Enhancement of the Vegetation Carbon Uptake by the Synergistic Approach to Air Pollution Control and Carbon Neutrality in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological and Chemistry Simulation
2.2. Terrestrial GPP Calculation
2.3. Scenario Setting
2.4. Sensitivity Analysis
3. Results
3.1. The Projected Terrestrial GPP Variations
3.2. Spatial Distribution Characteristics of the Projected Terrestrial GPP Variations
3.3. Dominant Meteorological Factors Driving the Projected Terrestrial GPP Variations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPLUT | Biome specified parameter look-up table |
GPP | Gross primary productivity |
LAI | Leaf area index |
MFB | Mean fractional bias |
MFE | Mean fractional error |
NCP | North China Plain |
NMB | Normalized mean bias |
NME | Normalized mean error |
NPP | Net primary productivity |
PAR | Photosynthetically active radiation |
PER | Pollutant emission reduction |
PSN | Photosynthesis |
RCPs | Representative concentration pathways |
SCB | Sichuan Basin |
Sra | Shortwave radiation |
SSPs | Shared socioeconomic pathways |
Tmin | Daily minimum temperature |
VPD | Vapor pressure deficit |
YGP | Yunnan–Guizhou Plateau |
YSU | Yonsei University |
References
- Niu, S.-L.; Chen, W.-N. Global change and ecosystems research progress and prospect. Chin. J. Plant Ecol. 2020, 44, 449. [Google Scholar] [CrossRef]
- Fang, J.-Y. Ecological perspectives of carbon neutrality. Chin. J. Plant Ecol. 2021, 45, 1173. [Google Scholar] [CrossRef]
- Lü, F.; Song, Y.; Yan, X. Evaluating carbon sink potential of forest ecosystems under different climate change scenarios in yunnan, southwest china. Remote Sens. 2023, 15, 1442. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.-H.; Chen, X.-J.; Jia, L.-Q.; Guo, X.-N.; Chen, R.-S.; Zhang, M.-S.; Chen, Z.-Y.; Wang, H.-D. Carbon peak and carbon neutrality in china: Goals, implementation path and prospects. China Geol. 2021, 4, 720–746. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ciais, P.; Wang, Y.; Yin, Y.; Peng, S.; Zhu, Z.; Bastos, A.; Yue, C.; Ballantyne, A.P.; Broquet, G. Recent changes in global photosynthesis and terrestrial ecosystem respiration constrained from multiple observations. Geophys. Res. Lett. 2018, 45, 1058–1068. [Google Scholar] [CrossRef]
- Jingyun, F.; Jinhu, K.; Zhiyao, T.; Anping, C.E. Implications and estimations of four terrestrial productivity parameters. Acta Phytoecol. Sin. 2001, 25, 414–419. [Google Scholar]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global estimates of evapotranspiration and gross primary production based on modis and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Lü, Y.; Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid loess plateau, china. Catena 2011, 85, 58–66. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Bartrons, M.; Sardans, J.; Verger, A.; Canadell, J.G.; Chevallier, F. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 2017, 7, 9632. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A. Greening of the earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ciais, P.; Canadell, J.G.; Janssens, I.A.; Fernández-Martínez, M.; Carnicer, J.; Obersteiner, M.; Piao, S.; Vautard, R.; Sardans, J. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 2017, 1, 1438–1445. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, J.; Han, J.; Zhang, T.; Yang, S.; Wang, J.; Prodhan, F.A.; Yao, F. Projected increases in global terrestrial net primary productivity loss caused by drought under climate change. Earth’s Future 2022, 10, e2022EF002681. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Worrell, E.; Crijns-Graus, W.; Wagner, F.; Cofala, J. Co-benefits of energy efficiency improvement and air pollution abatement in the chinese iron and steel industry. Energy 2014, 78, 333–345. [Google Scholar] [CrossRef]
- Yang, X.; Teng, F. The air quality co-benefit of coal control strategy in china. Resour. Conserv. Recycl. 2018, 129, 373–382. [Google Scholar] [CrossRef]
- Cheng, J.; Tong, D.; Zhang, Q.; Liu, Y.; Lei, Y.; Yan, G.; Yan, L.; Yu, S.; Cui, R.Y.; Clarke, L. Pathways of china’s PM 2. 5 air quality 2015–2060 in the context of carbon neutrality. Natl. Sci. Rev. 2021, 8, nwab078. [Google Scholar] [CrossRef]
- Xu, B.Y.; Wang, T.J.; Li, S.; Zhuang, B.; Xie, M.; Li, M.; Xie, X. Assessment of the impact of “dual-carbon” goal on future changes in air pollution and climate in china. Chin. Sci. Bull. 2022, 67, 784–794. [Google Scholar] [CrossRef]
