Implication of Subsequent Leaders in the Gigantic Jet
Abstract
:1. Introduction
2. Instruments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasko, V.P.; Stanley, M.A.; Mathews, J.D.; Inan, U.S.; Wood, T.G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 2002, 416, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Lyons, W.A.; Nelson, T.E.; Armstrong, R.A.; Pasko, V.P.; Stanley, M.A. Upward Electrical Discharges From Thunderstorm Tops. Bull. Am. Meteorol. Soc. 2003, 84, 445–454. [Google Scholar] [CrossRef]
- Su, H.T.; Hsu, R.R.; Chen, A.B.; Wang, Y.C.; Hsiao, W.S.; Lai, W.C.; Lee, L.C.; Sato, M.; Fukunishi, H. Gigantic jets between a thundercloud and the ionosphere. Nature 2003, 423, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Cummer, S.A.; Li, J.; Han, F.; Lu, G.; Jaugey, N.; Lyons, W.A.; Nelson, T.E. Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet. Nat. Geosci. 2009, 2, 617–620. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Chou, J.K.; Tsai, L.Y.; Chen, A.B.; Su, H.T.; Hsu, R.R.; Cummer, S.A.; Frey, H.U.; Mende, S.B.; Takahashi, Y.; et al. Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets. J. Geophys. Res. Space Phys. 2009, 114, A04314. [Google Scholar] [CrossRef]
- van der Velde, O.A.; Bór, J.; Li, J.; Cummer, S.A.; Arnone, E.; Zanotti, F.; Füllekrug, M.; Haldoupis, C.; NaitAmor, S.; Farges, T. Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J. Geophys. Res. Atmos. 2010, 115, D24301. [Google Scholar] [CrossRef]
- Soula, S.; van der Velde, O.; Montanya, J.; Huet, P.; Barthe, C.; Bór, J. Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island. J. Geophys. Res. Atmos. 2011, 116, D19103. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Lyons, W.A.; Krehbiel, P.R.; Li, J.; Rison, W.; Thomas, R.J.; Edens, H.E.; Stanley, M.A.; Beasley, W.; et al. Lightning development associated with two negative gigantic jets. Geophys. Res. Lett. 2011, 38, L12801. [Google Scholar] [CrossRef]
- Huang, S.-M.; Hsu, R.-R.; Lee, L.-J.; Su, H.-T.; Kuo, C.-L.; Wu, C.-C.; Chou, J.-K.; Chang, S.-C.; Wu, Y.-J.; Chen, A.B. Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010). J. Geophys. Res. Space Phys. 2012, 117, A08307. [Google Scholar] [CrossRef]
- Lee, L.-J.; Huang, S.-M.; Chou, J.-K.; Kuo, C.-L.; Chen, A.B.; Su, H.-T.; Hsu, R.-R.; Frey, H.U.; Takahashi, Y.; Lee, L.-C. Characteristics and generation of secondary jets and secondary gigantic jets. J. Geophys. Res. Space Phys. 2012, 117, A06317. [Google Scholar] [CrossRef]
- da Silva, C.L.; Pasko, V.P. Vertical structuring of gigantic jets. Geophys. Res. Lett. 2013, 40, 3315–3319. [Google Scholar] [CrossRef]
- da Silva, C.L.; Pasko, V.P. Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets. J. Geophys. Res. Atmos. 2013, 118, 13561–13590. [Google Scholar] [CrossRef]
- Liu, N.; Spiva, N.; Dwyer, J.R.; Rassoul, H.K.; Free, D.; Cummer, S.A. Upward electrical discharges observed above Tropical Depression Dorian. Nat. Commun. 2015, 6, 5995. [Google Scholar] [CrossRef] [PubMed]
- Boggs, L.D.; Liu, N.; Peterson, M.; Lazarus, S.; Splitt, M.; Lucena, F.; Nag, A.; Rassoul, H.K. First Observations of Gigantic Jets From Geostationary Orbit. Geophys. Res. Lett. 2019, 46, 3999–4006. [Google Scholar] [CrossRef]
