Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran)
Abstract
:1. Introduction
1.1. Background
1.2. Aim, Objectives, and Originality
- Verify the LARS-WG7 ability to model climate data in a semi-arid climatic zone by using historical metrological data;
- Forecast the potential variation in the meteorological variables downscaled by LARS-WG based on AR6 (the sixth assessment report) of IPCC (the Intergovernmental Panel on Climate Change), under SRA6 (the Special Report on Emission Scenarios) [18] generated by seven GCMs;
- Assess the anticipated impact of climate change on the hydrological parameters of the catchment: RDIst (the standardized reconnaissance drought index), SDI (the streamflow drought index), and OPOF (the reservoir operational probability of failure, %); and
- Identify relationships that integrate reservoir capacity, yield, and reliability. Accordingly, this study could be regarded as comparative basin research through the impact of climate change on the hydro-climatic properties, drought indices, and reservoir performance.
2. Materials and Methods
2.1. Information Collection and Analysis
2.2. Symbolic Regional Study Example
2.3. Climatic Drought Identification
2.4. Reservoir Capacity-Yield Model and Performance Indices
2.5. Delta Perturbation Climatic Scenario
2.6. Long Ashton Research Station Weather Generator Model
- The site analysis function is used to calibrate models by analyzing recorded meteorological data and estimating statistical properties. The obtained results are saved as two parameter files.
- The QTest function is used for model validation, which examines the statistical properties of the recorded and artificial meteorological data to see if there are any statistically significant variations; and
- The generator function produces fictitious meteorological data. The parameter files derived during the model calibration are used to produce artificial meteorological data that have similar statistical properties to the recorded data but are different on a day-to-day basis. Artificial data equivalent to a specific climate change scenario may also be produced by applying global climate model-derived changes in temperature, precipitation, and solar radiation to the LARS-WG parameter files. Furthermore, a daily local climate scenario is generated by changing distribution variables at a location based on the anticipated weather variations resulting from global or local weather simulations. The generated climatic scenarios can then be utilized in combination with a procedure found to influence models for impact evaluation.
3. Results
3.1. LARS-WG Calibration and Validation
3.2. Climate Change Impact
3.2.1. Meteorological Variables
3.2.2. Hydro-Climatic Drought Alteration Identification
3.2.3. Reservoir Inflow
3.2.4. Reservoir Performance
4. Discussion
5. Conclusions and Recommendations
- The downscaling model, LARS-WG7, provides better estimations of meteorological variables on a daily timescale, so it could be used to estimate potential internal values.
- Tmin and Tmax are projected to increase by nearly 0.54, 3.03, and 4.36 °C, and 0.56, 2.49, and 4.70 °C, respectively, between 2011–2010, 2046–2065, and 2080–2099. Conversely, precipitation is expected to decrease by about 6.32, 17.33, and 340.18 mm during the three potential intervals, with the relative changes varying monthly.
- During the 2080–2099 period, no consistent trend has been noted among several GCM precipitation calculations. GFDL-ESM4, HadGEM3-GC3-L1, INM-CM5-0, UKESM1-0-LL, and MPI-ESM1-2-LR forecasted lower precipitation values compared to those in the baseline 1 interval predictions.
- There have been minimal changes in predicting the potential maximum temperature using a single GCM. The estimates from seven GCMs of these extremes during the 2046–2065 and 2046–2065 intervals show consistent change tendencies, in contrast to the extremes projected for the 2080–2099 interval.
- In general, the estimated monthly flow values for the GCM and DP scenarios show similar reductions; thus, the estimated maximum flow rates for both scenarios are nearly identical. The expected runoff reduction from 2080 and 2099 is around 48%, comparable to the discharges caused by DP (F16: a 30% increase in potential evapotranspiration and a 30% decrease in precipitation, for example).
- Precipitation reduction leads to increased drought episode periods (after 1999).
- Irregular periodic features of wet and dry intervals are predicted in the baseline and potential intervals.
- The severity of hydro-climatic droughts will noticeably deteriorate in the future, especially in the 2080–2099 interval. The severity of the drought will increase when the periods of extended potential evapotranspiration increase, and precipitation deficiencies rise.