- Cheng, D.; Qi, G.; Song, J.; Zhang, Y.; Bai, H.; Gao, X. Quantitative assessment of the contributions of climate change and human activities to vegetation variation in the qinling mountains. Front. Earth Sci. 2021, 9, 782287. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the wrf model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the penn state–ncar mm5 modeling system. Part i: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the aer radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.-S.; Brüggemann, N.; Haak, H.; Stössel, A. Max planck institute earth system model (mpi-esm1. 2) for the high-resolution model intercomparison project (highresmip). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for simulating aerosol interactions and chemistry (mosaic). J. Geophys. Res. Atmos. 2008, 113, D13204. [Google Scholar] [CrossRef]
- Horowitz, L.W.; Walters, S.; Mauzerall, D.L.; Emmons, L.K.; Rasch, P.J.; Granier, C.; Tie, X.; Lamarque, J.F.; Schultz, M.G.; Tyndall, G.S. A global simulation of tropospheric ozone and related tracers: Description and evaluation of mozart, version 2. J. Geophys. Res. Atmos. 2003, 108, D24. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T. Description and evaluation of the model for ozone and related chemical tracers, version 4 (mozart-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H. Anthropogenic emission inventories in china: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J. Trends in china’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.-i.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R. Mix: A mosaic asian anthropogenic emission inventory under the international collaboration framework of the mics-asia and htap. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Guenther, A.; Jiang, X.; Shah, T.; Huang, L.; Kemball-Cook, S.; Yarwood, G. Model of Emissions of Gases and Aerosol from Nature Version 3 (megan3) for Estimating Biogenic Emissions; Springer: Cham, Switzerland, 2020; pp. 187–192. [Google Scholar]
- Boylan, J.W.; Russell, A.G. Pm and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Running, S.W.; Zhao, M. Daily GPP and Annual NPP (mod17a2/a3) Products NASA Earth Observing System Modis Land Algorithm. MOD17 User’s Guide. Available online: https://www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf (accessed on 3 May 2024).
- Running, S.W. Global terrestrial gross and net primary productivity from the earth observing system. In Methods in Ecosystem Science; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Hansen, M.C.; Reed, B. A comparison of the igbp discover and university of maryland 1 km global land cover products. Int. J. Remote Sens. 2000, 21, 1365–1373. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from oco-2, modis, and reanalysis data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; Van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Nossent, J.; Elsen, P.; Bauwens, W. Sobol’sensitivity analysis of a complex environmental model. Environ. Model. Softw. 2011, 26, 1515–1525. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, H.; Wei, L.; Zhong, Y.; Zhou, Z. Global prediction of gross primary productivity under future climate change. Sci. Total Environ. 2024, 912, 169239. [Google Scholar] [CrossRef] [PubMed]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Li, Y.; Shi, H.; Zhou, L.; Eamus, D.; Huete, A.; Li, L.; Cleverly, J.; Hu, Z.; Harahap, M.; Yu, Q. Disentangling climate and lai effects on seasonal variability in water use efficiency across terrestrial ecosystems in china. J. Geophys. Res. Biogeosci. 2018, 123, 2429–2443. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, R.; Bento, V.A.; Leng, S.; Qi, J.; Zeng, J.; Wang, Q. The effect of drought on vegetation gross primary productivity under different vegetation types across china from 2001 to 2020. Remote Sens. 2022, 14, 4658. [Google Scholar] [CrossRef]
- Liu, M.; Yang, G.; Yuan, W.; Li, Z.; Gao, M.; Yang, Y.; Long, H.; Meng, Y.; Li, C.; Hu, H. Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in china. Ecol. Indic. 2024, 161, 111977. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.J.; Falk, M.; Fuentes, J.D. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef]
- Hu, B.; Zhao, X.; Liu, H.; Liu, Z.; Song, T.; Wang, Y.; Tang, L.; Xia, X.; Tang, G.; Ji, D. Quantification of the impact of aerosol on broadband solar radiation in north china. Sci. Rep. 2017, 7, 44851. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Han, Z.; Liu, Z.; Li, M.; Xin, J.; Tao, Z.; Li, J.; Kang, J.-E.; Huang, K.; Dong, X. Air quality and climate change, topic 3 of the model inter-comparison study for asia phase iii (mics-asia iii)–part 1: Overview and model evaluation. Atmos. Chem. Phys. 2018, 18, 4859–4884. [Google Scholar] [CrossRef]
