The Effects of Upper-Ocean Sea Temperatures and Salinity on the Intensity Change of Tropical Cyclones over the Western North Pacific and the South China Sea: An Observational Study
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and TC Data
2.2. RI Threshold
2.3. Sea Temperature and Salinity Profiles
2.4. Observations Used in Data Assimilation for CORA2
2.5. Oceanic Dynamical Model Used for CORA2
3. Results
3.1. Super Typhoon Hato in August 2017
3.2. Super Typhoon Mangkhut in September 2018
3.3. Typhoon Talim in July 2023
3.4. Super Typhoon Saola in September 2023
3.5. Severe Typhoon Koinu in October 2023
4. Discussion
5. Summary and Conclusions
- (a)
- Relatively high SSTs (30 °C or above) for a depth of about 20 m and relatively strong salinity stratification (0.8 to 1 psu) in the upper ocean of 100 m may be associated with the RI of TCs, or at least with the maintenance of relatively high-intensity values;
- (b)
- If the SST is slightly less than 29 °C, a deep layer of temperatures more than 26 °C for a depth of 60 m or more may also favour RI over the SCS;
- (c)
- SSS levels below 33.8 psu for a depth of at least about 20 m may favour RI;
- (d)
- A salinity stratification of at least 0.6 psu over a depth of 100 m may be necessary for inhibiting oceanic mixing and SST cooling to some extent;
- (e)
- Persistently low levels of SSS and strong stratification in the SCS near the PRD were observed, which could be related to the freshwater discharge from rivers and rainwater;
- (f)
- There is a rather sharp gradient of SSS from the WNP to the SCS. Whether or not a TC intensifies or weakens after entering the SCS also depends on the intensity of the current upon its entrance, as well as the sea temperatures and salinity stratification over a certain depth. The interactions of TCs with northeast monsoons and the role of the horizontal gradient of SSS require more in-depth studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, T.C.; Cheng, Y.Y. Typhoon 5-6. Hong Kong Observatory Blog on 3 April 2021. Available online: https://www.hko.gov.hk/en/blog/00000120.htm (accessed on 28 May 2024).
- Chen, J.L.; Wang, Z.Q.; Tam, C.Y.; Lau, N.C.; Lau, D.S.; Mok, H.Y. Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global-warming method. Sci. Rep. 2020, 10, 1965. [Google Scholar] [CrossRef]
- Kishtawal, C.M.; Jaiswal, N.; Singh, R.; Niyogi, D. Tropical cyclone intensification trends during satellite era (1986–2010). Geophys. Res. Lett. 2012, 39, L10810. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.-P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R. Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic. Geophy. Res. Lett. 2018, 45, 4238–4247. [Google Scholar] [CrossRef]
- Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent increases in tropical cyclone intensification rates. Nat. Commun. 2019, 10, 635. [Google Scholar] [CrossRef]
- Fan, K.; Wang, X.; He, Z. Control of salinity stratification on recent increase in tropical cyclone intensification rates over the postmonsoon Bay of Bengal. Environ. Res. Lett. 2020, 15, 094028. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Recent increase in extreme intensity of tropical cyclones making landfall in south China. Clim. Dyn. 2020, 55, 1059–1074. [Google Scholar] [CrossRef]
- Zhao, H.; Duan, X.; Raga, G.B.; Klotzbach, P.J. Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Clim. 2018, 31, 8163–8179. [Google Scholar] [CrossRef]
- Song, J.; Duan, Y.; Klotzbach, P.J. Increasing trend in rapid intensification magnitude of tropical cyclones over the western North Pacific. Environ. Res. Lett. 2020, 15, 084043. [Google Scholar] [CrossRef]
- Hong, J.; Wu, Q. Modulation of global sea surface temperature on tropical cyclone rapid intensification frequency. Environ. Res. Commun. 2021, 3, 041001. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Growing threat of rapidly-intensifying tropical cyclones in East Asia. Adv. Atmos. Sci. 2022, 39, 222–234. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Wang, S.; Toumi, R.; Song, X.Z.; Wang, Q. Recent increases in tropical cyclone rapid intensification events in global offshore regions. Nat. Commun. 2023, 14, 5167. [Google Scholar] [CrossRef]
- Bhatia, K.; Baker, A.; Yang, W.C.; Vecchi, G.; Knutson, T.; Murakami, H.; Kossin, J.; Hodges, K.; Dixon, K.; Bronselaer, B.; et al. A potential explanation for the global increase in tropical cyclone rapid intensification. Nat. Commun. 2022, 13, 6626. [Google Scholar] [CrossRef]
- Holliday, C.R.; Thompson, A.H. Climatological characteristics of rapidly intensifying typhoons. Mon. Weather Rev. 1979, 107, 1022–1034. [Google Scholar]