- van der Velde, O.A.; Montanyà, J.; López, J.A.; Cummer, S.A. Gigantic jet discharges evolve stepwise through the middle atmosphere. Nat. Commun. 2019, 10, 4350. [Google Scholar] [CrossRef]
- Soula, S.; Mlynarczyk, J.; van der Velde, O.; Montanya, J.; Leclerc, E. High Production of Gigantic Jets by a Thunderstorm Over Indian Ocean. J. Geophys. Res. Atmos. 2023, 128, e2023JD039486. [Google Scholar] [CrossRef]
- Gallimberti, I.; Bacchiega, G.; Bondiou-Clergerie, A.; Lalande, P. Fundamental processes in long air gap discharges. Comptes Rendus Phys. 2002, 3, 1335–1359. [Google Scholar] [CrossRef]
- Edens, H.E.; Eack, K.B.; Rison, W.; Hunyady, S.J. Photographic observations of streamers and steps in a cloud-to-air negative leader. Geophys. Res. Lett. 2014, 41, 1336–1342. [Google Scholar] [CrossRef]
- Hausknost, G.; Ventre, A.; Soula, S.; Coquillat, S.; Mlynarczyk, J.; Hermant, A. Multi-Instrumental Observation of an Upward Cloud-To-Air Discharge Above a Mediterranean Storm. Geophys. Res. Lett. 2023, 50, e2023GL105146. [Google Scholar] [CrossRef]
- Lin, Z.-Y.; Chi, H.-C.; Wang, B.-H.; Lin, Z.-Y.; Liu, C.-C.; Lee, J.; Lin, H.-C.; Wu, B.; Ma, X.-H.; Liao, C.-H. The current development of the Taiwan Meteor Detector System (TMDS) with a dedication to the Geminids 2017 and 2018. Planet. Space Sci. 2020, 180, 104763. [Google Scholar] [CrossRef]
- Holzworth, R.H.; McCarthy, M.P.; Brundell, J.B.; Jacobson, A.R.; Rodger, C.J. Global Distribution of Superbolts. J. Geophys. Res. Atmos. 2019, 124, 9996–10005. [Google Scholar] [CrossRef]
- Lu, M.-R.; Chen, P.-Y.; Kuo, C.-L.; Chou, C.-C.; Wu, B.-X.; Shinsuke, A.; Su, H.-T.; Hsu, R.-R.; Wang, S.-H.; Lin, N.-H.; et al. Recent work on sprite spectrum in Taiwan. Terr. Atmos. Ocean. Sci. 2017, 28, 625–636. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Kulak, A.; Popek, M.; Iwanski, R.; Klucjasz, S.; Kubisz, J. An analysis of TLE-associated discharges using the data recorded by a new broadband ELF receiver. In Proceedings of the XVI International Conference on Atmospheric Electricity, Nara, Japan, 17–22 June 2018; pp. 17–22. [Google Scholar]
- Mlynarczyk, J.; Bór, J.; Kulak, A.; Popek, M.; Kubisz, J. An unusual sequence of sprites followed by a secondary TLE: An analysis of ELF radio measurements and optical observations. J. Geophys. Res. Space Phys. 2015, 120, 2241–2254. [Google Scholar] [CrossRef]
- Kułak, A.; Młynarczyk, J. A new technique for reconstruction of the current moment waveform related to a gigantic jet from the magnetic field component recorded by an ELF station. Radio Sci. 2011, 46, RS2016. [Google Scholar] [CrossRef]
- Bui, V.; Chang, L.-C.; Heckman, S. A Performance Study of Earth Networks Total Lighting Network (ENTLN) and Worldwide Lightning Location Network (WWLLN). In Proceedings of the 2015 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; pp. 386–391. [Google Scholar]
- Zhu, Y.; Rakov, V.A.; Tran, M.D.; Stock, M.G.; Heckman, S.; Liu, C.; Sloop, C.D.; Jordan, D.M.; Uman, M.A.; Caicedo, J.A.; et al. Evaluation of ENTLN Performance Characteristics Based on the Ground Truth Natural and Rocket-Triggered Lightning Data Acquired in Florida. J. Geophys. Res. Atmos. 2017, 122, 9858–9866. [Google Scholar] [CrossRef]