- During the 2080–2099 time spans, modest differences varying between −36 and −38% are observed for the 1-, 3-, and 30-day highest discharges.
- The impact of climate change will extend the flood-free period.
- In general, the climate change effect on the estimation of discharge values reflects its influence on the annual maximum values. As a result, the estimated values of low and high annual streamflow will decrease due to reduced precipitation and surface runoff.
- The monthly discharge was the same as or exceeded the critical values at 10% of the interval, displaying reductions varying between −22% (February) and −35% (September) during the 2080–2099 interval.
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Available online: http://www.ipcc.ch/report/ar5/wg2 (accessed on 15 May 2017).
- Mohammed, R.; Scholz, M. The reconnaissance drought index: A method for detecting regional arid climatic variability and potential drought risk. J. Arid Environ. 2017, 144, 181–191. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M.; Nanekely, M.A.; Mokhtari, Y. Assessment of models predicting anthropogenic interventions and climate variability on surface runoff of the Lower Zab River. Stoch. Environ. Res. Risk Assess. 2018, 32, 223–240. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Climate variability impact on the spatiotemporal characteristics of drought and Aridity in arid and semi-arid regions. Water Resour. Manag. 2019, 33, 5015–5033. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, S.J. Potential impacts of climate change on the reliability of water and hydropower supply from a multipurpose dam in South Korea. J. Am. Water Resour. Assoc. (JAWRA) 2014, 50, 1273–1288. [Google Scholar] [CrossRef]
- Reis, J.; Culver, T.B.; Block, P.J.; McCartney, M.P. Evaluating the impact and uncertainty of reservoir operation for malaria control as the climate changes in Ethiopia. Clim. Change 2016, 136, 601–614. [Google Scholar] [CrossRef]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections; United States Agency for International Development by Tetra Tech ARD, Burlington, Vermont, 2014; Volume 45, pp. 45–2621.
- Semenov, M.A.; Pilkington-Bennett, S.; Calanca, P. Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set. Clim. Res. 2013, 57, 1–9. [Google Scholar] [CrossRef]
- McMahon, T.A.; Adeloye, A.J.; Zhou, S.L. Understanding performance measures of reservoirs. J. Hydrol. 2006, 324, 359–382. [Google Scholar] [CrossRef]
- Vicuna, S.; Dracup, J.A. The evolution of climate change impact studies on hydrology and water resources in California. Clim. Change 2007, 82, 327–350. [Google Scholar] [CrossRef]
- Minville, M.; Brissette, F.; Krau, S.; Leconte, R. Adaptation to climate change in the management of a Canadian water-resources system exploited for hydropower. Water Resour. Manag. 2009, 23, 2965–2986. [Google Scholar] [CrossRef]
- Lim, K.J.; Park, Y.S.; Kim, J.; Shin, Y.C.; Kim, N.W.; Kim, S.J.; Jeon, J.H.; Engel, B.A. Development of generic algorithm-based optimisation module in WHAT system for hydrograph analysis and model application. Comput. Geosci. 2010, 36, 936–944. [Google Scholar] [CrossRef]
- Vano, J.A.; Scott, M.J.; Voisin, N.; Stöckle, C.O.; Hamlet, A.F.; Mickelson, K.E.; Elsner, M.M.; Lettenmaier, D.P. Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Clim. Change 2010, 102, 287–317. [Google Scholar] [CrossRef]
- Ludwig, F.; Slobbe, E.V.; Cofino, W. Climate change adaptation and integrated water resource management in the water sector. J. Hydrol. 2014, 518, 235–242. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Leconte, R. The uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought and climatic change impact on streamflow in small watersheds. Sci. Total Environ. 2012, 440, 33–34. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Adaptation strategy to mitigate the impact of climate change on water resources in arid and semi-arid regions: A case study. Water Resour. Manage. 2017, 31, 3557–3573. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M.; Lars-Wg, A. A Stochastic Weather Generator for Use in Climate Impact Studies; User Man Herts UK; 2002; pp. 1–27.