- Hu, H.; Duan, Y. Analysis of environmental variables of rapidly intensifying tropical cyclones in the South China Sea. J. Trop. Meteorol. 2016, 32, 299–310, (In Chinese, with English Abstract). [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M.; Knaff, J.A. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Gao, S.; Chiu, L.S. Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. Int. J. Rem. Sens. 2010, 31, 469904710. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhao, K. Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Weather Rev. 2014, 143, 64–87. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, S.; Li, X.; Shen, X. Key environmental factors for rapid intensification of the South China Sea tropical cyclones. Front. Earth Sci. 2021, 8, 609727. [Google Scholar] [CrossRef]
- Xu, W.; Balaguru, K.; August, A.; Lalo, N.; Hodas, N.; DeMaria, M.; Judi, D. Deep learning experiments for tropical cyclone intensity forecasts. Weather Forecast. 2021, 36, 1453–1470. [Google Scholar] [CrossRef]
- Griffin, S.M.; Wimmers, A.; Velden, C.S. Predicting rapid intensification in North Atlantic and eastern North Pacific tropical cyclones using a convolutional neural network. Weather Forecast. 2022, 37, 1333–1355. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, R.; Sun, D. Investigating tropical cyclone rapid intensification with an advanced artificial intelligence system and gridded reanalysis data. Atmosphere 2023, 14, 195. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Zhang, Y.X.; Zhang, C.Z.; Zheng, B.; Dai, G.F.; Li, M.J. An assessment of model capability on rapid intensification prediction of tropical cyclones in the South China Sea. Dyn. Atmos. Ocean. 2024, 106, 101431. [Google Scholar] [CrossRef]
- WMO. Global Guide to Tropical Cyclone Forecasting; WMO-No.1194; WMO: Geneva, Switzerland, 2017; 397p. [Google Scholar]
- Tam, H.F.; Choy, W.C.; Wong, W.K. Development of objective forecast guidance on tropical cyclone rapid intensity change. Meteorol. Appl. 2021, 28, e1981. [Google Scholar] [CrossRef]
- Lin, I.-I.; Goni, G.J.; Knaff, J.A.; Forbes, C.; Ali, M.M. Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards 2013, 66, 1481–1500. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, W.J.; Kang, H.W.; Kang, S.K. Predicting rapid intensification of tropical cyclones on the western North Pacific: A machine learning and net energy gain rate approach. Front. Mar. Sci. 2024, 10, 1296274. [Google Scholar] [CrossRef]
- Lin, I.-I.; Pun, I.F.; Wu, C.C. Upper ocean thermal structure and the western North Pacific category-5 typhoons part II: Dependence on translation speed. Mon. Weather Rev. 2009, 137, 3744–3757. [Google Scholar] [CrossRef]
- Scharroo, R.; Smith, W.H.F.; Lillibridge, J.L. Satellite altimetry and the intensification of Hurricane Katrina. Eos 2005, 86, 366. [Google Scholar] [CrossRef]
- Lin, I.-I.; Chen, C.H.; Pun, I.F.; Liu, W.T.; Wu, C.C. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 2009, 36, LO3817. [Google Scholar] [CrossRef]
- Cheng, Z.; Lin, L.; Yang, G.; Sha, T. Rapid intensification and associated large-scale circulation of super typhoon Rammasun in 2014. J. Appl. Meteorol. Sci. 2017, 28, 318–326, (In Chinese, with English Abstract). [Google Scholar]
- Balaguru, K.; Foltz, G.R.; Leung, J.R.; Kaplan, J.; Xu, W.; Reul, N.; Chapron, B. Pronounced impact of salinity on rapidly intensifying tropical cyclones. Bull. Am. Meteorol. Soc. 2020, 101, E1497–E1511. [Google Scholar] [CrossRef]
- Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.R.; Xu, Z.; Li, M.; Hsieh, J.-S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Lagerloef, G.; Reverdin, G.; Carton, J.A.; Chapron, B.; Quilfen, Y.; Kudryavtsev, V.N.; Kao, H.Y. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 2012, 39, L20603. [Google Scholar] [CrossRef]
- Harper, B.A.; Kepert, J.D.; Ginger, J.D. Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions; WMO/TD-1555; WMO: Geneva, Switzerland, 2010; 54p. [Google Scholar]
- Fu, H.L.; Dan, B.; Gao, Z.G.; Wu, X.R.; Chao, G.F.; Zhang, L.X.; Zhang, Y.Q.; Liu, K.X.; Zhang, X.S.; Li, W. Global ocean reanalysis CORA2 and its inter comparison with a set of other reanalysis products. Front. Mar. Sci. 2023, 10, 1084186. [Google Scholar] [CrossRef]
- Garcia, H.E.; Boyer, T.P.; Locarnini, R.A.; Baranova, O.K.; Zweng, M.M. World Ocean Database 2018: User’s Manual (Prerelease); Mishonov, A.V., Ed.; NOAA: Silver Spring, MD, USA, 2018. Available online: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html (accessed on 28 May 2024).