- Petäjä, T.; Järvi, L.; Kerminen, V.M.; Ding, A.J.; Sun, J.N.; Nie, W.; Kujansuu, J.; Virkkula, A.; Yang, X.; Fu, C.B. Enhanced air pollution via aerosol-boundary layer feedback in china. Sci. Rep. 2016, 6, 18998. [Google Scholar] [CrossRef]
- Ou, S.; Wei, W.; Cai, B.; Chen, S.; Guan, P.; Cheng, S. The independent impacts of pm2. 5 dropping on the physical and chemical properties of atmosphere over north china plain in summer during 2015–2019. Sustainability 2022, 14, 3930. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W.; Liu, M.; Tian, H. Contribution of increasing CO2 and climate change to the carbon cycle in china’s ecosystems. J. Geophys. Res. Biogeosci. 2008, 113, G01018. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N.; Harper, K.; Xia, X.; Liao, H.; Zhu, T.; Xiao, J.; Feng, Z.; Li, J. Ozone and haze pollution weakens net primary productivity in china. Atmos. Chem. Phys. 2017, 17, 6073–6089. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Gao, L.; Ma, D.; Song, R.; Zhao, J.; Yang, X.; Li, S.; Zhuang, B.; Li, M. Impacts of meteorological factors and ozone variation on crop yields in china concerning carbon neutrality objectives in 2060. Environ. Pollut. 2023, 317, 120715. [Google Scholar] [CrossRef] [PubMed]
- Bilska, A.; Sowiński, P. Closure of plasmodesmata in maize (Zea mays) at low temperature: A new mechanism for inhibition of photosynthesis. Ann. Bot. 2010, 106, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, T.; Yue, X.; Li, S.; Zhuang, B.; Wang, M. Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmos. Res. 2020, 237, 104859. [Google Scholar] [CrossRef]
- Levy, P.E.; Cannell, M.G.R.; Friend, A.D. Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob. Environ. Change 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Walker, A.P.; De Kauwe, M.G.; Bastos, A.; Belmecheri, S.; Georgiou, K.; Keeling, R.F.; McMahon, S.M.; Medlyn, B.E.; Moore, D.J.P.; Norby, R.J. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 2021, 229, 2413–2445. [Google Scholar] [CrossRef] [PubMed]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef]
- Zhang, M.-Z.; Xu, Z.; Han, Y.; Guo, W. Evaluation of cmip6 models toward dynamical downscaling over 14 cordex domains. Clim. Dyn. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, D.; Zhu, Y.; Peng, H.; Xie, H. A review of forest carbon cycle models on spatiotemporal scales. J. Clean. Prod. 2022, 339, 130692. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
Model Settings | Values |
---|---|
Horizontal resolution | 36 km |
Vertical resolution | 35 eta levels up to 50 hpa |
Domain size | 165 × 150 grids |
Meteorological boundary | MPI-ESM1-2-HR (0.94° × 0.94°, 6 h) |
Chemical boundary | MOZART (0.9° × 1.25°, 6 h) |
Physical Option | Parameterization Scheme |
Microphysics | Morrison two-moment |
Shortwave radiation | RRTMG |
Longwave radiation | RRTMG |
Surface layer | MM5 Monin-Obukhov |
Land-surface | Noah |
Boundary layer | YSU |
Cumulus | Grell 3D |
Chemical Option | Parameterization Scheme |
Gas phase chemistry | CBMZ |
Photolysis | Fast-J |
Biogenic emissions | MEGAN |
Anthropogenic emissions | MEICv1.3 (0.25° × 0.25°), MICS-ASIA III (0.25° × 0.25°), DPEC (0.25° × 0.25°) |
Scenario Configuration | Meteorological Fields | Anthropogenic Emissions |
---|---|---|
BL | 2016 | 2016 |
CN | 2016 | 2060 |
CC | 2060 | 2016 |
CE | 2060 | 2060 |
Variable | January | April | July | October |
---|---|---|---|---|
Tmin (°C) | 0.15 ± 0.22 | 0.06 ± 0.25 | 0.03 ± 0.23 | 0.19 ± 0.29 |
Srad (MJ/m2) | 1.18 * ± 0.49 | 0.27 * ± 0.34 | 0.45 * ± 0.52 | 0.61 * ± 0.40 |
VPD (Pa) | 22.77 * ± 14.77 | 0.02 ± 13.50 | 16.80 ± 30.10 | 28.19 * ± 24.03 |
PM2.5 (μg/m3) | −49.92 * ± 25.52 | −9.61 * ± 8.71 | −7.55 * ± 8.82 | −18.31 * ± 13.19 |
O3 (ppbv) | −2.04 * ± 6.35 | −3.02 * ± 5.10 | −9.36 * ± 5.72 | −3.10 * ± 6.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Shi, G.; Yang, F. Enhancement of the Vegetation Carbon Uptake by the Synergistic Approach to Air Pollution Control and Carbon Neutrality in China. Atmosphere 2024, 15, 578. https://doi.org/10.3390/atmos15050578
Qin X, Shi G, Yang F. Enhancement of the Vegetation Carbon Uptake by the Synergistic Approach to Air Pollution Control and Carbon Neutrality in China. Atmosphere. 2024; 15(5):578. https://doi.org/10.3390/atmos15050578
Chicago/Turabian StyleQin, Xiao, Guangming Shi, and Fumo Yang. 2024. "Enhancement of the Vegetation Carbon Uptake by the Synergistic Approach to Air Pollution Control and Carbon Neutrality in China" Atmosphere 15, no. 5: 578. https://doi.org/10.3390/atmos15050578
APA StyleQin, X., Shi, G., & Yang, F. (2024). Enhancement of the Vegetation Carbon Uptake by the Synergistic Approach to Air Pollution Control and Carbon Neutrality in China. Atmosphere, 15(5), 578. https://doi.org/10.3390/atmos15050578