- Information Technology Services (ITS). IBM SPSS statistics 23 Part 3: Regression Analysis. Winter 2016, Version 1. 2016. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-23 (accessed on 29 May 2023).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. In Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56, 1st ed.; FAO: Rome, Italy, 1998. [Google Scholar]
- FAO. Food and Agriculture Organization of the UN. Adaptation to Climate Change in Semi-Arid Environments. Experience and Lessons from Mozambique; Environment and Natural Resources Management Series; FAO: Rome, Italy, 2012; pp. 1–83. Available online: http://www.fao.org/docrep/015/i2581e/i2581e00.pdf (accessed on 18 June 2017).
- Mahdi, Z.A.; Mohammed, R. Land use/land cover changing aspect implications: Lesser Zab River Basin, northeastern Iraq. Environ. Monit. Assess. 2022, 194, 652. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Impact of climate variability and streamflow alteration on groundwater contribution to the base flow of the Lower Zab River (Iran and Iraq). Environ. Earth Sci. 2016, 75, 1392. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Impact of evapotranspiration formulations at various elevations on the reconnaissance drought index. Water Resour. Manage. 2017, 31, 531–538. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporation evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid. Environ. 2013, 88, 130–140. [Google Scholar] [CrossRef]
- McMahon, T.A.; Adeloye, A.J. Water Resources Yield; Water Resources Publications: Littleton, CO, USA, 2005. [Google Scholar]
- Moy, W.; Cohon, J.L.; ReVelle, C.S. A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resour. Res. 1986, 22, 489–498. [Google Scholar] [CrossRef]
- Fowler, H.J.; Kilsby, C.G.; Connell, P.E.O. Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resour. Res. 2003, 39, 1222. [Google Scholar] [CrossRef]
- Soundharajan, B.S.; Adeloye, A.J.; Remesan, R. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment. J. Hydrol. 2016, 538, 625–639. [Google Scholar] [CrossRef]
- Semenov, M.A.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 2010, 41, 1–14. [Google Scholar] [CrossRef]
- Mahjour, S.K.; Liguori, G.; Faroughi, S.A. Selection of representative general circulation models under climatic uncertainty for Western North America. J. Water Clim. Change 2024, 15, 686–702. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Climate change and water resources in arid regions: Uncertainty of the baseline time period. Theor. Appl. Climatol. 2019, 137, 1365–1376. [Google Scholar] [CrossRef]
- Mohammed, D.R.; Mohammed, R.K. Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study. Tikrit J. Eng. Sci. 2024, 31, 161–171. [Google Scholar] [CrossRef]
- Hassan, W.H.; Nile, B.K.; Kadhim, Z.K.; Mahdi, K.; Riksen, M.; Thiab, R.F. Trends, forecasting and adaptation strategies of climate change in the middle and west regions of Iraq. SN Appl. Sci. 2023, 5, 312. [Google Scholar] [CrossRef]
