.1 ± 0.8 | 20.3 ± 5.2 | / | 3.0 ± 0.2 | [19] |
12 | Cabauw, NL | 2.2 ± 0.3 | 4.3 ± 1.2 | 1.8 ± 0.3 | 7.4 ± 2.8 | 3.6 ± 0.3 | [41] |
13 | Po Valley, Italy | 1.8 ± 1.1 | 8.2 ± 5.9 | 3.3 ± 2.0 | / | 3.7 ± 0.6 | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Ye, X.; Huang, W.; Yao, Y.; Duan, Y. Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai. Atmosphere 2024, 15, 1004. https://doi.org/10.3390/atmos15081004
Lv Z, Ye X, Huang W, Yao Y, Duan Y. Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai. Atmosphere. 2024; 15(8):1004. https://doi.org/10.3390/atmos15081004
Chicago/Turabian StyleLv, Zhixiao, Xingnan Ye, Weijie Huang, Yinghui Yao, and Yusen Duan. 2024. "Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai" Atmosphere 15, no. 8: 1004. https://doi.org/10.3390/atmos15081004
APA StyleLv, Z., Ye, X., Huang, W., Yao, Y., & Duan, Y. (2024). Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai. Atmosphere, 15(8), 1004. https://doi.org/10.3390/atmos15081004