- Zhu, Y.; Stock, M.; Lapierre, J.; DiGangi, E. Upgrades of the Earth Networks Total Lightning Network in 2021. Remote Sens. 2022, 14, 2209. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Kulak, A.; Salvador, J. The Accuracy of Radio Direction Finding in the Extremely Low Frequency Range. Radio Sci. 2017, 52, 1245–1252. [Google Scholar] [CrossRef]
- Krehbiel, P.R.; Riousset, J.A.; Pasko, V.P.; Thomas, R.J.; Rison, W.; Stanley, M.A.; Edens, H.E. Upward electrical discharges from thunderstorms. Nat. Geosci. 2008, 1, 233–237. [Google Scholar] [CrossRef]
- Boggs, L.D.; Liu, N.; Riousset, J.A.; Shi, F.; Lazarus, S.; Splitt, M.; Rassoul, H.K. Thunderstorm charge structures producing gigantic jets. Sci. Rep. 2018, 8, 18085. [Google Scholar] [CrossRef]
- Lazarus, S.M.; Splitt, M.E.; Brownlee, J.; Spiva, N.; Liu, N. A Thermodynamic, kinematic and microphysical analysis of a jet and gigantic jet-producing Florida thunderstorm. J. Geophys. Res. Atmos. 2015, 120, 8469–8490. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003; p. 687. [Google Scholar]
- Urbani, M.; Montanyá, J.; van der Velde, O.A.; Arcanjo, M.; López, J.A. Multi-Stroke Positive Cloud-To-Ground Lightning Sharing the Same Channel Observed With a VHF Broadband Interferometer. Geophys. Res. Lett. 2022, 49, e2021GL097272. [Google Scholar] [CrossRef]
- Yuan, S.; Qie, X.; Jiang, R.; Wang, D.; Sun, Z.; Srivastava, A.; Williams, E. Origin of an Uncommon Multiple-Stroke Positive Cloud-to-Ground Lightning Flash With Different Terminations. J. Geophys. Res. Atmos. 2020, 125, e2019JD032098. [Google Scholar] [CrossRef]
- Shao, X.M.; Krehbiel, P.R.; Thomas, R.J.; Rison, W. Radio interferometric observations of cloud-to-ground lightning phenomena in Florida. J. Geophys. Res. Atmos. 1995, 100, 2749–2783. [Google Scholar] [CrossRef]
- Mazur, V. Triggered lightning strikes to aircraft and natural intracloud discharges. J. Geophys. Res. Atmos. 1989, 94, 3311–3325. [Google Scholar] [CrossRef]
- Jensen, D.P.; Sonnenfeld, R.G.; Stanley, M.A.; Edens, H.E.; da Silva, C.L.; Krehbiel, P.R. Dart-Leader and K-Leader Velocity From Initiation Site to Termination Time-Resolved With 3D Interferometry. J. Geophys. Res. Atmos. 2021, 126, e2020JD034309. [Google Scholar] [CrossRef]
- Mazur, V. Physical processes during development of lightning flashes. Comptes Rendus Phys. 2002, 3, 1393–1409. [Google Scholar] [CrossRef]
- Mazur, V.; Ruhnke, L.H.; Warner, T.A.; Orville, R.E. Recoil leader formation and development. J. Electrost. 2013, 71, 763–768. [Google Scholar] [CrossRef]
- Mazur, V. The physical concept of recoil leader formation. J. Electrost. 2016, 82, 79–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.-Q.; Lai, Y.-M.; Kuo, C.-L.; Mlynarczyk, J.; Lin, Z.-Y. Implication of Subsequent Leaders in the Gigantic Jet. Atmosphere 2024, 15, 781. https://doi.org/10.3390/atmos15070781
Chang W-Q, Lai Y-M, Kuo C-L, Mlynarczyk J, Lin Z-Y. Implication of Subsequent Leaders in the Gigantic Jet. Atmosphere. 2024; 15(7):781. https://doi.org/10.3390/atmos15070781
Chicago/Turabian StyleChang, Wen-Qian, Yan-Mou Lai, Cheng-Ling Kuo, Janusz Mlynarczyk, and Zhong-Yi Lin. 2024. "Implication of Subsequent Leaders in the Gigantic Jet" Atmosphere 15, no. 7: 781. https://doi.org/10.3390/atmos15070781
APA StyleChang, W. -Q., Lai, Y. -M., Kuo, C. -L., Mlynarczyk, J., & Lin, Z. -Y. (2024). Implication of Subsequent Leaders in the Gigantic Jet. Atmosphere, 15(7), 781. https://doi.org/10.3390/atmos15070781