- Pujol, M.; Faugėre, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new muti-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Reynolds, R.; Smith, T.; Liu, C.; Chelton, D.; Casey, K.; Schlax, M. Daily high-resolution-blended analysis for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 1997, 102, 5753–5766. [Google Scholar] [CrossRef]
- Adcroft, A.; Campin, J.; Hill, C.; Marshall, J. Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon. Weather Rev. 2004, 132, 2845–2863. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Harada, Y.; Kamahori, H.; Kobayashi, C.; Endo, H.; Kobayashi, S.; Ota, Y.; Onoda, H.; Onogi, K.; Miyaoka, K.; Takahashi, K. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 269–302. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycl. 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Arbic, B.K.; Alford, M.H.; Ansong, J.K.; Buijsman, M.C.; Ciotti, R.B.; Farrar, J.T.; Hallberg, R.W.; Henze, C.E.; Hill, C.N.; Luecke, C.A.; et al. A primer on global internal tide and internal gravity wave continuum modelling in HYCOM and MITgcm. N. Front. Op. Oceanogr. 2018, 307–391. Available online: https://aquila.usm.edu/fac_pubs//15680 (accessed on 28 May 2024).
- Choy, C.W.; Lau, D.S.; He, Y.H. Super typhoons Hato and Mangkhut, part I: Analysis of maximum intensity and wind structure. Wea 2020, 77, 314–320. [Google Scholar] [CrossRef]
- Chan, C.C. Tropical Cyclone Classification. Available online: https://www.hko.gov.hk/en/education/tropical-cyclone/classification-naming-characteristics/00145-tropical-cyclone-classification.html (accessed on 28 May 2024).
- He, J.; Li, Q.; Chan, P.W.; Choy, C.W.; Mak, B.; Lam, C.C.; Luo, H.Y. An observational study of Typhoon Talim over the northern part of the South China Sea in July 2023. Atmosphere 2023, 14, 1340. [Google Scholar] [CrossRef]
- Chan, P.W.; Choy, C.W.; Chiu, Y.Y.; He, J. Observational study of Super Typhoon Saola in 2023 when it was close to Hong Kong. Weather 2024. [Google Scholar] [CrossRef]
- He, J.Y.; Chan, P.W.; Chan, Y.W.; Cheung, P. Super Typhoon Saola (2023) over the northern part of the South China Sea—Aircraft data analysis. Atmosphere 2023, 14, 1595. [Google Scholar] [CrossRef]
- Lau, D.S.; Chan, W.S.; Wong, Y.C.; Lam, C.C.; Chan, P.W. Hindcast insights from storm surge forecasting of Super Typhoon Saola (2309) in Hong Kong with the Sea, Lake and Overland Surges from Hurricanes Model. Atmosphere 2024, 15, 17. [Google Scholar] [CrossRef]
- Chan, P.W.; He, Y.H.; Lui, Y.S. Forecasting Super Typhoon Saola and its effects on Hong Kong. Weather 2024. [Google Scholar] [CrossRef]
- He, Y.H.; Chan, P.W. Challenges in the Forecasting of Severe Typhoon Koinu in 2023. Atmosphere 2024, 15, 31. [Google Scholar] [CrossRef]
- Qiu, W.; Wu, L.; Ren, F. Monsoonal influences on offshore rapid intensification of landfalling typhoons in a sheared environment over the South China Sea. Weather Forecast. 2020, 35, 623–634. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part 1: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar]
- Emanuel, K.A. The maximum intensity of hurricanes. J. Atmos. Sci. 1988, 45, 1143–1155. [Google Scholar]
- Ranasinghe, R.; Wu, C.S.; Conallin, J.; Duong, T.M.; Anthony, E.J. Disentangling the relative impacts of climate change and human activities on fluvial sediment supply to the coast by the world’s large rivers: Pearl River Basin, China. Sci. Rep. 2019, 9, 9236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, P.-W.; Lam, C.-C.; Hui, T.-W.; Gao, Z.; Fu, H.; Sun, C.; Su, H. The Effects of Upper-Ocean Sea Temperatures and Salinity on the Intensity Change of Tropical Cyclones over the Western North Pacific and the South China Sea: An Observational Study. Atmosphere 2024, 15, 674. https://doi.org/10.3390/atmos15060674
Chan P-W, Lam C-C, Hui T-W, Gao Z, Fu H, Sun C, Su H. The Effects of Upper-Ocean Sea Temperatures and Salinity on the Intensity Change of Tropical Cyclones over the Western North Pacific and the South China Sea: An Observational Study. Atmosphere. 2024; 15(6):674. https://doi.org/10.3390/atmos15060674
Chicago/Turabian StyleChan, Pak-Wai, Ching-Chi Lam, Tai-Wai Hui, Zhigang Gao, Hongli Fu, Chunjian Sun, and Hui Su. 2024. "The Effects of Upper-Ocean Sea Temperatures and Salinity on the Intensity Change of Tropical Cyclones over the Western North Pacific and the South China Sea: An Observational Study" Atmosphere 15, no. 6: 674. https://doi.org/10.3390/atmos15060674
APA StyleChan, P. -W., Lam, C. -C., Hui, T. -W., Gao, Z., Fu, H., Sun, C., & Su, H. (2024). The Effects of Upper-Ocean Sea Temperatures and Salinity on the Intensity Change of Tropical Cyclones over the Western North Pacific and the South China Sea: An Observational Study. Atmosphere, 15(6), 674. https://doi.org/10.3390/atmos15060674