Sub-Basin | Station Name | Longitude (°) | Latitude (°) | Elevation (m) |
---|---|---|---|---|
US a | Sulymanya | 45.45 | 35.53 | 885 |
Halabcha | 45.94 | 35.44 | 651 | |
Sachez | 46.26 | 36.25 | 1536 | |
Mahabad | 45.70 | 36.75 | 1356 | |
Salahddin | 44.20 | 36.38 | 1088 | |
Soran | 44.63 | 36.87 | 1132 | |
DS b | Kirkuk | 44.40 | 35.47 | 319 |
Makhmoor | 43.60 | 35.75 | 306 | |
Erbeel | 44.00 | 36.15 | 1088 | |
Chemchamal | 44.83 | 35.52 | 701 |
Research Centre | Country | Global Climate Model | Grid Resolution (Lat, Lon) |
---|---|---|---|
Centre National de Recherché Meteorologiques (CNRM), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS) | France | CNRM-CM6-1 | 1.40° × 1.406° |
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (NOAA-GFDL) | USA | GFDL-ESM4 | 1.00° × 1.25° |
UK Met Office Hadley Centre (MOHC) | UK | HadGEM3-GC3-L1 | 1.25° × 1.88° |
Institute for Numerical Mathematics, Russian Academy of Science (INM) | Russia | INM-CM5-0 | 1.50° × 2.00° |
UK Met Office Hadley Centre (MOHC) | UK | UKESM1-0-LL | 1.25° × 1.88° |
Max Planck Institute for Meteorology (MPI-M) | Germany | MPI-ESM1-2-LR | 1.39° ×°1.41° |
National Center for Atmospheric Research, Climate and Global Dynamics Laboratory (NCAR) | USA | CESM2 | 0.94° × 1.25° |
Sub-Basin | Sit Name | Seasons for Wet Years | |||||||
DJF c | MAM d | JJA e | SON f | ||||||
K-S | p-Value | K-S | p-Value | K-S | p-value | K-S | p-Value | ||
US a | Sulymanya | 0.278 | 0.286 4 | 0.037 | 1.000 1 | 0.162 | 0.897 2 | 0.158 | 0.913 2 |
Halabcha | 0.336 | 0.117 4 | 0.386 | 0.047 4 | 0.218 | 0.590 3 | 0.243 | 0.449 3 | |
Sachez | 0.252 | 0.403 3 | 0.099 | 1.000 1 | 0.137 | 0.973 2 | 0.030 | 1.000 1 | |
Mahabad | 0.064 | 1.000 1 | 0.138 | 0.971 2 | 0.326 | 0.139 4 | 0.133 | 0.979 2 | |
Salahddin | 0.357 | 0.082 4 | 0.347 | 0.097 4 | 0.093 | 1.000 1 | 0.081 | 1.000 1 | |
Soran | 0.215 | 0.607 3 | 0.036 | 1.000 1 | 0.150 | 0.940 2 | 0.128 | 0.986 2 | |
DS b | Kirkuk | 0.490 | 0.005 4 | 0.009 | 1.000 1 | 0.078 | 1.000 1 | 0.126 | 0.989 2 |
Makhmoor | 0.074 | 1.000 1 | 0.190 | 0.755 2 | 0.156 | 0.920 2 | 0.173 | 0.847 2 | |
Erbeel | 0.225 | 0.549 3 | 0.094 | 0.999 2 | 0.844 | 0.000 4 | 0.357 | 0.082 4 | |
Chemchamal | 0.097 | 0.999 1 | 0.103 | 0.999 2 | 0.175 | 0.837 2 | 0.230 | 0.520 3 | |
Sub-basin | Site name | Seasons for dry years | |||||||
DJF c | MAM d | JJA e | SON f | ||||||
K-S | p-value | K-S | p-value | K-S | p-value | K-S | p-value | ||
US a | Sulymanya | 0.037 | 1.000 1 | 0.046 | 1.000 1 | 0.138 | 0.971 2 | 0.066 | 1.000 1 |
Halabcha | 0.040 | 1.000 1 | 0.097 | 0.999 2 | 0.219 | 0.584 3 | 0.110 | 0.998 1 | |
Sachez | 0.030 | 1.000 1 | 0.127 | 0.987 2 | 0.057 | 1.000 1 | 0.111 | 0.998 2 | |
Mahabad | 0.057 | 1.000 1 | 0.042 | 1.000 1 | 0.084 | 1.000 1 | 0.210 | 0.637 3 | |
Salahddin | 0.030 | 1.000 1 | 0.036 | 1.000 1 | 0.123 | 0.991 2 | 0.053 | 1.000 1 | |
Soran | 0.032 | 1.000 1 | 0.050 | 1.000 1 | 0.078 | 1.000 1 | 0.135 | 0.976 2 | |
DS b | Kirkuk | 0.896 | 0.000 4 | 0.114 | 0.997 2 | 0.169 | 0.866 2 | 0.114 | 0.997 2 |
Makhmoor | 0.868 | 0.000 4 | 0.200 | 0.697 3 | 0.311 | 0.176 4 | 0.112 | 0.998 2 | |
Erbeel | 0.152 | 0.934 2 | 0.101 | 0.999 2 | 0.228 | 0.531 3 | 0.120 | 0.994 1 | |
Chemchamal | 0.053 | 1.000 1 | 0.041 | 1.000 1 | 0.049 | 1.000 1 | 0.045 | 1.000 1 |
Sub-Basin | Sit Name | January | February | March | April | ||||
K-S | p-Value | K-S | p-Value | K-S | p-Value | K-S | p-Value | ||
US a | Sulymanya | 0.125 | 0.989 2 | 0.343 | 1.000 1 | 0.038 | 1.000 1 | 0.024 | 1.000 1 |
Halabcha | 0.076 | 1.000 1 | 0.215 | 0.607 3 | 0.113 | 0.997 2 | 0.082 | 1.000 1 | |
Sachez | 0.035 | 1.000 1 | 0.088 | 1.000 1 | 0.035 | 1.000 1 | 0.025 | 1.000 1 | |
Mahabad | 0.045 | 1.000 1 | 0.106 | 0.999 2 | 0.088 | 1.000 1 | 0.036 | 1.000 1 | |
Salahddin | 0.144 | 0.957 2 | 0.176 | 0.832 2 | 0.038 | 1.000 1 | 0.226 | 0.543 3 | |
Soran | 0.100 | 0.999 2 | 0.060 | 1.000 1 | 0.093 | 0.999 2 | 0.062 | 1.000 1 | |
DS b | Kirkuk | 0.083 | 1.000 1 | 0.068 | 1.000 1 | 0.032 | 1.000 1 | 0.035 | 1.000 1 |
Makhmoor | 0.041 | 1.000 1 | 0.060 | 1.000 1 | 0.048 | 1.000 1 | 0.145 | 0.954 2 | |
Erbeel | 0.048 | 1.000 1 | 0.048 | 1.000 1 | 0.118 | 0.995 2 | 0.022 | 1.000 1 | |
Chemchamal | 0.064 | 1.000 1 | 0.095 | 0.999 2 | 0.137 | 0.973 2 | 0.038 | 1.000 1 | |
Sub-basin | Site name | May | June | July | August | ||||
K-S | p-value | K-S | p-value | K-S | p-value | K-S | p-value | ||
US a | Sulymanya | 0.117 | 0.995 2 | 0.325 | 0.141 4 | 0.696 | 0.000 4 | 0.268 | 0.328 4 |
Halabcha | 0.030 | 1.000 1 | 0.696 | 0.000 4 | 0.653 | 0.000 4 | 0.261 | 0.359 4 | |
Sachez | 0.208 | 0.649 3 | 0.212 | 0.625 3 | 0.696 | 0.000 4 | 0.478 | 0.006 4 | |
Mahabad | 0.169 | 0.866 2 | 0.108 | 0.999 2 | 0.020 | 1.000 1 | 0.037 | 1.000 1 | |
Salahddin | 0.154 | 0.927 1 | 0.184 | 0.789 2 | 1.000 | 0.000 4 | 0.696 | 0.000 4 | |
Soran | 0.195 | 0.726 2 | 0.069 | 1.000 1 | 0.021 | 1.000 1 | 0.066 | 1.000 1 | |
DS b | Kirkuk | 0.177 | 0.826 2 | 0.348 | 0.096 1 | c (-) | c (-) | 1.000 | 0.000 4 |
Makhmoor | 0.095 | 0.999 2 | 0.522 | 0.002 4 | 1.000 | 0.000 4 | 1.000 | 0.000 4 | |
Erbeel | 0.025 | 1.000 1 | 0.083 | 1.000 1 | c (-) | c (-) | 0.957 | 0.000 4 | |
Chemchamal | 0.018 | 1.000 1 | 0.117 | 0.995 2 | 0.175 | 0.836 2 | 0.739 | 0.000 4 | |
Sub-basin | Site name | September | October | November | December | ||||
K-S | p-value | K-S | p-value | K-S | p-value | K-S | p-value | ||
US a | Sulymanya | 0.184 | 0.789 2 | 0.032 | 1.000 1 | 0.143 | 0.960 2 | 0.060 | 1.000 1 |
Halabcha | 0.073 | 1.000 1 | 0.077 | 1.000 1 | 0.246 | 0.433 3 | 0.242 | 0.454 3 | |
Sachez | 0.116 | 0.996 2 | 0.021 | 1.000 1 | 0.035 | 1.000 1 | 0.090 | 1.000 1 | |
Mahabad | 0.023 | 1.000 1 | 0.068 | 1.000 1 | 0.093 | 0.999 2 | 0.119 | 0.994 2 | |
Salahddin | 0.204 | 0.196 4 | 0.276 | 0.294 4 | 0.171 | 0.856 2 | 0.061 | 1.000 1 | |
Soran | 0.057 | 1.000 1 | 0.070 | 1.000 1 | 0.034 | 1.000 1 | 0.219 | 0.584 3 | |
DS b | Kirkuk | 0.522 | 0.002 4 | 0.195 | 0.726 2 | 0.151 | 0.937 2 | 0.185 | 0.783 2 |
Makhmoor | 0.248 | 0.423 3 | 0.030 | 1.000 1 | 0.040 | 1.000 1 | 0.040 | 1.000 1 | |
Erbeel | 0.319 | 0.155 4 | 0.182 | 0.799 2 | 0.038 | 1.000 1 | 0.042 | 1.000 1 | |
Chemchamal | 0.557 | 0.001 4 | 0.038 | 1.000 1 | 0.107 | 0.999 2 | 0.035 | 1.000 1 |
Degree of Hydrological Alteration (%) | ||||||||||||
Parameter Group no. 1 (Comprising Monthly Median Discharge Values) | ||||||||||||
Year Ranges | Month | |||||||||||
Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | |
2011–2030 | −5 s | 13 s | 3 s | −6 s | −7 s | −6 s | −7 s | −10 s | −9 s | −9 s | −9 s | −9 s |
2046–2065 | −4 s | 13 s | 25 s | 12 s | 3 s | −6 s | −6 s | −8 s | −8 s | −8 s | −8 s | −8 s |
2080–2099 | −31 s | 8 s | 2 s | −20 s | −28 s | −36 m | −38 m | −41 m | −42 m | −42 m | −42 m | −42 m |
Parameter Group no. 2 (Magnitude and Duration of Annual Extreme) | ||||||||||||
Year Ranges | n-Day Minimum | n-Day Maximum | BFI a | |||||||||
1 | 3 | 7 | 30 | 90 | 1 | 3 | 7 | 30 | 90 | |||
2011–2030 | 8 s | 8 s | 7 s | 12 s | 9 s | −8 s | −8 s | −8 s | −6 s | −2 s | 12 s | |
2046–2065 | 9 s | 8 s | 7 s | 13 s | 8 s | −8 s | −8 s | −8 s | −6 s | −2 s | 13 s | |
2080–2099 | −27 s | −27 s | −28 s | 11 s | −26 s | −38 m | −38 m | −37 m | −36 m | −33 s | 11 s |
Year Ranges | Climate Change Scenario for Y (%) a | |||||||
GCM | Delta Perturbation | |||||||
e | F | g | h | i | j | Change (%) | ||
P c | PET d | |||||||
1980–2010 | 0.0034 | 0.489 | 70.02 | - | - | - | - | - |
2011–2030 | 0.0037 | 0.455 | 69.12 | −0.001 | 0.749 | 65.11 | 10 | 10 |
2046–2065 | 0.0045 | 0.362 | 64.28 | 0.006 | 0.224 | 62.95 | 20 | 10 |
2080–2099 | 0.0066 | −0.162 | 63.91 | −0.024 | −1.98 | 109.48 | 30 | 30 |
Year Ranges | Climate Change Scenario for C (106 m3) b | |||||||
GCM | Delta Perturbation | |||||||
k | L | m | n | o | p | Change (%) | ||
P c | PET d | |||||||
1980–2010 | −1.21 | 914.96 | −51,504 | - | - | - | - | - |
2011–2030 | 1.78 | 234.85 | −8490.7 | −4.48 | 1224.8 | −46,423 | 20 | 30 |
2046–2065 | −1.76 | 757.48 | −23,532 | −3.57 | 1007.9 | −31,067 | 30 | 20 |
2080–2099 | −3.62 | 967.99 | −21,697 | −2.30 | 736.49 | −13,283 | 40 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, R.; Scholz, M. Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran). Atmosphere 2024, 15, 673. https://doi.org/10.3390/atmos15060673
Mohammed R, Scholz M. Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran). Atmosphere. 2024; 15(6):673. https://doi.org/10.3390/atmos15060673
Chicago/Turabian StyleMohammed, Ruqayah, and Miklas Scholz. 2024. "Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran)" Atmosphere 15, no. 6: 673. https://doi.org/10.3390/atmos15060673
APA StyleMohammed, R., & Scholz, M. (2024). Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran). Atmosphere, 15(6), 673. https://doi.org/10.3390/atmos15060673